Untargeted Metabolite Profiling Reveals Acute Toxicity of Pentosidine on Adipose Tissue of Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Animals and Sample Collection
2.3. Metabolite Extraction of Adipose Tissue
2.4. GC-MS Analysis
2.5. Statistical Analysis
2.6. Receiver Operating Characteristic (ROC) Curve Analysis
2.7. Histopathological Analysis
3. Results and Discussion
3.1. Weight Change
3.2. Histopathological Analysis
3.3. GC-MS Analysis of Adipose Tissue
3.4. Metabolomics Analysis
3.5. ROC Curve
3.6. Metabolic Pathway Analysis
3.7. Metabolic Disturbance of Adipose Tissue after Pentosidine Exposure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Yu, S.J. Review of pentosidine and pyrraline in food and chemical models: Formation, potential risks and determination. J. Sci. Food Agr. 2018, 98, 3225–3233. [Google Scholar] [CrossRef] [PubMed]
- Deramon, E.A.; Sabbasani, V.R.; Streeter, M.D.; Liu, Y.N.; Newhouse, T.R.; Mcdonald, D.M.; Spiegel, D.A. Pentosinane, a post-translational modification of human proteins with underappreciated stability. J. Am. Chem. Soc. 2022, 144, 21843–21847. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.P.; Yu, J.H.; Zhai, Y.; Feng, L.H.; Chen, P.S.; Hayat, K.; Xu, Y.; Zhang, X.M.; Ho, C.T. Formation and fate of Amadori rearrangement products in Maillard reaction. Trends Food Sci. Tech. 2021, 115, 391–408. [Google Scholar] [CrossRef]
- Qu, W.; Nie, C.; Zhao, J.; Ou, X.; Zhang, Y.; Yang, S.; Bai, X.; Wang, Y.; Wang, J.; Li, J. Microbionne-metabolomics analysis of the impacts of long-term dietary advanced-glycation-end-product consumption on C57BL/6 mouse fecal microbiota and metabolites. J. Agric. Food Chem. 2018, 66, 8864–8875. [Google Scholar] [CrossRef] [PubMed]
- Chao, P.C.; Hsu, C.C.; Yin, M.C. Analysis of glycative products in sauces and sauce-treated foods. Food Chem. 2009, 113, 262–266. [Google Scholar] [CrossRef]
- Ott, C.; Jacobs, K.; Haucke, E.; Santos, A.N.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014, 2, 411–429. [Google Scholar] [CrossRef]
- Miyata, T.; Ueda, Y.; Horie, K.; Nangaku, M.; Tanaka, S.; Van Ypersele De Strihou, C.; Kurokawa, K. Renal catabolism of advanced glycation end products: The fate of pentosidine. Kidney Int. 1998, 53, 416–422. [Google Scholar] [CrossRef]
- Akhter, F.; Khan, M.S.; Ahmad, S. Acquired immunogenicity of calf thymus DNA and LDL modified by b-ribose: A comparative study. Int. J. Biol. Macromol. 2015, 72, 1222–1227. [Google Scholar] [CrossRef]
- Indyk, D.; Bronowicka-Szydelko, A.; Gamian, A.; Kuzan, A. Advanced glycation end products and their receptors in serum of patients with type 2 diabetes. Sci. Rep. 2021, 11, 13264. [Google Scholar] [CrossRef]
- Kosmopoulos, M.; Drekolias, D.; Zavras, P.D.; Piperi, C.; Papavassiliou, A.G. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 611–619. [Google Scholar] [CrossRef]
- Grandhee, S.K.; Monnier, V.M. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J. Biol. Chem. 1991, 266, 11649–11653. [Google Scholar] [CrossRef] [PubMed]
- Peiretti, P.G.; Medana, C.; Visentin, S.; Giancotti, V.; Zunino, V.; Meineri, G. Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem. 2011, 126, 1939–1947. [Google Scholar] [CrossRef]
