Hyperglycosylation as an Indicator of Aging in the Bone Metabolome of Oryzias latipes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Medaka Bone Cell Isolation
2.2. Metabolite Extraction and Orbitrap Mass Spectrometry Analysis
3. Results
3.1. Compound Identification
3.2. Age-Related Metabolomic Changes
3.3. Metabolomic Changes Related to Sex
3.4. Glycosylation Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shanthanagouda, A.H.; Guo, B.S.; Ye, R.R.; Chao, L.; Chiang, M.W.; Singaram, G.; Au, D.W. Japanese Medaka: A non-nammalian vertebrate model for studying sex and age-related bone metabolism in vivo. PLoS ONE 2014, 9, e88165. [Google Scholar] [CrossRef] [PubMed]
- Hamamura, K.; Nagao, M.; Furukawa, K. Regulation of glycosylation in bone Metabolism. Int. J. Mol. Sci. 2024, 25, 3568. [Google Scholar] [CrossRef] [PubMed]
- Ofer, L.; Zaslansky, P.; Shahar, R. A comparison of the structure, composition and mechanical properties of anosteocytic vertebrae of medaka (O. latipes) and osteocytic vertebrae of zebrafish (D. rerio). J. Fish Biol. 2021, 98, 995–1006. [Google Scholar] [CrossRef]
- Ofer, L.; Dean, M.N.; Zaslansky, P.; Kult, S.; Shwartz, Y.; Zaretsky, J.; Griess-Fishheimer, S.; Monsonego-Ornan, E.; Zelzer, E.; Shahar, R. A novel nonosteocytic regulatory mechanism of bone modeling. PLOS Biol. 2019, 17, e3000140. [Google Scholar] [CrossRef]
- Lleras-Forero, L.; Winkler, C.; Schulte-Merker, S. Zebrafish and medaka as models for biomedical research of bone diseases. Dev. Biol. 2020, 457, 191–205. [Google Scholar] [CrossRef]
- Takeyama, K.; Chatani, M.; Takano, Y.; Kudo, A. In-vivo imaging of the fracture healing in medaka revealed two types of osteoclasts before and after the callus formation by osteoblasts. Dev. Biol. 2014, 394, 292–304. [Google Scholar] [CrossRef]
- Yasutake, J.; Inohaya, K.; Kudo, A. Twist functions in vertebral column formation in medaka, Oryzias latipes. Mech. Dev. 2004, 121, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Inohaya, K.; Takano, Y.; Kudo, A. The teleost intervertebral region acts as a growth center of the centrum: In vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev. Dyn. 2007, 236, 3031–3046. [Google Scholar] [CrossRef]
- Renn, J.; Winkler, C. Osterix-mCherry transgenic medaka for in vivo imaging of bone formation. Dev. Dyn. 2009, 238, 241–248. [Google Scholar] [CrossRef]
- Renn, J.; Büttner, A.; To, T.T.; Chan, S.J.H.; Winkler, C. A col10a1:nlGFP transgenic line displays putative osteoblast precursors at the medaka notochordal sheath prior to mineralization. Dev. Biol. 2013, 381, 134–143. [Google Scholar] [CrossRef]
- Cheung, N.K.M.; Nakamura, R.; Uno, A.; Kumagai, M.; Fukushima, H.S.; Morishita, S.; Takeda, H. Unlinking the methylome pattern from nucleotide sequence, revealed by large-scale in vivo genome engineering and methylome editing in medaka fish. PLOS Genet. 2017, 13, e1007123. [Google Scholar] [CrossRef] [PubMed]
- Uno, A.; Nakamura, R.; Tsukahara, T.; Qu, W.; Sugano, S.; Suzuki, Y.; Morishita, S.; Takeda, H. Comparative analysis of genome and epigenome in closely related medaka species identifies conserved se-quence preferences for DNA hypomethylated domains. Zoolog. Sci. 2016, 33, 358. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, D.; Takeda, H. Medaka genome project. In Briefings in Functional Genomics; Oxford Academic: Oxford, UK, 2024. [Google Scholar] [CrossRef]
- Li, S.-C.; Chan, W.-C.; Ho, M.-R.; Tsai, K.-W.; Hu, L.-Y.; Lai, C.-H.; Hsu, C.-N.; Hwang, P.-P.; Lin, W.-C. Discovery and characterization of medaka miRNA genes by next generation sequencing platform. BMC Genom. 2010, 11, S8. [Google Scholar] [CrossRef]
