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Abstract: Studies examining long-term longitudinal metabolomic data and their reliability in large-
scale populations are limited. Therefore, we aimed to evaluate the reliability of repeated mea-
surements of plasma metabolites in a prospective cohort setting and to explore intra-individual
concentration changes at three time points over a 6-year period. The study participants included 2999
individuals (1317 men and 1682 women) from the Tsuruoka Metabolomics Cohort Study, who partici-
pated in all three surveys—at baseline, 3 years, and 6 years. In each survey, 94 plasma metabolites
were quantified for each individual and quality control (QC) sample. The coefficients of variation of
QC, intraclass correlation coefficients, and change rates of QC were calculated for each metabolite,
and their reliability was classified into three categories: excellent, fair to good, and poor. Seventy-six
percent (71/94) of metabolites were classified as fair to good or better. Of the 39 metabolites grouped
as excellent, 29 (74%) in men and 26 (67%) in women showed significant intra-individual changes
over 6 years. Overall, our study demonstrated a high degree of reliability for repeated metabolome
measurements. Many highly reliable metabolites showed significant changes over the 6-year period,
suggesting that repeated longitudinal metabolome measurements are useful for epidemiological
studies.

Keywords: metabolomics; capillary electrophoresis–mass spectrometry; reliability; time-series data;
repeated measurements; longitudinal data; cohort studies

1. Introduction

In recent years, large-scale metabolomic studies have been conducted worldwide.
Large sample sizes, often in thousands, are particularly important to achieve sufficient
reproducibility for biomarker discovery [1–3]. To date, a broad range of evidence has
been obtained as a result of epidemiological studies using metabolomic data from single
data points; however, the addition of metabolic profiling across multiple time points in
a longitudinal setting will allow for a more precise estimation of the causal effects of
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metabolic variation [4,5]. Therefore, repeated longitudinal measurements of metabolomic
data in cohorts spanning several years are expected to be more promising for future studies.

However, longitudinal studies can introduce new biases, such as changes in sample
collection and storage as well as changes in biochemical assays caused by the long intervals
between studies [6]. Statistically separating the analytical variation introduced by these
experimental processes and instrumental analyses from the “true” biological variability
is difficult [7]. To the best of our knowledge, few studies have examined the reliability of
quantitative time-series metabolomic data in large populations [6,8].

Several methods are commonly used for metabolite analysis, among which capillary
electrophoresis–mass spectrometry (CE-MS) has the advantages of higher separation ef-
ficiency and compound identification capability, allowing for the absolute quantification
of polar metabolites, such as carbohydrates and amino acids [9,10], compared with other
metabolome profiling methods.

The Tsuruoka Metabolomics Cohort Study (TMCS) is an ongoing prospective cohort
study in Japan, for which plasma and urine metabolomic data was collected from more
than 10,000 individuals across multiple time points using CE-MS methods. The TMCS aims
to discover metabolomic biomarkers of common diseases and disorders related to genetic
and environmental factors [11]. After the baseline study in 2012–2014 (Wave 1), follow-up
studies were conducted 3 years later in 2015–2017 (Wave 2), 6 years later in 2018–2021
(Wave 3), and the third follow-up study (Wave 4) is underway as of 2023. We previously
showed that large-scale metabolic profiling using CE-MS provided sufficiently high repro-
ducibility and validity for both plasma and urine samples [10,11]. Liquid chromatography
(LC)-MS was also incorporated in Wave 1 to expand metabolome coverage [12]; however,
CE-MS has been mainly used for subsequent time-series measurements because of its
high absolute quantitative accuracy. Therefore, CE-MS is considered suitable for assessing
changes over time.

Considering the lack of studies examining the reliability of quantitative time-series
metabolomic data in large populations, this study examined the reliability of repeatedly
measuring plasma metabolites in a prospective cohort setting. We also explored the intra-
individual changes in plasma metabolite concentrations over 6 years to discuss the utility
of long-term repeated metabolome measurements in epidemiological studies.

2. Materials and Methods
2.1. Tsuruoka Metabolomics Cohort Study

In total, 11,002 participants aged 35–74 years (59.6 ± 10.1 years, 53% women) partici-
pated in Wave 1 from April 2012 to March 2015. All participants completed a comprehensive
questionnaire on their lifestyle, dietary habits, and medical history. We also collected bi-
ological samples, including serum, plasma, urine, and buffy coats, as well as the data
from health check-up programs provided by the municipality, employers, or employment-
based insurers, including laboratory tests and physical examinations. Follow-up surveys
were conducted and completed every 3 years, referred to as Waves 2 and 3; samples and
questionnaire data were also collected during these later surveys. Information on death,
onset of cardiovascular diseases and cancer, and other medical and laboratory data were
also collected annually using national registry data, hospital records, and/or municipal or
employment-based health checkups.

