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Abstract: Background/Objectives: The mechanisms of action of phosphine are diverse and include
neurotoxicity, metabolic inhibition, and oxidative stress; however, its efficacy at low temperatures is
unclear. Methods: Comparative metabolomics is suitable for investigating the response of the spotted-
wing fly Drosophila suzukii to exposure toward a combination of cold stimuli and fumigant PH3.
Results: Under this combined exposure, 52 metabolites exhibiting significant differences in stress
were identified and their physiological roles were analyzed in the Drosophila metabolic pathway. Most
metabolites were involved in amino acids, TCA cycle, and nucleic acids. In addition, the alteration
levels of cell membrane lipids, such as glycerophospholipids, sphingolipids, and glycerolipids,
clearly showed changes in the combined treatment compared to PH3 and low temperatures alone.
Aconitic acid, a component of the TCA cycle, was completely inhibited by the combined treatment.
Conclusions: These results suggest that treatment-specific indicators could be useful biomarkers to
indicate the synergistic effects of PH3 and low temperature on energy metabolism.
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1. Introduction

The spotted-wing fly Drosophila suzukii (Matsumara) is widely distributed in Asia, the
Americas, and Europe, and is characterized by laying eggs inside fresh fruits using serrated
ovipositors [1–5]. Since hatched larvae burrow into the fruit, they are difficult to detect
during the early stages of infection [6–9]. Wounds caused by female ovipositing organs are
entry points for secondary pathogens, such as fungi and bacteria, which further aggravate
fruit damage [6–8]. This invasive behavior has made this species a serious pest worldwide,
and its control is crucial at the quarantine stage [10–13].

Phosphine (PH3) as a fumigant has been widely used to control pests in stored grains
and many other stored commodities [14], but its mode of action is not well understood.
PH3, which is broken down into harmless phosphates, is very effective for controlling
pests in grain storage when used as a combined treatment with carbon dioxide [15–17].
Although effective penetration into target pests, lack of residue, and low cost are the major
advantages of PH3 [18–20], long-term exposure is considered a weak point [21].

Low temperatures are primarily used to disinfect stored agricultural products from
pests or for quarantine purposes [22–24]. Cold treatment has been used as a control
measure against pests such as the Mediterranean fruit fly Ceratitis capitata (Wiedemann)
(Diptera: Tephritidae) [25] and Caribbean fruit fly Anastrepha suspensa (Loew) (Diptera:
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Tephritidae) [26]. In addition, cold treatment significantly reduced adult emergence in both
blueberries and strawberries, and extended the shelf life of infested fruits compared to
untreated controls [27]. Therefore, low temperatures can be a good option not only for pest
control, but also for maintaining the marketability of fruits [27,28].

Recent studies on fumigants have suggested the possibility of controlling pests by
using combined treatments at low temperatures. Cold treatment increases the insecticidal
activity of phosphine and ethyl formate against pests such as D. suzukii [2,5,29], the oriental
fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) [30], and the peach fruit moth
Carposina niponensis (Lepidoptera: Carposinadae) [31]. As cold treatment is commonly
performed to maintain the marketability of fruits and vegetables, combined treatment with
fumigants has the advantages of time efficiency, reduced product damage, and easy control
of processing conditions. Although cold fumigation has a synergistic effect on insecticidal
activity, the factors that lead to this synergistic effect are not well understood. To obtain
evidence of the synergistic effects in pest management, the molecular changes induced by
cold conditions and PH3 were investigated using comparative metabolic profiling.

2. Materials and Methods
2.1. Insect Rearing

The spotted-wing fly, D. suzukii (Matsumura) (Diptera: Drosophilidae), was provided
by Dr. Bong-Su Kim (Plant Quarantine Technology Center, Animal and Plant Quarantine
Agency, Gimcheon, Republic of Korea). D. suzukii was reared in the insect chamber at
20 ± 1 ◦C and 60 ± 10% relative humidity under a photo-period of 16 h light and 8 h
dark [2,5,32]. The insects were maintained in a clean breeding dish (ø 100 mm × h 40 mm)
supplied with artificial food and distilled water containing 20% sugar.