- Kirchmaier, S.; Naruse, K.; Wittbrodt, J.; Loosli, F. The Genomic and genetic toolbox of the teleost medaka (Oryzias latipes). Genetics 2015, 199, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Graf, M.; Renn, J.; Schartl, M.; Larionova, D.; Huysseune, A.; Witten, P.E.; Winkler, C. A vertebrate-specific and essential role for osterix in osteogenesis revealed by gene knockout in the teleost medaka. Development 2016, 144, 265–271. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Cheng, X.; Ren, T.; Xu, W.; Li, J.; Wang, H.; Zhang, J. Inflammation produced by senescent osteocytes mediates age-related bone loss. Front. Immunol. 2023, 14, 1114006. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Law, S.F.; Chandra, A. Bone aging, cellular senescence, and osteoporosis. JBMR Plus 2021, 5, e10488. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Samsonraj, R.M.; Law, S.F.; Wang, H.; Chandra, A. Targeting cell senescence for the treatment of age-related bone loss. Curr. Osteoporos. Rep. 2019, 17, 70–85. [Google Scholar] [CrossRef]
- Gomathi, K.; Akshaya, N.; Srinaath, N.; Moorthi, A.; Selvamurugan, N. Regulation of runx2 by post-translational modifications in osteoblast differentiation. Life Sci. 2020, 245, 117389. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, H.S.; Lee, S.; Min, K.Y.; Choi, W.S.; You, J.S. Hexosamine biosynthetic pathway-derived O-GlcNAcylation is critical for RANKL-mediated osteoclast differentiation. Int. J. Mol. Sci. 2021, 22, 8888. [Google Scholar] [CrossRef]
- Dong, M.; Sun, Q.; Yu, X.; Sui, L.; Xu, Y.; Kong, H.; Kong, Y. OPN N-glycosylation promoted bone destruction. Oral Dis. 2023, 29, 2154–2162. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, S.; Cheung, N.K.; Yip, B.W.; Au, D.W. Medaka fish exhibits longevity gender gap, a natural drop in estrogen and telomere shortening during aging: A unique model for studying sex-dependent longevity. Front. Zool. 2013, 10, 78. [Google Scholar] [CrossRef]
- DiBona, E.; Humble, J.L.; Duran, D.; Au, D.W.T.; Seemann, F. Characterization of immune aging in the japanese medaka (Oryzias latipes). Fishes 2024, 9, 333. [Google Scholar] [CrossRef]
- Saavedra, D.; Añé-Kourí, A.L.; Barzilai, N.; Caruso, C.; Cho, K.-H.; Fontana, L.; Franceschi, C.; Frasca, D.; Ledón, N.; Niedernhofer, L.J.; et al. Aging and chronic inflammation: Highlights from a multidisciplinary workshop. Immun. Ageing 2023, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Marini, M.; Tani, A.; Manetti, M.; Sgambati, E. Overview of sialylation status in human nervous and skeletal muscle tissues during aging. Acta Histochem. 2021, 123, 151813. [Google Scholar] [CrossRef]
- Gao, X.; Di, X.; Li, J.; Kang, Y.; Xie, W.; Sun, L.; Zhang, J. Extracellular Calcium-induced Calcium transient regulating the proliferation of osteoblasts through glycolysis metabolism pathways. Int. J. Mol. Sci. 2023, 24, 4991. [Google Scholar] [CrossRef] [PubMed]
- McDonald, A.G.; Hayes, J.M.; Davey, G.P. Metabolic flux control in glycosylation. Curr. Opin. Struct. Biol. 2016, 40, 97–103. [Google Scholar] [CrossRef]
- Walsby-Tickle, J.; Gannon, J.; Hvinden, I.; Bardella, C.; Abboud, M.I.; Nazeer, A.; Hauton, D.; Pires, E.; Cadoux-Hudson, T.; Schofield, C.J.; et al. Anion-exchange chromatography mass spectrometry provides extensive coverage of primary metabolic pathways revealing altered metabolism in IDH1 mutant cells. Commun. Biol. 2020, 3, 247. [Google Scholar] [CrossRef]
- Kinoshita, M.; Murata, K.; Naruse, K.; Tanaka, M. Medaka: Biology, Management, and Experimental Protocols; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Buettner, A.; Sundaram, S.; Vyas, H.; Yu, T.; Mathavan, S.; Winkler, C. Fluorescence-activated cell sorting (FACS) of osteoblasts and osteoclasts for RNA sequencing in a medaka, Oryzias latipes (Temming & Schlegel, 1846), osteoporosis model. J. Appl. Ichthyol. 2018, 34, 481–488. [Google Scholar] [CrossRef]
- Bergmann, D.; Matarrita-Rodríguez, J.; Abdulla, H. Toward a More Comprehensive approach for dissolved organic matter chemical characterization using an orbitrap fusion tribrid mass spectrometer coupled with ion and liquid chromatography techniques. Anal. Chem. 2024, 96, 3744–3753. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an optimized workflow for global metabolomics. Metabolites 2020, 10, 186. [Google Scholar] [CrossRef]