In Waves 2 and 3, conducted at 3 (3.0 ± 0.2) and 6 years (5.8 ± 0.8) after Wave 1, 4707
(56% women) and 6050 (55% women) participants were surveyed, respectively. The profile
of the TMCS has been described in detail previously [11].

This study was approved by the Medical Ethics Committee of the Keio University
School of Medicine, Tokyo, Japan (approval no. 20110264), and all participants provided
written informed consent.



Metabolites 2024, 14, 77 3 of 11

2.2. Study Subjects and Sample Collection

In total, 3314 individuals participated in all three surveys with a complete three-point
metabolomic dataset. After excluding participants with a history of cerebral and cardio-
vascular diseases, such as myocardial infarction and stroke (121 subjects), or malignancy
(161 subjects) at Wave 1, and 33 subjects for whom analyses were performed from a non-
fasting blood draw, 2999 participants (1317 men (aged 55.1 ± 10.4 years) and 1682 women
(aged 54.6 ± 10.6 years)) were included in this study.

Blood samples were collected after 12 h of overnight fasting to avoid dietary and
circadian rhythm variations. Plasma samples were collected with EDTA-2Na as an anti-
coagulant and kept at 4 ◦C immediately after collection. Within 3 h after collection, the
samples were centrifuged for 15 min (1500× g at 4 ◦C), divided into aliquots, and preserved
at 4 ◦C until extraction of metabolites. To inhibit metabolic reactions in plasma, metabolite
extraction from plasma was completed within 6 h after collection, the extract was then
stored at −80 ◦C. Fifty microliters of plasma was used for sample extraction as previously
described [13].

2.3. Metabolomics Measurements and Quality Control Samples

Metabolomic profiling of fasting plasma samples was conducted using capillary
electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). CE-TOF-MS analysis of
cationic and anionic metabolites was performed as previously described [13,14]. Raw data
were processed using our proprietary software (MasterHands ver.2) [13], and the absolute
concentrations of 94 metabolites (54 cations and 40 anions), which were expected to be
detected in more than 20% of the plasma samples based on our preliminary study, were
measured [10].

We used three CE-MS instruments to measure cations and two to measure anions.
These five instruments were used exclusively during the study period. Mass calibration
using tuning solutions and MS entrance cleaning were performed at the beginning of
every sequence to ensure a robust performance. Further, the number of samples per run
was limited to 100 to avoid unexpected changes in the sensitivity of and variance in the
measurement of MS in a continuous run.

The metabolomic profiles of participant samples were analyzed in the order of col-
lection beginning in April 2012, with 21,684 sample analyses completed by August 2021.
These data comprised 238 running batches of cations and 231 batches of anions. The
sample collection and metabolomics measurement processes are illustrated in Figure 1.
The median measurement months were March 2016 for Wave 1, June 2017 for Wave 2,
and July 2019 for Wave 3, for both cations and anions. To monitor the stability of the
metabolomic analysis, quality control (QC) samples were injected for every 10 participant
samples and assessed at the beginning of the analytical run and at intervals throughout the
analysis. For QC samples, 150 mL serum collected in advance from 20 individuals from
the same population was extracted for metabolomics analysis immediately after collection,
then divided into 50 µL aliquots and stored at −80 ◦C. The QC aliquots were thawed
and used for monitoring during the study. We calculated the mean concentration of each
metabolite in the QC samples that were previously analyzed in 70 sequences. When the
concentration of each metabolite in the QC samples exceeded twice the mean concentration
(two standard deviations for more than half of the metabolites), the subsequent sequence
was reanalyzed. In total, 2547 QC samples for cations and 2627 samples for anions were
used from Waves 1–3, for approximately 9 years from April 2012 to August 2021.

