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Abstract: Background: Clear cell renal cell carcinoma (ccRCC) comprises the majority, approximately
70–80%, of renal cancer cases and often remains asymptomatic until incidentally detected during
unrelated abdominal imaging or at advanced stages. Currently, standardized screening tests for
renal cancer are lacking, which presents challenges in disease management and improving patient
outcomes. This study aimed to identify ccRCC-specific volatile organic compounds (VOCs) in the
urine of ccRCC-positive patients and develop a urinary VOC-based diagnostic model. Methods: This
study involved 233 pretreatment ccRCC patients and 43 healthy individuals. VOC analysis utilized
stir-bar sorptive extraction coupled with thermal desorption gas chromatography/mass spectrometry
(SBSE-TD-GC/MS). A ccRCC diagnostic model was established via logistic regression, trained on
163 ccRCC cases versus 31 controls, and validated with 70 ccRCC cases versus 12 controls, resulting
in a ccRCC diagnostic model involving 24 VOC markers. Results: The findings demonstrated
promising diagnostic efficacy, with an Area Under the Curve (AUC) of 0.94, 86% sensitivity, and 92%
specificity. Conclusions: This study highlights the feasibility of using urine as a reliable biospecimen
for identifying VOC biomarkers in ccRCC. While further validation in larger cohorts is necessary, this
study’s capability to differentiate between ccRCC and control groups, despite sample size limitations,
holds significant promise.

Keywords: VOCs; ccRCC; urinary; metabolomics; diagnostic model; GC-MS; stir-bar sorptive
extraction; renal cancer carcinoma

1. Introduction

Renal (kidney) cancer is a heterogeneous disease that is comprised of several sub-
types, each of which is associated with a unique natural histology and prognosis [1,2].
Approximately 81,610 new kidney cancer cases and 14,390 deaths are anticipated in the
United States in 2024 [3]. It ranks as the sixth most common cancer in men (5%) and
the ninth most common cancer in women (3%) in the US [3,4]. The rise in incidence is
possibly due to the increased use of cross-sectional imaging studies in the evaluation of
abdominal-related complaints [5,6]. Most kidney cancers are renal cell carcinomas (RCCs),
where clear cell renal cell carcinoma (ccRCC) is the most common subtype, accounting for
70–80% of all kidney cancers. This histological description is due to the high lipid content
in the cytoplasm dissolved during immunohistochemical preparation methods, leaving a
clear cytoplasm appearance [7].
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The biology of ccRCC is characterized by increased glucose uptake and glycolysis
through the canonical Warburg effect [8]. In addition, reductive carboxylation is achieved
through a glutamate-dependent pathway that involves the backward flow of the tricar-
boxylic acid cycle [9]. Fatty acid metabolism in ccRCC favors increased lipid synthesis and
decreased β-oxidation [10]. This metabolic reprogramming of normal cellular pathways
provides ccRCC tumor cells with the ability to survive in hypoxic and nutrient-deficient
environments [11]. Understanding these metabolic abnormalities in ccRCC opens avenues
for targeted discovery of diagnostic biomarkers [12–15].

Numerous ccRCC biomarkers have been developed, but to date, none has been
approved for clinical use [16,17]. Therefore, there remains an unmet need to identify
more ideal ccRCC biomarkers. Recent studies found that trained dogs could distinguish
between individuals with and without cancers only by sniffing their urine with high
sensitivity and specificity for patients with prostate, bladder and lung cancer [15,18–20].
It is assumed that these animals are detecting odor signatures released from the urine
of affected patients [20–23]. These odor signatures are thought to be volatile organic
compounds (VOCs) which can be generated from the human body and released through
breath, blood, skin, tissue, urine, and feces [24]. These VOCs could reflect the physiological
and metabolic status of the individual [25–27]; thus, in individuals with cancer, urinary
VOCs could represent the byproducts of the tumor metabolism [28]. Research has been
conducted to explore the relationship between the body’s VOC signatures and cancer.
Including control groups representing various cancer types would allow for the assessment
of biomarker specificity, helping to determine whether they are truly unique to ccRCC or
reflect broader cancer-related changes [29]. In general, ccRCCs are epithelial tumors in
contact with the urinary space [30,31], making this cancer well suited for a urinary VOC
metabolomic approach for biomarker discovery and diagnoses.