2.2. Phosphine and Thermal Treatment

PH3 (Vivakill®, 2% PH3 + 98% CO2) was purchased from Dongbu Farm Hannong Co.,
Ltd. (Daejeon, Republic of Korea) and supplied by Safefume Co., Ltd. (Fumate™, 99%;
Hoengseong, Republic of Korea). One hundred pupae were placed on filter paper soaked
in water in a Petri dish. The experimental methods for (1) cold alone, (2) fumigation alone,
and (3) combined treatments were as follows [5,32]. Cold treatment was performed at 1 ◦C
for 24 h. PH3 (lethal concentration time; LCT50, 1.1 mg/L) was introduced at 20 ◦C for
4 h in a 12 L desiccator (Bibby Scientific, Staffordshire, UK) sealed with a glass stopper.
The pupae were fumigated for 4 h and then immediately exposed to cold air at 1 ◦C for
24 h. Pupae from each group were transferred to glass vials and rapidly cooled in liquid
nitro-gen to prevent metabolic changes. All treatments and controls were triplicated.

2.3. Metabolite Extraction

Whole metabolites were extracted from D. suzukii pupae in triplicate (100 insects/replicate).
Briefly, each sample was suspended in 1 mL of the extracted solution (3:3:2, acetoni-
trile/isopropyl alcohol/water, v/v/v) and homogenized using a Taco Prep bead beater
(Taco, Taichung, Taiwan) while turning it on and off at 30 s intervals for 5 min. Samples
were incubated at room temperature for 20 min and centrifuged at 2500× g for 5 min at
4 ◦C. The supernatant was transferred to a new tube and dried under pure N2 gas. All
dried samples were suspended in 200 µL of 50% acetonitrile and sonicated for 5 min. The
supernatant was filtered with 0.22 µm pore (Ultrafree-MC, Millipore, Bedford, MA, USA)
and immediately loaded into the LC–QTOF/MS for metabolome analysis. The metabolite
recovery rate of the sample was investigated with internal standards (L-alanine, Sigma–
Aldrich, Oakville, ON, Canada), and the extraction process showed a recovery rate of 50%
or greater.

2.4. Lipid Extraction

Total lipidomes were extracted from whole bodies of D. suzukii pupae in triplicate
(100 insects/replicate) using the modified Bligh and Dyer method, as described pre-
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viously [33]. Briefly, each sample was suspended in 3 mL of extracted solution (2:1,
methanol/chloroform, v/v) and homogenized using glass beads by turning the beater
on and off at 30 s intervals for 5 min. Samples were incubated at room temperature for
20 min and centrifuged at 1750× g for 10 min at 4 ◦C. Supernatants were transferred to new
tubes to remove tissue debris. One milliliter of chloroform and 1.8 mL of water were added
to each sample, and the mixture was vortexed for 1 min. The lower layer was separated
by centrifugation at 1750× g for 10 min at 4 ◦C, followed by transferring to a new tube
and drying under pure N2 gas. Dried samples were then suspended in 200 µL of loading
solution (1:1, methanol/chloroform, v/v) and sonicated for 5 min. Resulting supernatants
were filtered with 0.22 µm pore filters and immediately loaded into the LC–QTOF/MS
equipment for lipidomics. Lipid recovery rates for samples were investigated using lipid
standards (SPLASH® LIPIDOMIX® Mass Spec Standard, Avanti Polar Lipids, Alabaster,
AL, USA), and the extraction process showed recovery rates of 50% or greater [34].

2.5. LC-QTOF/MS

LC-QTOF/MS was performed using a liquid chromatograph triple quadrupole mass
spectrometer (Agilent Technologies 1260 and 6530 System, Agilent Technologies, Santa
Clara, CA, USA; Metabolomics Research Center for Functional Materials, Kyungsung
University) with an electrospray ionization (ESI) source. For metabolome analysis, 5 µL
of each sample was injected onto a ZORBAX Eclipse XDB-C18 column (4.6 mm × 50 mm,
1.8 µm; Agilent Technologies, Santa Clara, CA, USA) with a temperature of 55 ◦C. In the
binary mobile phase system, phase A was water with 0.1% formic acid and phase B was
acetonitrile with 0.1% formic acid. The mobile phase with a flow rate of 0.5 mL/min had
the following composition conditions: initiation at 2% B, followed by a linear gradient to 2%
B over 1 min, 100% B at 8 min, 100% B at 10 min, 2% B at 11 min, and 2% B at 20 min. Mass
spectrometry was performed in both positive and negative modes. The capillary voltage
was set to 2.0 kV in the positive mode and 1.0 kV in the negative mode. Metabolites with a
mass range of m/z 100 to 1000 were detected using a quadrupole time-of-flight instrument.