2.4. Variables Definition

Alcohol consumption and smoking status data were collected using self-administered
questionnaires. Participants were asked to choose never, ex-, or current; never and ex- were
defined as non-current and distinguished from current. Hypertension was defined as systolic
blood pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg, or taking antihypertensive
medication. Diabetes mellitus was defined as either fasting blood glucose ≥ 126 mg/dL, HbA1c
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(National Glycohemoglobin Standardization Program) ≥ 6.5%, or the use of hypoglycemic
drugs or insulin. Dyslipidemia was defined as one or more of the following findings:
low-density lipoprotein-cholesterol ≥ 140 mg/dL, triglyceride ≥ 150 mg/dL, high-density
lipoprotein-cholesterol < 40 mg/dL, or the use of dyslipidemia drugs.

Metabolites 2024, 14, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 1. Sample collection and measurement process. QC samples were collected and pooled at 
the beginning of the study to be repeatedly measured for monitoring. Participant samples were 
collected during each study participation period (Waves 1, 2, and 3) and measured in sequential 
order. QC: quality control. 

2.4. Variables Definition 
Alcohol consumption and smoking status data were collected using self-

administered questionnaires. Participants were asked to choose never, ex-, or current; 
never and ex- were defined as non-current and distinguished from current. Hypertension 
was defined as systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, 
or taking antihypertensive medication. Diabetes mellitus was defined as either fasting 
blood glucose ≥126 mg/dL, HbA1c (National Glycohemoglobin Standardization Program) 
≥6.5%, or the use of hypoglycemic drugs or insulin. Dyslipidemia was defined as one or 
more of the following findings: low-density lipoprotein-cholesterol ≥140 mg/dL, 
triglyceride ≥ 150 mg/dL, high-density lipoprotein-cholesterol <40 mg/dL, or the use of 
dyslipidemia drugs. 

2.5. Statistical Analyses 
For samples where metabolites were not detected, half of the lowest detected values 

were imputed [15]. To evaluate the reproducibility of data measurement, we calculated 
the coefficient of variation (CV) of the QC samples by dividing the variance by the mean. 
The intraclass correlation coefficient (ICC) was calculated to assess the reliability of 
metabolite profiling. Approximate ICCs were calculated as previously described [10]. 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝐼𝐶𝐶 ൌ 1 െ ሺ𝐶𝑉ொ஼ሻଶሺ𝐶𝑉௉௔௥௧௜௖௜௣௔௡௧ሻଶ  

The rate of change in QC samples measured between Waves 1 and 2 and between 
Waves 1 and 3 was calculated as follows: (mean value of Wave 2 − mean value of 
Wave1)/mean value of Wave 1, and (mean value of Wave 3 − mean value of Wave 1)/mean 
value of Wave 1. 

Regarding the index of reliability, a CV > 30% is generally considered undesirable 
and a CV < 20% is considered desirable. Further, an ICC < 0.4 is considered poor, between 
0.4 and 0.75 as fair to good, and above 0.75 as excellent [16]. In this study, three indices, 
the CV of QC, estimated ICC, and change rate of QC, were used to classify the reliability 
of each metabolite into the following three categories: excellent, fair to good, and poor. 
Specifically, reliability was considered as (i) excellent with CV < 20%, ICC ≥ 0.75, and 
change rate <5%; (ii) fair to good with 20% ≤ CV < 30%, 0.4 ≤ ICC < 0.75, or 5% ≤ change 
rate <10%; or (iii) poor with CV ≥ 30%, ICC < 0.4, or change rate ≥10%. The excellent and 
fair to good metabolites were comparable. 

Figure 1. Sample collection and measurement process. QC samples were collected and pooled at
the beginning of the study to be repeatedly measured for monitoring. Participant samples were
collected during each study participation period (Waves 1, 2, and 3) and measured in sequential order.
QC: quality control.

2.5. Statistical Analyses

For samples where metabolites were not detected, half of the lowest detected values
were imputed [15]. To evaluate the reproducibility of data measurement, we calculated the
coefficient of variation (CV) of the QC samples by dividing the variance by the mean. The
intraclass correlation coefficient (ICC) was calculated to assess the reliability of metabolite
profiling. Approximate ICCs were calculated as previously described [10].

Approximate ICC = 1 −
(CVQC)

2

(CVParticipant)
2

The rate of change in QC samples measured between Waves 1 and 2 and between
Waves 1 and 3 was calculated as follows: (mean value of Wave 2 − mean value of
Wave 1)/mean value of Wave 1, and (mean value of Wave 3 − mean value of Wave 1)/mean
value of Wave 1.