Research has shown that VOCs can be detected using several analytical techniques [32–34].
Small-molecule biomarkers in urine hold great promise for the early detection and moni-
toring of renal cancer. These biomarkers, including metabolites, lipids, and volatile organic
compounds (VOCs), are products of altered cellular processes in cancerous tissues. Renal
cell carcinoma (RCC), the most common form of kidney cancer, often progresses without
early symptoms, making the identification of non-invasive biomarkers particularly valu-
able. Urine, in direct contact with the kidneys, provides a rich source of potential diagnostic
information. Researchers are increasingly focusing on profiling these small molecules to
distinguish renal cancer patients from healthy individuals and those with other condi-
tions, including gold nanoparticles-assisted laser desorption/ionization mass spectrometry
(GALDI-MS) or nuclear magnetic resonance (NMR). Advances in metabolomics and other
analytical technologies have enhanced the ability to identify specific biomarker signa-
tures, which could lead to earlier detection, more personalized treatment approaches, and
improved patient outcomes [32,35–38].

Using a gas chromatography/mass spectrometry (GC-MS) approach, our previous
study identified a prostate cancer-specific urinary VOC profile in men diagnosed by tran-
srectal ultrasound-guided prostate biopsy [39]. In addition, our studies were able to
distinguish men presenting with low- versus high-risk diseases. One study by Noriega
Landa et al. explored fatty acids (FAs) as potential biomarkers for prostate cancer (PCa)
detection, proposing a urinary FA-based model. Through analysis of urine samples from
334 biopsy-designated PCa positive and 232 biopsy-designated PCa negative subjects, a
final FA model was developed, showing higher accuracy (AUC = 0.71) compared to the
PSA model (AUC = 0.51), suggesting urinary FAs as a promising non-invasive alternative
for PCa diagnosis [40]. Badmos et al. used metabolomics to investigate urine samples from
386 male adults, resulting in the development of a model with a 0.88 AUC for PCa diagnosis
and an average 0.78 AUC for distinguishing between low-grade and intermediate/high-
grade PCa, offering promising advancements in PCa screening and assessment to address
challenges related to over-diagnosis and over-treatment [41].
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The knowledge gap regarding the use of VOCs for renal cancer diagnosis stems from
insufficient research on the distinct VOC signatures associated with renal cancer compared
to other diseases. Additionally, there is a lack of large-scale validation studies to confirm
the reliability and accuracy of VOC-based diagnostic models in detecting renal cancer.
Urine is an ideal biospecimen for ccRCC detection due to its direct contact with the renal
system, potentially containing specific biomarkers indicative of renal pathologies. Its non-
invasive collection method makes urine particularly advantageous for routine screening
and monitoring of ccRCC progression. As ccRCC is the most common subtype of RCC, this
study initiated an exploratory experiment where we focused on detecting urinary VOCs
for ccRCC diagnosis. Using the well-established methodology developed in our laboratory,
this study was to develop a urinary VOC-based diagnostic model that could discriminate
ccRCC patients from healthy controls.

2. Materials and Methods
2.1. Study Design

Approval was obtained from the Institutional Review Board (UTEP and Geisinger)
and written informed consent was obtained from all patients. For ccRCC diagnostic
model development, 276 total urine samples were obtained from (a) preoperatively from
233 pathologically confirmed ccRCC patients on the day of surgery (partial or radical
nephrectomy) and (b) 43 self-reported healthy control patients with no evidence of cancer.
Control patients consisted of patients with benign urologic complaints without history of
malignancy, polypharmacy, comorbidities (≤2), and who also have available renal imaging
within one year of the start of the study that was negative for any solid or complex cystic
renal lesions. Subjects with complex renal cysts, benign renal tumors, or history of current
or prior non-clear-cell renal malignancy were excluded from the study. To simulate a
real-world clinical scenario, there were no diet or urine collection time restrictions.