2.6. Data Processing and Statistical Analysis

The data were analyzed in one batch to ensure that the parameters were applied
equally to all samples and normalized to the total ion intensity. All entities were ex-
tracted from the LC peaks of each sample and analyzed using the Mass Hunter Qualitative
soft-ware (Ver. 10.0, Agilent Technologies). All compounds were annotated using the
METLIN metabolite database, filtered, scaled, and integrated using Mass Profiler Profes-
sional software (Ver. 14.0; Agilent Technologies), principal component analysis (PCA)
and Pearson’s correlation analysis were performed. Differentially regulated metabolites
were defined as changes in compounds with values of [raw fold change (FC)] > 2 and
p < 0.01, compared to the mock control group. Metabolites were evaluated using Metabo-
Analyst 6.0 (https://www.metaboanalyst.ca) (accessed on 1 August 2024) and LIPEA
(https://hyperlipea.org/home) (accessed on 1 August 2024), and relevant pathways were
visualized using the Kyoto Encyclopedia of Genes and Genomes (KEGG).

3. Results and Discussion
3.1. Metabolite Changes according to Stress Conditions

Comparative metabolomics was performed to investigate the physiological effects
of low temperature, PH3, and combined treatments (low temperature and PH3) on D.
suzukii. When analyzing the total ion chromatogram, peaks that specifically increased or
decreased compared to the control were found in each treatment group (Supplementary
Figure S1A). By analysis of the mass pattern at 1.57 min, the peak was identified as L-
isoleucine, which was only found in the control (Supplementary Figure S1B). A recent study
found that transient isoleucine deprivation enhanced nicotine resistance and extended
the lifespan of Drosophila melanogaster [35]. These results suggest that stresses such as low
temperature and PH3 exactly affected amino acid synthesis in the Drosophila metabolic

https://www.metaboanalyst.ca
https://hyperlipea.org/home


Metabolites 2024, 14, 526 4 of 11

network. PCA was performed using raw FC data to investigate the reliability of the
metabolic analysis (Supplementary Figure S2A). The PCA revealed an aligned cluster of
metabolic data for each group and showed a significant distribution pattern in the positive
(Supplementary Figure S2A-i) and negative ion modes (Supplementary Figure S2A-ii).
Since the correlation analysis showed an association between each experimental group,
it can be used to determine treatment-specific indicators based on altered metabolites.
Low temperature, PH3, and the combined treatment were correlated with each other and
revealed the same pattern in the positive (Supplementary Figure S2B-i) and negative ion
modes (Supplementary Figure S2B-ii). These results suggest that the metabolome of D.
suzukii is clearly differentiated by low temperature, PH3, and combined treatment.

3.2. Pathway Impact of Altered Metabolites

In total, 164 and 98 metabolites were detected in the positive and negative ion modes,
respectively, and 80 indicators were filtered using an annotation process based on the
metabolite database. Among them, 52 metabolites with significant differences in expression
were selected for analysis of their metabolic pathways and were listed as treatment-specific
indicators. Metabolites were analyzed using the enrichment ratio and pathway impact
scores based on the KEGG database to examine the importance of altered metabolites in the
Drosophila metabolic network (Figure 1). GPI-anchor and amino acid biosynthetic pathways
were significantly regulated under each stress condition. In addition, metabolites related to
purine and pyrimidine metabolism were modulated. The tricarboxylic acid (TCA) cycle was
found to be the major metabolic network at low temperatures and PH3 alone (Figure 1A,B),
but could not be identified in the combined treatment (Figure 1C). Interestingly, fewer
metabolic pathways were altered in the combined treatment than in the low temperature or
PH3. The reasons for these results are as follows: (1) only a limited number of metabolites
were synergistically affected by the combined treatments; and (2) the combined treatment
resulted in significant metabolic changes upon PH3 treatment prior to cold exposure.
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Figure 1. Enrichment ratio and pathway impact scores. Metabolite set enrichment analysis in altered
metabolites. (A) Low temperature, (B) PH3, and (C) combined treatment. Analysis was performed
using the Kyoto Encyclopedia of Genes and Genomes database.

3.3. Treatment-Specific Metabolites as Biomarkers

Since enrichment and pathway impact scores were evaluated for the metabolites
found under each stress condition, these results only showed overall tendencies. Therefore,
alignment was performed to confirm which metabolites changed quantitatively in response
to stress.