Regarding the index of reliability, a CV > 30% is generally considered undesirable and
a CV < 20% is considered desirable. Further, an ICC < 0.4 is considered poor, between 0.4
and 0.75 as fair to good, and above 0.75 as excellent [16]. In this study, three indices, the CV
of QC, estimated ICC, and change rate of QC, were used to classify the reliability of each
metabolite into the following three categories: excellent, fair to good, and poor. Specifically,
reliability was considered as (i) excellent with CV < 20%, ICC ≥ 0.75, and change rate <
5%; (ii) fair to good with 20% ≤ CV < 30%, 0.4 ≤ ICC < 0.75, or 5% ≤ change rate < 10%; or
(iii) poor with CV ≥ 30%, ICC < 0.4, or change rate ≥ 10%. The excellent and fair to good
metabolites were comparable.

For metabolites classified as excellent and fair to good, we performed a linear mixed
model stratified by sex and examined intra-individual changes in plasma metabolite con-
centrations per year at three time points over a 6-year period. The observed metabolite
concentration was set as the dependent variable, years of follow-up as the independent
variable, age at Wave 1 as the fixed effect, and individual ID as the variable effect. The
subjects for analysis were those who participated in all three surveys, and a mixed model
was constructed using all measured values from Waves 1 to 3. The estimates were divided
by the standard deviation of Wave 1 for each metabolite. Additionally, we performed
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a sensitivity analysis on those who were free of diabetes from Wave 1 to the follow-up
period. We calculated p-values using the Benjamini–Hochberg false discovery rate (FDR)
method [17], a commonly used approach for testing multiple hypotheses [18]. Statistical
significance was set at an FDR p < 0.05. All statistical analyses were performed using R.4.3.2
(R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. CV of QC Samples, ICC, and Change Rate of QC Samples

The CV, ICC, and change rate of QC samples are shown in Figure 2 and Figure S1,
and Table S1. The histograms indicated that the CVs were <0.3 (30%) for many metabolites
(Figure 2). When the cations and anions were compared, the distribution of CVs for cations
shifted to the left compared to that for anions, indicating smaller CVs for cations (Figure
S1). A comparison of the percentage of metabolites with CV < 30% across the three surveys
showed that 80 metabolites in Wave 1 (85%), 83 in Wave 2 (88%), and 86 in Wave 3 (91%)
had CVs below 30%. Thus, the measurements became more stable as follow-up progressed.
Regarding ICC, 87 metabolites (93%) were >0.4 in all three surveys, and 59 metabolites (63%)
were >0.75. The change rates in QC between baseline and follow-up surveys were <10%
for 78 metabolites (83%) and <5% for 54 metabolites (57%) at both follow-up visits. When
the metabolites corresponding to the metabolism of amino acids and the other metabolites
were compared, the median values of three indices were as follows: CV, 7.4% vs. 16.3%;
ICC, 0.90 vs. 0.84; the change rates were 0.2% vs. 0.6%, respectively. This suggested that the
metabolites related to the metabolism of amino acids were more stable.
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Figure 2. Histograms of the three indicators of reliability: (a) CV of QC; (b) approximate ICC;
(c) change rate of QC. CV, coefficient of variation; ICC, intraclass correlation coefficient; QC; quality
control samples.

Among the 94 metabolites, 39 (42%) were classified as excellent, 32 (34%) as fair to
good, and 23 (24%) as poor. When stratified by cations and anions, 83% of the cations and
65% of the anions met the fair to good criteria or better.

3.2. Characteristics of the Study Participants and Sample Collection/Measurement Process

Characteristics of the participants from Wave 1 are presented in Table 1. The mean
age ± standard deviation (SD) was 54.8 ± 10.5 years, and the mean body mass index ± SD
was 23.0 ± 3.3 kg/m2. The proportion of current drinkers/smokers and the prevalence of
lifestyle-related diseases were similar to the standard prevalence rates in Japan [19]; thus,
the population was considered a general community-dwelling population. During the
follow-up period, the distribution of body mass index in the study population remained
unchanged (Wave 1: 23.0 ± 3.3 kg/m2, Wave 3: 23.4 ± 3.5 kg/m2), whereas the proportion
of current drinkers and smokers decreased (drinkers, Wave 1: 51.5%, Wave 3: 50.2%;
smokers, Wave 1: 16.9%, Wave 3: 13.4%), and the prevalence of lifestyle-related diseases
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increased (hypertension, Wave 1: 36.1%, Wave 3: 49.8%; diabetes mellitus, Wave 1: 6.9%,
Wave 3: 10.1%; dyslipidemia, Wave 1: 45.6%, Wave 3: 52.3%).