- Navarro, M.; Morales, F.J. Effect of hydroxytyrosol and olive leaf extract on 1,2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation endproducts in a biscuit model. Food Chem. 2017, 217, 602–609. [Google Scholar] [CrossRef]
- Liang, Y.S.; Tang, Z.; Jiang, Y.S.; Ai, C.Y.; Peng, J.L.; Liu, Y.; Chen, J.R.; Zhang, J.Q.; Cai, Z.W. Serum metabolic changes associated with dioxin exposure in a Chinese male cohort. Environ. Int. 2020, 143, 105984. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zong, M.H.; Wu, H.; He, D.; Li, L.; Zhang, X.; Zhao, D.; Li, B. Dietary advanced glycation end-products affects the progression of early diabetes by intervening in carbohydrate and lipid metabolism. Mol. Nutr. Food Res. 2022, 66, 2200046. [Google Scholar] [CrossRef]
- Hu, C.Q.; Song, X.Y.; Shao, Z.Z.; Liu, Y.L.; Wang, J.; Sun, B.G. Untargeted metabolite profiling of adipose tissue in rats exposed to mepiquat. Foods 2023, 12, 867. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Ru, Y.; Song, Y.; Shen, Y.; Zhao, L.; Huang, G.; Chen, Y.; Qi, Z.; Li, R.; et al. Xanthine-derived reactive oxygen species exacerbates adipose tissue disorders in male db/db mice induced by real-ambient PM2.5 exposure. Sci. Total. Environ. 2023, 882, 163592. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Liang, M.; Chen, L.; Wang, J.; Huang, Y.J.; Huo, H.H.; Xiao, D.R.; Hu, Y.W.; Wang, Z.; Ji, Q.Q.; et al. Myeloid SENP3 deficiency protects mice from diet and age-induced obesity via regulation of YAP1 SUMOylation. Cell. Mol. Life Sci. 2024, 81, 4. [Google Scholar] [CrossRef]
- Zhu, Q.Z.; An, Y.A.; Scherer, P.E. Mitochondrial regulation and white adipose tissue homeostasis. Trends Cell Biol. 2022, 32, 351–364. [Google Scholar] [CrossRef]
- Qiao, L.C.; Lin, X.; Liu, H.B.; Xiang, R.Q.; Zhan, J.M.; Deng, F.D.; Bao, M.Y.; He, H.F.; Wen, X.Y.; Deng, H.; et al. T-2 toxin induces cardiac fibrosis by causing metabolic disorders and up-regulating Sirt3/FoxO3α/MnSOD signaling pathway-mediated oxidative stress. J. Environ. Sci. 2025, 150, 532–544. [Google Scholar] [CrossRef]
- Liang, H.; Song, K. Elucidating ascorbate and aldarate metabolism pathway characteristics via integration of untargeted metabolomics and transcriptomics of the kidney of high-fat diet-fed obese mice. PLoS ONE 2024, 19, e0300705. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.-N.; Jiang, Y.-F.; Ru, J.-N.; Lu, J.-H.; Ding, B.; Wu, J. Amino acid metabolism in health and disease. Signal Transduct. Target. Ther. 2023, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Liu, S.Q.; Nie, L.G.; Hu, H.M.; Liu, Y.; Yang, J. The interactions and biological pathways among metabolomics prod-ucts of patients with coronary heart disease. Biomed. Pharmacother. 2024, 173, 116305. [Google Scholar] [CrossRef]
- Quan, W.; Jiao, Y.; Xue, C.; Li, Y.; Liu, G.; He, Z.; Qin, F.; Zeng, M.; Chen, J. The effect of exogenous free Nε-(Carboxymethyl)Lysine on diabetic-model Goto-Kakizaki rats: Metabolomics analysis in serum and urine. J. Agric. Food Chem. 2021, 69, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.Q.; Zhou, X.B.; Sun, Y.C.; Hu, L.L.; Zhu, J.L.; Shao, C.X.; Meng, Q.W.; Shan, A.S. Threonine, but not lysine and methionine, reduces fat accumulation by regulating lipid metabolism in obese mice. J. Agric. Food Chem. 2020, 68, 4876–4883. [Google Scholar] [CrossRef]