- Dong, X.; Vegesna, K.; Brouwer, C.; Luo, W. SBGNview: Towards data analysis, integration and visualization on all pathways. Bioinformatics 2021, 38, 1473–1476. [Google Scholar] [CrossRef]
- Caval, T.; Xu, G.; Baniasad, M.; Chu, C.W.; Rice, R.; Hundal, I.; Czerwieniec, G.; Schwarz, F. Mass spectrometry analysis of glycopeptides enriched by anion exchange-mediated methods reveals PolyLacNAc-extended N-Glycans in integrins and tetraspanins in melanoma cells. Anal. Chem. 2024, 96, 5086–5094. [Google Scholar] [CrossRef]
- Itakura, Y.; Hasegawa, Y.; Kikkawa, Y.; Murakami, Y.; Sugiura, K.; Nagai-Okatani, C.; Sasaki, N.; Umemura, M.; Takahashi, Y.; Kimura, T.; et al. Spatiotemporal changes of tissue glycans depending on localization in cardiac aging. Regen. Ther. 2023, 22, 68–78. [Google Scholar] [CrossRef]
- Liao, H.; Klaus, C.; Neumann, H. Control of innate immunity by sialic acids in the nervous tissue. Int. J. Mol. Sci. 2020, 21, 5494. [Google Scholar] [CrossRef]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef]
- Shimizu, T.; Takahata, M.; Kameda, Y.; Endo, T.; Hamano, H.; Hiratsuka, S.; Ota, M.; Iwasaki, N. Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) mediates periarticular bone loss, but not joint destruction, in murine antigen-induced arthritis. Bone 2015, 79, 65–70. [Google Scholar] [CrossRef]
- Mikolajewicz, N.; Komarova, S.V. Role of UDP-sugar receptor P2Y14 in murine osteoblasts. Int. J. Mol. Sci. 2020, 21, 2747. [Google Scholar] [CrossRef]
- Joyce, K.; Isa, I.M.; Krouwels, A.; Creemers, L.; Devitt, A.; Pandit, A. The role of altered glycosylation in human nucleus pulposus cells in inflammation and degeneration. Eur. Cells Mater. 2021, 41, 401–420. [Google Scholar] [CrossRef]
- Furukawa, K.; Ohmi, Y.; Kondo, Y.; Ohkawa, Y.; Tajima, O.; Furukawa, K. Regulatory function of glycosphingolipids in the inflammation and degeneration. Arch. Biochem. Biophys. 2015, 571, 58–65. [Google Scholar] [CrossRef]
- Groux-Degroote, S.; Cavdarli, S.; Uchimura, K.; Allain, F.; Delannoy, P. Chapter Four-Glycosylation changes in inflammatory diseases. In Advances in Protein Chemistry and Structural Biology; Academic Press: Cambridge, MA, USA, 2020; Volume 119, pp. 111–156. [Google Scholar]
- Khoder-Agha, F.; Kietzmann, T. The glyco-redox interplay: Principles and consequences on the role of reactive oxygen species during protein glycosylation. Redox Biol. 2021, 42, 101888. [Google Scholar] [CrossRef] [PubMed]
- Radovani, B.; Gudelj, I. N-Glycosylation and inflammation; the not-so-sweet relation. Front. Immunol. 2022, 13, 893365. [Google Scholar] [CrossRef] [PubMed]
- Scheper, A.F.; Schofield, J.; Bohara, R.; Ritter, T.; Pandit, A. Understanding glycosylation: Regulation through the metabolic flux of precursor pathways. Biotechnol. Adv. 2023, 67, 108184. [Google Scholar] [CrossRef] [PubMed]
- Verhelst, X.; Dias, A.M.; Colombel, J.-F.; Vermeire, S.; Van Vlierberghe, H.; Callewaert, N.; Pinho, S.S. Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterology 2020, 158, 95–110. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labeille, R.O.; Elliott, J.; Abdulla, H.; Seemann, F. Hyperglycosylation as an Indicator of Aging in the Bone Metabolome of Oryzias latipes. Metabolites 2024, 14, 525. https://doi.org/10.3390/metabo14100525
Labeille RO, Elliott J, Abdulla H, Seemann F. Hyperglycosylation as an Indicator of Aging in the Bone Metabolome of Oryzias latipes. Metabolites. 2024; 14(10):525. https://doi.org/10.3390/metabo14100525
Chicago/Turabian StyleLabeille, Remi O., Justin Elliott, Hussain Abdulla, and Frauke Seemann. 2024. "Hyperglycosylation as an Indicator of Aging in the Bone Metabolome of Oryzias latipes" Metabolites 14, no. 10: 525. https://doi.org/10.3390/metabo14100525
APA StyleLabeille, R. O., Elliott, J., Abdulla, H., & Seemann, F. (2024). Hyperglycosylation as an Indicator of Aging in the Bone Metabolome of Oryzias latipes. Metabolites, 14(10), 525. https://doi.org/10.3390/metabo14100525