Table 1. Characteristics of the study participants.

All (n = 2999) Men (n = 1317) Women (n = 1682)

Age (years) 54.8 ± 10.5 55.1 ± 10.4 54.6 ± 10.6
Body mass index (kg/m2) 23.0 ± 3.3 23.8 ± 3.0 22.4 ± 3.4
Any current alcohol intake 1544 (51.5%) 1022 (77.7%) 522 (31.1%)

Current smoker 507 (16.9%) 425 (32.4%) 82 (4.9%)
Hypertension 1079 (36.1%) 547 (41.6%) 532 (31.7%)

Diabetes mellitus 206 (6.9%) 132 (10.1%) 74 (4.4%)
Dyslipidemia 1367 (45.6%) 676 (51.3%) 691 (41.1%)

3.3. Intra-Individual Changes in Metabolites over Time

Figure 3 shows the results of the secular changes per year in 71 metabolites (76%)
classified as having “fair to good” or “excellent” reliability over time. Point estimates
of annual changes divided by standard deviation and their 95% confidence intervals are
shown. The analysis was stratified according to sex. During the follow-up period, 20 and
32 metabolites significantly increased and decreased, respectively, in men, whereas 28 and
26 metabolites significantly increased and decreased, respectively, in women. More details
are listed in Table S2, which is divided into cations and anions.
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Figure 3. Intra-individual metabolite concentration changes per year at three time points over a
6-year period. Metabolites classified as having (a) “excellent” or (b) “fair to good” reliability for
evaluation over time are illustrated. For each metabolite, point estimates of annual changes divided
by standard deviation and their 95% confidence intervals are shown. The metabolic pathway is
shown on the right side [20,21]. CSSG, cysteine-glutathione disulfide; SAM, S-Adenosylmethionine;
SD, standard deviation; TCA, tricarboxylic acid cycle.

Of the 39 metabolites with “excellent” reliability over time, 29 metabolites (74.4%)
in men and 26 metabolites (66.7%) in women exhibited significant changes during the
follow-up period. Similarly, of the 32 “fair to good” metabolites, 23 (71.9%) in men and 28
(87.5%) in women showed significant changes. These results indicate that approximately
70% of the metabolites that were highly reliable in quantifying time-series concentrations
showed clear changes over time. These results were consistent in a sensitivity analysis
restricted to diabetes-free participants (Table S3).

4. Discussion

In our large-scale epidemiological study using a CE-MS metabolomics platform with
excellent reproducibility, many metabolites demonstrated stable measurements of accurate
absolute concentrations, even in longitudinal repeated measurements. This was made
possible by using stable standards for all metabolites to determine absolute concentrations,
strictly limiting the instruments used to reduce measurement errors, regularly checking
instrument sensitivity, and reanalyzing samples when QC sample concentrations did not
match the standards to maintain measurement quality. The CVs of 78 metabolites (83%)
were less than 30% in all three surveys, which was comparable in reliability to the Wave 1
metabolome measurement data of 10,000 individuals previously reported [10].
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Although attempts have been made to apply statistical corrections to measurement re-
sults when conducting large-scale profiling [7], statistically separating errors caused by the
measurement process from true biological variation is more difficult, particularly in longi-
tudinal repeated measurements. Therefore, the use of platforms for quantifying metabolite
concentrations with high reproducibility is particularly important. The target of the present
study was a single cohort established specifically for conducting metabolomic analysis;
standardized sample collection and storage methods were used consistently throughout
Waves 1, 2, and 3. Furthermore, by establishing standard operating procedures, limiting
the equipment used, and monitoring measurements with QC samples, high reliability can
be achieved even for longitudinal measurements.

CV and ICC have been used as criteria for reproducibility in conventional studies [8,22,23].
In the present study, we considered it important that the rate of change in QC samples be
below a certain level in longitudinal studies; thus, the change rate of QC was added to
the conventional criteria to better assess the reliability of metabolome data in longitudinal
settings. A metabolite was defined as having excellent reliability if it met the criteria for all
three indicators: CV, ICC, and change rate of QC. In total, 2% of the metabolites met the
criteria for excellent reliability, and 34% met the criteria for fair to good reliability using
all three indicators. Overall, 76% of all quantified metabolites could be evaluated for their
multi-year changes in a longitudinal epidemiological study.