Metabolites detected in all treatments, but not in the mock control, were extracted as
candidate treatment-specific indicators (Table 1). Metabolites involved in arachidonic acid
metabolism and the immune system were identified in the PH3 treatment. Interestingly,
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3-phosphohydroxypyruvate, an intermediate between 3-phosphoglycerate and pyruvate,
was detected in all stresses. 3-phosphohydroxypyruvate generates α-ketoglutarate, a major
TCA cycle intermediate, during its conversion to 3-phosphoserine [36]. 3-phosphoserine
generates the intermediate serine and the final product glycine. Glycine then binds to the
TCA cycle intermediate succinyl-CoA. The interconversion of glutamate to α-ketoglutarate
produces various amino acids, including alanine, aspartate, and arginine. Recent studies
showed that low temperature and PH3 are closely related to energy metabolism [37,38].
PH3 induces nerve excitement by acting on acetylcholine, resulting in excessive energy
consumption. Therefore, stress-inducing conditions may stimulate the production of
intermediate metabolites of pyruvate, and their overproduction has a clear impact on
energy metabolic pathways.

Table 1. Metabolites specifically found in each stress.

KEGG ID
(PubChem
CID)

Compound Fold Change (log2)
[Mock] [Cold] [PH3] [PH3

+ Cold] Related Pathways

C15675 Myxothiazol Z - 5.25 - 15.82 Lipids: Polyketides
C05954 19-Hydroxy-PGB2 - - 15.65 17.28 dme00590 Arachidonic

acid metabolism

C00350 PE(18:4(6Z,9Z,12Z,15Z)/
18:4(6Z,9Z,12Z,15Z)) - 5.09 15.62 15.81

dme00563
Glycosylphosphatidyli-
nositol (GPI)-anchor
biosynthesis
dme00564
Glycerophospholipid
metabolism

C03232 Phosphohydroxypyruvic
acid (=3P-hydroxypyruvate) - 18.40 18.63 18.38

dme00260 Glycine,
serine, and threonine
metabolism

C01092 8-Amino-7-oxononanoic acid 11.43 - 17.68 17.33 dme00780 Biotin
metabolism

52924812 PE(22:4(7Z,10Z,13Z,16Z)/
17:1(9Z)) 5.98 - 17.91 17.59 Lipids:

Glycerophospholipids

C00417 Aconitic acid
(=cis-Aconitate) 19.89 19.94 6.43 - dme00020 Citrate cycle

(TCA cycle)

(614) D-Proline 23.07 15.37 - - map00470 D-Amino
acid metabolism

C00407 L-Isoleucine 24.81 7.50 - -

dme00280 Isoleucine
degradation
dme00290 Isoleucine
biosynthesis

C04778 N1-(5-Phospho-a-D-ribosyl)-
5,6-dimethylbenzimidazole 15.93 10.50 - - dme00860 Porphyrin

metabolism
C03794 N6-(1,2-dicarboxyethyl)-

AMP 9.85 15.31 - - dme00230 Purine
metabolism

(52924712) PE(21:0/20:5(5Z,8Z,11Z,
14Z,17Z)) 16.66 10.06 - - Lipids:

Glycerophospholipids

C00156 4-Hydroxybenzoic acid
(=p-Salicylic acid) 17.06 11.37 - - dme00130 Ubiquinone

biosynthesis
(135398700) Xanthopterin 16.22 10.74 - - dme00790 Folate

biosynthesis

(5312441) 13Z-Octadecenoic acid 4.61 - - - dme00061 Fatty acid
biosynthesis

(53480926) LysoPE(0:0/18:2(9Z,12Z)) 21.28 - - - Lipids:
Glycerophospholipids

(42607464) PE(17:1(9Z)/0:0) 18.14 - - - Lipids:
Glycerophospholipids

C00366 Uric acid 22.22 - - - dme00230 Purine
metabolism
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In addition, insects respond to stress by inhibiting or inactivating metabolic pathways.
Therefore, the up- or downregulation of metabolites compared to the control was sorted
because they can be used as indicators for each stress. The amino acids D-proline (Pro) and
L-isoleucine (Ile) were detected in quantitative amounts in the mock control but not in the
stressed groups. Suppression of the cryoprotectants Pro and Ile, which are known to accu-
mulate in response to the cold in D. melanogaster, was contrary to previous results [39–41].
Interestingly, the downregulation of aconitic acid, an intermediate product of the TCA
cycle, by low temperature and PH3, respectively, revealed an improved inhibitory effect.

In invertebrates, PH3 increases the signaling of the excitatory neurotransmitter acetyl-
choline by inhibiting acetylcholine esterase [15]. Persistent synaptic signaling by acetyl-
choline leads to hyperactivity, convulsions, and ultimately, excitotoxicity. PH3 directly
interferes with mitochondrial respiration and causes a lack of energy metabolism, which
can be confirmed by a decrease in oxygen consumption after 4 h of exposure to PH3 [42,43].
In addition, PH3 acts as a reducing agent, inhibiting cytochrome c oxidase and inducing
the production of hydrogen peroxide, which is a reactive oxygen species (ROS) [44,45].
These PH3 responses ultimately resulted in metabolic inhibition, thereby supporting our
finding that many metabolites were reduced or suppressed by PH3. Collectively, these
results suggest that low temperature and PH3 share similar metabolic mechanisms that
inhibit mitochondrial function and downregulate cellular metabolism.