Patients were divided into two groups: a training group (for model development)
and a testing group (for model validation). The training set contained urine samples from
163 pathologically confirmed ccRCC patients and 31 healthy controls. For the testing group
which was to evaluate the final performance of the ccRCC diagnostic model, 70 ccRCC
patients and 12 healthy controls were involved. Figure 1 illustrates the partitioning of the
total patient population used to train and test the cohorts. The demographic data of the
cohort population is shown in Table 1 (A) and a comparison of the basic characteristics of
both the cases (ccRCC patients) and controls is shown in Table 1 (B). While tumor grades
were not readily available for all samples in our cohort, our available data encompassed all
tumor grades, although most samples did not specify tumor grade data. The aim of this
model was to detect ccRCC at all stages. Urine samples of the patients were collected at the
medical facilities and laboratory and stored at −80 ◦C until chemical analyses.
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Table 1. (A) Demographic information of clear cell renal cell carcinoma and renal cancer-negative
patients in the VOC ccRCC diagnosis model development. Data are presented as median (interquartile
range) for continuous variables and n (%) for categorical variables. (B) A comparison of the age and
gender of both the cases (ccRCC patients) and controls.

(A) Training Cohort
(Model Development)

Testing Cohort
(Model Validation)

ccRCC
Group

Control
Group

ccRCC
Group

Control
Group

No. 163 31 70 12
Age 63 (26–87) 46 (22–78) 60 (33–87) 57 (26–73)

Gender
M 103 14 49 5
F 60 17 21 7

Tumor grade 1 N/A 2 N/A 2

1 20 (12%) 10 (14%)
2 23 (14%) 9 (13%)
3 19 (12%) 11 (16%)
4 10 (6%) 6 (8%)

Unknown 90 (56%) 34 (49%)

(B) Characteristic Control N = 43 3 Positive N = 233 3 p-Value 4

Age 50 (29, 60) 63 (56, 70) <0.001
Gender 0.011

M 19 (44%) 152 (65%)
F 24 (56%) 81 (35%)

1 Pathology/Biopsy Confirmed (Tumor grade); 2 N/A: Not applicable; 3 Median (Q1, Q3); n (%). 4 Wilcoxon
rank-sum test; Pearson’s Chi-squared test.

2.2. Chemicals and Materials

Mirex (99.0%, Dr. Ehrenstorfer GmbH, Augsburg, Germany), used as the internal stan-
dard, was purchased from the Laboratories of Dr. Ehrenstorfer, Germany. Mirex solution of
100 mg·L−1 was prepared in methanol (LCMS grade, Burdick & Jackson (Muskegon, MI,
USA)). Hydrochloric acid (HCl, 37%) was purchased from Sigma–Aldrich (St. Louis, MO,
USA). Ultra-pure deionized water from Milli-Q system (Millipore, Bedford, MA, USA) was
used in the preparation of HCl solution and dilution of urine samples.

2.3. Extraction and Chemical Analysis of VOCs from Urine Samples

Urine samples were processed through centrifuging and stir-bar sorptive extraction
as described previously [39,40]. Briefly, VOCs from urine samples were analyzed in a
thermal desorption unit, TDU (Gerstel, Mülheim, Germany), coupled with a GC/MS
system (6890/5973-N GC/MS, Agilent Technologies, Wilmington, DE, USA). The National
Institute of Standards and Technology (NIST) Library NIST17 was used for the identification
of VOC profile in urine samples. All samples were analyzed in a blinded and coded fashion
during the instrument analyses [39].

Quality control (QC) samples were prepared using 20 mL of ultra-pure deionized
water with the same amount of mirex internal standard (300 uL of 1 ppm) as that added to
each urine sample. The QC samples were analyzed after every 20–30 urine sample runs to
monitor instrument performance and data consistency.

2.4. Data Processing and Statistical Analysis

A detailed account of the performed analyses has been previously published [39]. The
urinary VOCs were identified by the library NIST17 according to the matching quality of
the MS spectra produced by the instrument. We implemented a filter to a matching quality
of 50% or greater to ensure satisfactory VOC identification in further data processing. The
relative intensity of each VOC peak was then normalized against that of mirex to enable
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semi-quantitative analysis of VOCs in the statistical analysis (area ratio). MetaboAnalyst
5.0 was used to generate a partial least squares discriminant analysis (PLS-DA) plot to
visually represent the definitive clustering between the ccRCC-positive and healthy cohorts.
The dataset was pre-processed by an interquartile range (IQR) of 40% filtered out, then a
log transformation (base 10) was applied to normalize the response variable (area ratio).
The pre-processed data developed a model to identify a linear combination of the target
VOCs which show the greatest discrimination between cohorts. The PLS-DA was then
used to generate a variable importance in projection (VIP) plot to identify VOCs which
showed a greater discriminatory power.