- Maynard, A.G.; Kanarek, N. NADH ties one-carbon metabolism to cellular respiration. Cell Metab. 2020, 31, 660–662. [Google Scholar] [CrossRef]
- Holecek, M. Serine metabolism in health and disease and as a conditionally essential amino acid. Nutrients 2022, 14, 1987. [Google Scholar] [CrossRef]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef]
- Haley, J.A.; Guertin, D.A. Adipose glutaminolysis resurfaces in metabolic disease. Nat. Metab. 2024, 6, 1200–1201. [Google Scholar] [CrossRef]
- Park, T.J.; Park, S.Y.; Lee, H.J.; Abd El-Aty, A.M.; Jeong, J.H.; Jung, T.W. α-ketoisocaproic acid promotes ER stress through impairment of autophagy, thereby provoking lipid accumulation and insulin resistance in murine preadipocytes. Biochem. Bioph. Res. Commun. 2022, 603, 109–115. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Zhou, X.B.; Hu, L.L.; Chen, J.Y.; Zhu, J.L.; Shan, A.S. Leucine and isoleucine have similar effects on reducing lipid accumulation, improving insulin sensitivity and increasing the browning of WAT in high-fat diet-induced obese mice. Food Funct. 2020, 11, 2279–2290. [Google Scholar] [CrossRef]
- Kuang, W.Y.; Yang, J.J.; Liu, Z.Y.; Zeng, J.Z.; Xia, X.W.; Chen, X.D.; Zhong, S.Y.; Huang, R.M. Catechin mediates ferroptosis to exert an anti-inflammatory effect on RAW 264.7 cells. Foods 2022, 11, 1572. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Meng, Z.; Li, Y.; Liu, S.; Hu, P.; Luo, E. Advanced glycation end products and reactive oxygen species: Uncovering the potential role of ferroptosis in diabetic complications. Mol. Med. 2024, 30, 141. [Google Scholar] [CrossRef] [PubMed]
- Del Olmo, A.; Calzada, J.; Nuñez, M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Crit. Rev. Food Sci. 2017, 57, 3084–3103. [Google Scholar] [CrossRef]
- Bai, F.; Gao, G.B.; Li, T.L.; Liu, J.; Li, L.; Jia, Y.L.; Song, L.R. Integrated physiological and metabolomic analysis reveals new insights into toxicity pathways of paraquat to Microcystis aeruginosa. Aquat. Toxicol. 2023, 259, 106521. [Google Scholar] [CrossRef]
- Sahu, U.; Villa, E.; Reczek, C.R.; Zhao, Z.B.; O'hara, B.P.; Torno, M.D.; Mishra, R.; Shannon, W.D.; Asara, J.M.; Gao, P.; et al. Pyrimidines maintain mitochondrial pyruvate oxidation to support de novo lipogenesis. Science 2024, 383, 1484–1492. [Google Scholar] [CrossRef]
- Rabinovich, S.; Adler, L.; Yizhak, K.; Sarver, A.; Silberman, A.; Agron, S.; Stettner, N.; Sun, Q.; Brandis, A.; Helbling, D.; et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 2015, 527, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Su, L.J.; Zeng, Y.P.; Li, G.K.; Chen, J.; Chen, X.Y. Quercetin improves high-fat diet-induced obesity by modulating gut micro-biota and metabolites in C57BL/6J mice. Phytother. Res. 2022, 36, 4558–4572. [Google Scholar] [CrossRef]
- Arnold, P.K.; Jackson, B.T.; Paras, K.I.; Brunner, J.S.; Hart, M.L.; Newsom, O.J.; Alibeckoff, S.P.; Endress, J.; Drill, E.; Sullivan, L.B.; et al. A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature 2022, 603, 477–481. [Google Scholar] [CrossRef]