3.4. Comparative Lipidomic Profiling by Stress

Pathway analysis revealed that the metabolites involved in glycosylphosphatidyli-
nositol (GPI)-anchor biosynthesis were significantly regulated by low temperatures, PH3,
and combined stress (Figure 1). GPI-anchors are covalently linked to the carboxyl ter-
minus of proteins and mediate protein attachment to lipid bilayers [46,47]. GPI, a lipid
anchor for cell surface proteins, is associated with lipid rafts enriched in sphingolipids
and cholesterol. Therefore, to investigate the changes in lipid profiles in response to stress,
116 lipids were identified through multivariate statistical analysis and annotation (Figure 2).
PCA and correlation analyses showed that the clusters of each stress were well aligned
and clearly distinguished from the mock control (Supplementary Figure S3). Most lipid
classes were quantitatively altered, including fatty acids (FAs), glycerophospholipids (GPs),
sphingolipids (SPs), and sterol lipids (STs), but not glycerolipids (GLs), polyketides (PKs),
or prenols (PRs) (Figure 2A).

In this study, each stress condition revealed significant regulation of cell surface-
related lipids, such as GPs and SPs (Table 1 and Figure 2A). A recent study has shown that
lipids provide an energy source for PH3-resistant insects to survive and an environment
suitable for protecting mitochondria from PH3 [48]. In D. suzukii, phospholipids in the cell
membrane are mainly composed of phosphatidylethanolamine (PE) and a GP class, and
low temperatures cause quantitative differences [49]. SPs, components of lipid rafts, are
involved in cell membrane receptors and signal transduction, and low temperatures cause
changes in the structure and profile of lipid rafts [50–52]. Low temperatures can induce
changes in the phospholipid bilayer properties of cell membranes, thereby damaging their
integrity [53]. These changes in membrane fluidity can lead to neuromuscular dysfunction,
chills coma, and ultimately death [54–57]. Therefore, the altered levels of cell surface-related
lipid GLs, GPs, and SPs are presented for each type of stress (Figure 2B). Overall, many
metabolites were upregulated compared to the mock control. Heatmap analysis showed
that sphingolipids were upregulated by stress and were synergistically affected by the
combined treatment. Interestingly, in the GP class, PE and PS were upregulated by the
combination treatment, whereas PA, PG, and PI were downregulated. Lipids are the main
components of the fat body in insects and most lipids are stored in the form of triglycerides
(TGs) [58,59]. In contrast, the major lipid diglyceride (DG) in insect hemolymph increases
rapidly during energy requirements such as flight [59,60]. Considering the mechanism of
action of PH3 in relation to energy depletion, the increase in DG and decrease in TG in
response to stress suggests that PH3 affects the energy metabolic pathways of D. suzukii.
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In addition, the metabolome set enrichment analysis revealed that sphingolipid-related
metabolic pathways were primarily affected by stress (Figure 3). There was no difference
between the fumigant alone and the combined treatment, but this result may be due to the
effect of PH3 already prior to the mechanism of action of low temperature on sphingolipids.
These results support the reason why fewer metabolic pathways were changed in combined
treatment (Figure 2).
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Figure 3. Top 20 signaling pathways enriched at low temperature, PH3, and combined treatment.
Numbers and colors indicate the ranking (high: green; low: yellow) of the respective signaling
pathways.

4. Conclusions

Since studies on fumigants or low temperatures in the D. suzukii model are individual,
research on metabolic mechanisms is required to understand the synergistic effect of
PH3, which inhibits cytochrome oxidase activity, induces ROS production, and regulates
metabolism at low temperatures. Most metabolites acted on D. suzukii metabolic pathways
related to amino acid, lipid, and energy biosynthesis. In particular, the synergistic alteration
of aconitic acid metabolites involved in the TCA cycle may be an important indicator of
physiological changes in D. suzukii. In addition, the altered levels of the cell membrane
lipids GP and SP revealed the synergistic effect of PH3 and low temperatures. Since
these metabolites were specifically detected in each stress condition, they can be used as
indicators to determine whether the treatment was successfully performed. Therefore, this
study provides useful information on treatment-specific biomarkers for low temperature or
fumigation.
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