The statistical significance of each VOC was assessed using the Wilcoxon rank-sum
test. Heat maps were generated to visualize significant VOCs (p < 0.05) among the ccRCC-
positive and control groups; a comprehensive list of the significant VOCs are shown in
the Supplementary Table S1. Using a liberal cutoff (p < 0.2), a larger set of VOCs was
selected to develop a logistic regression model for further identification of noteworthy
VOCs. The VOC-based diagnostic tool was developed using logistic regression [42]. The
final logistic model was evaluated using the Receiver Operating Characteristic (ROC)
curve, and its performance was measured based on jackknife prediction [42–44]. Jackknife
cross-validation was to strengthen the robustness of our findings and to estimate variability
and prevent overfitting, which further validates the performance of the model despite
the limited control sample size. All the analyses were performed using the open-source
statistical computing package R (version 4.2.2) and MetaboAnalyst 5.0 platform [45,46].

3. Results

All VOCs were identified based on their occurrence and relative quantity in the
urine samples. The relative quantity of each VOC was determined after normalization to
mirex. Mirex was selected as the internal standard (IS) because it is absent in human urine,
eliminating any interference with the urinary VOC profile. A total of 6218 potential VOCs
were detected in urine collected from the training cohort. Figure 2 is the partial least-squares
discriminant analysis plot (PLS-DA) used as a supervised classification method to describe,
predict, and discriminate variable selection. As shown, both ccRCC and healthy control
cohorts showed distinction between one another indicating the potential for cohort-specific
VOCs to be identified via modeling.
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Among the 6218 potential VOCs detected in urine collected from the training cohort,
we further used Wilcoxon rank sum test at statistical significance p < 0.05 and identified
56 VOCs were predominant in the cancer group urine samples and 227 VOCs for the
controls. A heat map was generated to visualize the distribution of those significant VOCs
in patients is shown in Figure 3. The comprehensive list of the 283 VOCs is included in
Supplementary Materials Table S1.
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Figure 3. Heat map of significant VOCs in clear cell renal cell carcinoma (ccRCC) vs. controls samples
by Wilcoxon test (p < 0.05). 56 VOCs were predominant in the cancer group urine samples and
227 VOCs were elevated in the controls. The correlation between VOCs and patients ranges from low
(red) to high (blue).

To develop the regression diagnostic model, a boarder range of VOCs were selected
using p ≤ 0.20. After further selection with l1 regularization, the final logistic model
selected 24 VOCs (Table 2). The performance of the ccRCC diagnostic model was assessed
using the training set of 163 ccRCC patients and 31 healthy controls. Based on predicted
probabilities from the final model via jackknife cross-validation, the area under the receiver
operating characteristic curve (AUC-ROC) was 0.98 with a confidence interval 0.934 to 1
with a 99% sensitivity and 97% specificity (with cutoff point of 0.885 obtained by Youden
Index) (Figure 4A). The use of jackknife cross-validation helps to reduce bias, estimate
variability, and prevent overfitting, thereby providing a more reliable assessment of the
model’s discrimination power between VOCs in the urine of ccRCC patients and healthy
controls. To validate the performance of the developed ccRCC diagnostic model, a separate
cohort of patients was used as the testing group. Via Jackknife prediction, the AUC was
0.94 with a confidence interval of 0.874 to 1 (Figure 4B). Compared to the training cohort,
the testing cohort had 86% sensitivity and 92% specificity (with an optimal cutoff point of
0.885). These results support the discrimination power of urinary VOCs in ccRCC diagnosis.
In the final logistic model, 24 VOCs were selected (Table 2). Those 24 VOCs selected for the
RCC screening model include alkanes, ketones, esters, and alcohols. Among the 24 VOCs,
14 dominated the healthy control cohort and 10 dominated the ccRCC-positive cohort
(shown in asterisk/bolded).
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Table 2. The 24 VOCs selected by logistic regression models for ccRCC diagnosis prediction.