Consistent with previous cross-sectional studies, measurement reliability differed
between cations and anions. In total, 83% of the cation metabolites met the “fair to good”
or “excellent” criteria, compared to 65% of the anion metabolites. Furthermore, 63% of
the cations met the “fair to good” criteria, compared to 12.5% of the anions. Overall, the
plasma concentrations of anions were lower than those of cations, as reflected by the higher
proportion of anions with concentrations below the limit of detection (4.7% for cations and
11.5% for anions). Smaller peaks hinder distinction of the peak areas from noise, making it
challenging to quantify them with sufficient precision [6]. Studies using LC-MS have also
shown that metabolites with large peak areas exhibit low CVs [23], and the reliability of
measuring metabolites at low concentrations remains a topic for future research.

This study is valuable because it demonstrates the changes in metabolite concentra-
tions over time with reliable measurements. Approximately 70% of the metabolites with
excellent measurement reliability showed clear shifts over the 6-year time series, indicating
that the changes were robust. Although much of the plasma metabolome is assumed to
fluctuate over time, in this cohort we demonstrated the ability to detect epidemiological
changes over time and the importance of focusing on these long-term changes.

Of the 71 metabolites classified as excellent or fair to good, 20 (28%) and 28 (39%)
increased significantly in men and women, whereas 32 (45%) and 26 (37%) decreased
significantly, respectively. Various metabolites belonging to specific pathways changed in
the same direction in both men and women. Metabolites related to glutathione metabolism
(2-aminobutyrate and 2-hydroxybutyrate) were significantly increased in both men and
women, whereas metabolites related to alanine and aspartate metabolism (aspartate and
N-acetylaspartate); glycine, serine, and threonine metabolism (serine, threonine, and N,N-
dimethylglycine); and those related to tryptophan metabolism (tryptophan and kynurenine)
were significantly decreased in both sexes. In contrast, 4-methyl-2-oxopentanoate, which
is produced by the deamination of leucine, demonstrated different orientations in men
and women, with a significant increase in women, but a decrease in men. Consistently, sex
differences in leucine metabolism during exercise have been previously reported [24]. The
present study showed that leucine levels were significantly increased in women during the
follow-up period, but not in men.

This study has a few limitations. First, our metabolomics data were derived from a sin-
gle cohort under a strict protocol. Not every cohort can follow the regulations established in
TMCS, including those regarding sample collection and exclusive use of instruments. Thus,
its feasibility in other prospective cohorts may remain a challenge. Nevertheless, the present
study showed that if measurements were adequately performed under a strict protocol, the
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reliability of repeated metabolome measurements could be ensured over a period of as long
as 6 years. Second, our data were limited to metabolites profiled solely using CE-MS. The
measurement of other metabolites, such as lipids, was not examined. Future validations
using other platforms, such as LC-MS and nuclear magnetic resonance, will be important
to examine changes in a wider range of metabolites over time. Third, we demonstrated
changes in metabolomic profiles over 6 years, adjusted only for age. This study aimed to
examine the crude changes in metabolites in the general population without malignancy
or cardiovascular disease at baseline (Wave 1). The results of the sensitivity analysis in
the absence of diabetes throughout the follow-up period were consistent, suggesting that
most of the results shown in Figure 3 may be independent of diabetes. However, given
that lifestyle habits, such as drinking, smoking, and related health conditions, such as
hypertension and dyslipidemia, could greatly affect the metabolome [25,26], we hope to
expand our longitudinal metabolomics data in this cohort to study the combined effects of
various lifestyle habits and health conditions on metabolome changes in the future.

5. Conclusions

In conclusion, this large-scale cohort study demonstrated that the CE-MS platform
used in TMCS has high reliability for measuring plasma metabolites even in repeated
measurements after 3 and 6 years in a large-scale cohort study. It also showed that a longi-
tudinal assessment was adequate for a majority of metabolites. Furthermore, many highly
reliable metabolites changed significantly over time, indicating that repeated longitudinal
metabolome measurements are valuable for epidemiological use.

Supplementary Materials: The following supporting information can be downloaded at https://www.
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(2). CV, coefficient of variation. QC, quality control. ICC, intraclass correlation coefficient. Table S1:
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as follows: 1 − (CV of QC samples)2/(CV of participant samples)2. The change rate of QC samples
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time restricted to diabetes-free participants.
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