- Zecchini, V.; Paupe, V.; Herranz-Montoya, I.; Janssen, J.; Wortel, I.M.N.; Morris, J.L.; Ferguson, A.; Chowdury, S.R.; Segar-ra-Mondejar, M.; Costa, A.S.H.; et al. Fumarate induces vesicular release of mtDNA to drive innate immunity. Nature 2023, 615, 499–506. [Google Scholar] [CrossRef]
- Granot-Hershkovitz, E.; He, S.; Bressler, J.; Yu, B.; Tarraf, W.; Rebholz, C.M.; Cai, J.W.; Chan, Q.; Garcia, T.P.; Mosley, T.; et al. Plasma metabolites associated with cognitive function across race/ethnicities affirming the importance of healthy nutrition. Alzheimers Dement. 2023, 19, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.N.; Bhat, O.M.; Li, G.B.; Dempsey, S.K.; Zhang, Q.H.; Ritter, J.K.; Li, W.W.; Li, P.L. Lysosomal regulation of extracellular vesicle excretion during D-ribose-induced NLRP3 inflammasome activation in podocytes. BBA-Mol. Cell Res. 2019, 1866, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.J.; Tao, X.Y.; Li, M.; Zhang, X.; Zhou, Q.C.; Luo, J.X.; Zhu, T.T.; Jiao, L.F.; Jin, M. Dietary inositol improved glucose and lipid metabolism mediated by the Insulin-PI3K-Akt signaling pathway in Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2023, 577, 739910. [Google Scholar] [CrossRef]
- Li, Z.; Ru, S.G.; Li, J.L.; Yang, Y.J.; Wang, W.W. Continuous exposure to bisphenol S increases the accumulation of endogenous metabolic toxicants by obstructing the glucuronic acid pathway. Environ. Pollut. 2023, 336, 122433. [Google Scholar] [CrossRef]
- Zhu, Y.; Kruglikov, I.L.; Akgul, Y.; Scherer, P.E. Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biol. 2019, 78–79, 284–291. [Google Scholar] [CrossRef]
- Kotepui, M.; Mahittikorn, A.; Anabire, N.G.; Masangkay, F.R.; Kotepui, K.U. Malaria is associated with diminished levels of ascorbic acid: A systematic review and meta-analysis. Antioxid. Redox Sign. 2024, 40, 460–469. [Google Scholar] [CrossRef]
- Hu, T.T.; Wu, Q.Q.; Yao, Q.; Jiang, K.B.; Yu, J.B.; Tang, Q.Z. Short-chain fatty acid metabolism and multiple effects on cardi-ovascular diseases. Ageing Res. Rev. 2022, 81, 101706. [Google Scholar] [CrossRef]
- Gart, E.; Tengeler, A.; Morrison, M.; Kosicz, T.; Van Duyvenvoorde, W.; Kleemann, R.; Kiliaan, A. Propionic acid intervention in obese Ldlr-/-.Leiden mice attenuates NASH development, but negatively affects cognition. Proc. Nutr. Soc. 2020, 79, E501. [Google Scholar] [CrossRef]
- Li, Z.; Yi, C.X.; Katiraei, S.; Kooijman, S.; Zhou, E.C.; Chung, C.K.; Gao, Y.Q.; Van Den Heuvel, J.K.; Meijer, O.C.; Berbée, J.F.P.; et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018, 67, 1269–1279. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Wang, S.A.; Meng, Y.Y.; Wen, C.L.; Xu, M.X.; Li, X. Butyrate alleviates high-fat-induced metabolic disorders partially through increasing systematic glutamine. J. Agric. Food Chem. 2023, 72, 449–460. [Google Scholar] [CrossRef]
- Liu, X.F.; Xu, X.M.; Zhang, T.; Xu, L.; Tao, H.L.; Liu, Y.; Zhang, Y.; Meng, X.L. Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother. Res. 2023, 37, 4976–4998. [Google Scholar] [CrossRef] [PubMed]
- Maiti, B.K. Cross-talk between (hydrogen)sulfite and metalloproteins: Impact on human health. Chem.-Eur. J. 2022, 28, e202104342. [Google Scholar] [CrossRef] [PubMed]
- Grabner, G.F.; Xie, H.; Schweiger, M.; Zechner, R. Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 2021, 3, 1445–1465. [Google Scholar] [CrossRef]
- Xu, S.J.; Lu, F.; Gao, J.H.; Yuan, Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes. Rev. 2024, 25, e13724. [Google Scholar] [CrossRef]
- Bowman, C.E.; Rodriguez, S.; Alpergin, E.S.S.; Acoba, M.G.; Zhao, L.; Hartung, T.; Claypool, S.M.; Watkins, P.A.; Wolfgang, M.J. The mammalian malonyl-CoA synthetase ACSF3 is required for mitochondrial protein malonylation and metabolic efficiency. Cell Chem. Biol. 2017, 24, 673–684. [Google Scholar] [CrossRef]
- Huang, L.L.; Gao, L.; Chen, C. Role of medium-chain fatty acids in healthy metabolism: A clinical perspective. Trends Endocrinol. Met. 2021, 32, 351–366. [Google Scholar] [CrossRef]
- Haynes, V.R.; Michael, N.J.; Van Den Top, M.; Zhao, F.Y.; Brown, R.D.; De Souza, D.; Dodd, G.T.; Spanswick, D.; Watt, M.J. A neural basis for octanoic acid regulation of energy balance. Mol. Metab. 2020, 34, 54–71. [Google Scholar] [CrossRef]
- Von Hanstein, A.S.; Tsikas, D.; Lenzen, S.; Jörns, A.; Plötz, T. Potentiation of lipotoxicity in human EndoC-βH1 β-Cells by glucose is dependent on the structure of free fatty acids. Mol. Nutr. Food Res. 2023, 67, 2200582. [Google Scholar] [CrossRef] [PubMed]
- Senyilmaz, D.; Virtue, S.; Xu, X.J.; Tan, C.Y.; Griffin, J.L.; Miller, A.K.; Vidal-Puig, A.; Teleman, A.A. Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature 2015, 525, 124–128. [Google Scholar] [CrossRef]
- Xie, J.T.; Hou, X.N.; He, W.S.; Xiao, J.; Cao, Y.; Liu, X.J. Astaxanthin reduces fat storage in a fat-6/fat-7 dependent manner determined using high fat Caenorhabditis elegans. Food Funct. 2023, 14, 7347–7360. [Google Scholar] [CrossRef]
- Yang, C.X.; Wei, J.T.; Cao, G.D.; Cai, Z.W. Lipid metabolism dysfunction and toxicity of BDE-47 exposure in white adipose tissue revealed by the integration of lipidomics and metabolomics. Sci. Total. Environ. 2022, 806, 150350. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Castro, A.J.; Serrano-Vega, R.; Gutiérrez, S.P.; Isiordia-Espinoza, M.A.; Solorio-Alvarado, C.R. Myristic acid reduces skin inflammation and nociception. J. Food Biochem. 2022, 46, e14013. [Google Scholar] [CrossRef] [PubMed]
- Kalupahana, N.S.; Goonapienuwala, B.L.; Moustaid-Moussa, N. Omega-3 fatty acids and adipose tissue: Inflammation and browning. Annu. Rev. Nutr. 2020, 40, 25–49. [Google Scholar] [CrossRef] [PubMed]
- Dakroub, H.; Nowak, M.; Benoist, J.F.; Noël, B.; Vedie, B.; Paul, J.L.; Fournier, N. Eicosapentaenoic acid membrane incorpo-ration stimulates ABCA1-mediated cholesterol efflux from human THP-1 macrophages. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 159016. [Google Scholar] [CrossRef]
- Li, X.X.; Pu, Y.J.; Jiang, H.T.; Jiao, W.X.; Peng, W.J.; Tian, W.L.; Jiang, W.B.; Fang, X.M. Inhibitory effect of procyanidin B2 and tannin acid on cholesterol esterase and their synergistic effect with orlistat. Food Sci. Hum. Well. 2024, 13, 360–369. [Google Scholar] [CrossRef]
No. | Metabolite | RT 1 (min) | p-Value | VIP | FC 2 (HD-ND) | FDR 3 | Trend 4 | Class 5 | Metabolic Pathways |
---|---|---|---|---|---|---|---|---|---|
1 | Glycine | 7.4 | 2.39 × 10−4 | 1.06 | 2.10 | 1.0 × 10−2 | ↑ | Amino acids, peptides, and analogues | Glycine, serine, and threonine metabolism |
2 | Ribitol | 10.4 | 3.28 × 10−3 | 1.08 | 0.40 | 4.59 × 10−3 | ↓ | Carbohydrates and carbohydrate conjugates | Pentose and glucuronate interconversions |
3 | L-Leucine | 11.1 | 8.15 × 10−4 | 1.02 | 0.56 | 1.71 × 10−3 | ↓ | Amino acids, peptides, and analogues | Valine, leucine, and isoleucine biosynthesis |
4 | Pyrimidine | 12.5 | 2.39 × 10−4 | 1.18 | 2.51 | 5.02 × 10−3 | ↑ | Pyrimidines and pyrimidine derivatives | Pyrimidine metabolism |
5 | L-Serine | 13.4 | 6.05 × 10−4 | 1.03 | 0.60 | 1.69 × 10−3 | ↓ | Amino acids, peptides, and analogues | Glycine, serine, and threonine metabolism |
6 | Cyclohexanecarboxylic acid | 13.5 | 4.28 × 10−3 | 1.06 | 0.46 | 5.44 × 10−3 | ↓ | Carboxylic acids | Benzoate degradation |
7 | Fumaric acid | 13.9 | 1.08 × 10−2 | 1.24 | 0.47 | 1.14 × 10−2 | ↓ | Dicarboxylic acids and derivatives | TCA cycle |
8 | L-Threonine | 14.1 | 3.29 × 10−3 | 1.05 | 1.66 | 4.46 × 10−3 | ↑ | Amino acids, peptides, and analogues | Glycine, serine, and threonine metabolism |
9 | α-Ketoglutaric acid | 14.2 | 1.19 × 10−3 | 1.10 | 0.24 | 2.28 × 10−3 | ↓ | Gamma-keto acids and derivatives | TCA cycle |
10 | 2-Oxovaleric acid | 14.9 | 7.37 × 10−3 | 1.05 | 0.47 | 8.37 × 10−3 | ↓ | Short-chain keto acids and derivatives | Lipid metabolism |
11 | L-Homoserine | 15.5 | 6.36 × 10−4 | 1.21 | 5.58 | 1.57 × 10−3 | ↑ | Amino acids, peptides, and analogues | Glycine, serine, and threonine metabolism |
12 | 2,5-Cyclohexadiene-1,4-dione | 16.0 | 2.01 × 10−2 | 1.23 | 3.21 | 2.06 × 10−2 | ↑ | Carbonyl compounds | Aminobenz oate degradation |
13 | Malonic acid | 16.1 | 1.38 × 10−3 | 1.04 | 0.53 | 2.32 × 10−3 | ↓ | Dicarboxylic acids and derivatives | Fatty acid metabolism |
14 | L-Methionine | 16.2 | 1.75 × 10−3 | 1.12 | 0.38 | 2.82 × 10−3 | ↓ | Amino acids, peptides, and analogues | Cysteine and methionine metabolism |
15 | Heptadecane | 16.6 | 3.79 × 10−4 | 1.11 | 0.29 | 1.22 × 10−3 | ↓ | Alkanes | Lipid metabolism |
16 | 2-Ketoisocaproic acid | 16.9 | 2.39 × 10−4 | 1.01 | 0.33 | 3.35 × 10−3 | ↓ | Short-chain keto acids and derivatives | Valine, leucine, and isoleucine biosynthesis |
17 | D-Glucuronic acid | 17.5 | 3.79 × 10−4 | 1.03 | 0.38 | 1.14 × 10−3 | ↓ | Carbohydrates and carbohydrate conjugates | Amino sugar and nucleotide sugar metabolism |
18 | Propionic acid | 17.9 | 5.50 × 10−3 | 1.03 | 0.54 | 6.60 × 10−3 | ↓ | Carboxylic acids | Propanoate metabolism |
19 | Anthracene | 18.8 | 6.36 × 10−4 | 1.35 | 7.92 | 1.48 × 10−3 | ↑ | Anthracenes | Polycyclic aromatic hydrocarbon degradation |
20 | Acetic acid | 18.9 | 7.69 × 10−3 | 1.09 | 1.90 | 8.50 × 10−3 | ↑ | Carboxylic acids and derivatives | Glycolysis/gluconeogenesis |
21 | Estrone | 19.3 | 8.48 × 10−3 | 1.09 | 0.12 | 1.70 × 10−3 | ↓ | Estrone steroids | Steroid hormone biosynthesis |
22 | Glutamine | 19.7 | 6.36 × 10−4 | 1.07 | 3.93 | 4.41 × 10−3 | ↑ | Amino acids, peptides, and analogues | Alanine, aspartate, and glutamate metabolism |
23 | Pyruvic acid | 20.0 | 2.39 × 10−4 | 1.03 | 2.54 | 2.51 × 10−3 | ↑ | Alpha-keto acids and derivatives | TCA cycle |
24 | D-Ribose | 20.6 | 2.39 × 10−4 | 1.31 | 3.59 | 2.01 × 10−3 | ↑ | Carbohydrates and carbohydrate conjugates | Pentose phosphate pathway |
25 | Iron | 21.1 | 2.39 × 10−4 | 1.07 | 2.86 | 1.67 × 10−3 | ↑ | Homogeneous transition metal compounds | Porphyrin metabolism |
26 | Sulfurous acid | 21.3 | 1.79 × 10−3 | 1.01 | 0.54 | 2.79 × 10−3 | ↓ | Non-metal sulfites | Cysteine and methionine metabolism |
27 | Caprylic acid | 21.8 | 2.66 × 10−3 | 1.01 | 0.26 | 3.86 × 10−3 | ↓ | Fatty acids and conjugates | Fatty acid biosynthesis |
28 | Naphthalene | 22.1 | 3.49 × 10−4 | 1.08 | 0.38 | 1.33 × 10−3 | ↓ | Naphthalenes | Degradation of aromatic compounds |
29 | Butyric acid | 22.8 | 1.06 × 10−2 | 1.26 | 0.53 | 1.14 × 10−2 | ↓ | Fatty acids and conjugates | Butanoate metabolism |
30 | Glutaconic acid | 22.9 | 1.19 × 10−3 | 1.43 | 5.134 | 2.18 × 10−3 | ↑ | Dicarboxylic acids and derivatives | Fatty acid metabolism |
31 | Benzoic acid | 27.3 | 2.39 × 10−4 | 1.07 | 0.50 | 1.43 × 10−3 | ↓ | Benzoic acids and derivatives | Benzoate degradation |
32 | 1,2-Benzenedicarboxylic acid | 28.2 | 3.37 × 10−3 | 2.24 | 0.38 | 4.42 × 10−3 | ↓ | Benzoic acids and derivatives | Polycyclic aromatic hydrocarbon degradation |
33 | L-Ascorbic acid | 29.9 | 5.48 × 10−3 | 1.82 | 0.26 | 6.77 × 10−3 | ↓ | Furanones | Ascorbate and aldarate metabolism |
34 | Cis-9-Hexadecenoic acid | 30.6 | 1.37 × 10−3 | 1.27 | 2.09 | 2.40 × 10−3 | ↑ | Fatty acids and conjugates | Fatty acid biosynthesis |
35 | Hexadecanoic acid | 31.6 | 4.12 × 10−2 | 1.05 | 1.27 | 4.12 × 10−2 | ↑ | Fatty acids and conjugates | Fatty acid biosynthesis |
36 | Inositol | 33.0 | 3.49 × 10−4 | 1.03 | 2.08 | 1.22 × 10−3 | ↑ | Alcohols and polyols | Inositol phosphate metabolism |
37 | Octadecanoic acid | 35.6 | 1.92 × 10−3 | 1.04 | 0.56 | 2.88 × 10−3 | ↓ | Fatty acids and conjugates | Biosynthesis of unsaturated fatty acids |
38 | Eicosapentaenoic acid | 38.3 | 2.39 × 10−3 | 1.31 | 3.02 | 1.25 × 10−3 | ↑ | Fatty acids and conjugates | Biosynthesis of unsaturated fatty acids |
39 | Petroselinic acid | 38.8 | 6.05 × 10−4 | 1.10 | 0.28 | 1.59 × 10−3 | ↓ | Fatty acids and conjugates | Biosynthesis of unsaturated fatty acids |
40 | Myristic acid | 39.0 | 2.39 × 10−4 | 1.25 | 0.32 | 1.11 × 10−3 | ↓ | Fatty acids and conjugates | Fatty acid biosynthesis |
41 | Cholesterol | 42.0 | 2.39 × 10−4 | 1.07 | 0.34 | 1.00 × 10−3 | ↓ | Cholestane steroids | Cholesterol metabolism |
42 | Adipic acid | 42.8 | 7.05 × 10−3 | 1.04 | 0.50 | 8.23 × 10−3 | ↓ | Fatty acids and conjugates | Degradation of aromatic compounds |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Shao, Z.; Wu, W.; Wang, J. Untargeted Metabolite Profiling Reveals Acute Toxicity of Pentosidine on Adipose Tissue of Rats. Metabolites 2024, 14, 539. https://doi.org/10.3390/metabo14100539
Hu C, Shao Z, Wu W, Wang J. Untargeted Metabolite Profiling Reveals Acute Toxicity of Pentosidine on Adipose Tissue of Rats. Metabolites. 2024; 14(10):539. https://doi.org/10.3390/metabo14100539
Chicago/Turabian StyleHu, Chuanqin, Zhenzhen Shao, Wei Wu, and Jing Wang. 2024. "Untargeted Metabolite Profiling Reveals Acute Toxicity of Pentosidine on Adipose Tissue of Rats" Metabolites 14, no. 10: 539. https://doi.org/10.3390/metabo14100539
APA StyleHu, C., Shao, Z., Wu, W., & Wang, J. (2024). Untargeted Metabolite Profiling Reveals Acute Toxicity of Pentosidine on Adipose Tissue of Rats. Metabolites, 14(10), 539. https://doi.org/10.3390/metabo14100539