CAS Number 1 Chemical
Formula Chemical Name

Dominating
Group p-Value 2

Occurrence

Cancer (+) 3 Control (−) 4

* 000104-76-7 C8H18O 1-Hexanol, 2-ethyl- ccRCC 3.07 × 10−12 140 9

* 005637-97-8 C17H32O Heptadecanolide ccRCC 1.35 × 10−1 27 2

1000465-65-6 C17H24O4 2-Ethylhexyl methyl isophthalate Control 2.22 × 10−19 8 21

015356-70-4 C10H20O
Cyclohexanol,

5-methyl-2-(1-methylethyl)-,
(1.alpha.,2.beta.,5.alpha.)-(.+/-.)-

Control 5.76 × 10−16 14 21

001490-04-6 C12H22O2
Cyclohexanol,

5-methyl-2-(1-methylethyl)- Control 1.39 × 10−13 1 11

007568-58-3 C18H30O 1-Propene-1,2,3-tricarboxylic acid,
tributyl ester Control 1.42 × 10−13 2 12

028336-57-4 C24H24 Cyclohexane, 1,3,5-triphenyl- Control 2.47 × 10−12 2 11

016982-00-6 C15H22
Benzene, 1-methyl-4-(1,2,2-
trimethylcyclopentyl)-, (R)- Control 7.43 × 10−10 0 7

000491-02-1 C10H20O
Cyclohexanol,

5-methyl-2-(1-methylethyl)-,
(1.alpha.,2.alpha.,5.alpha.)-

Control 1.68 × 10−8 1 7

000075-31-0 C3H9N 2-Propanamine Control 2.29 × 10−7 0 5

* 000506-17-2 C18H34O2 cis-Vaccenic acid ccRCC 1.22 × 10−6 38 19

* 013151-34-3 C11H24 Decane, 3-methyl- ccRCC 1.29 × 10−6 14 12

002305-05-7 C10H18O2 .gamma.-Dodecalactone Control 7.63 × 10−6 4 7

1000140-05-6 C15H22 Cadala-1(10),3,8-triene Control 2.12 × 10−5 3 6

* 004630-07-3 C15H24

Naphthalene,
1,2,3,5,6,7,8,8a-octahydro-1,8a-

dimethyl-7-(1-methylethenyl)-,
[1R-(1.alpha.,7.beta.,8a.alpha.)]-

ccRCC 3.98 × 10−5 13 10

1000427-45-5 C5H6O2 4-Methylamino-2(5H)-furanone Control 8.11 × 10−5 1 4

* 013183-70-5 C12H22Si2 1,4-Bis(trimethylsilyl)benzene ccRCC 1.13 × 10−3 65 18

* 1000383-15-8 C20H40O3 Carbonic acid, decyl nonyl ester ccRCC 6.09 × 10−3 6 5

000095-75-0 C7H6Cl Benzene, 1,2-dichloro-4-methyl- Control 6.27 × 10−3 2 3

000589-08-2 C9H13N Benzeneethanamine, N-methyl- Control 6.77 × 10−3 2 3

1000130-20-8 C5H7N3O2 l-Guanidinosuccinimide Control 7.03 × 10−3 2 3

* 028474-90-0 C38H68O8
l-(+)-Ascorbic acid

2,6-dihexadecanoate ccRCC 1.13 × 10−2 7 5

* 005951-67-7 C15H24

Cyclohexene, 6-ethenyl-6-methyl-1-
(1-methylethyl)-3-(1-

methylethylidene)-, (S)-
ccRCC 2.66 × 10−2 9 5

* 038142-57-3 C15H22O 2-Methyl-6-(p-tolyl)hept-2-en-4-ol ccRCC 4.57 × 10−2 4 3

1 Chemical Abstracts Service number (CAS). 2 p-value: the p-value of selected compounds from the Wilcoxon
rank-sum test. 3 Cancer (+): ccRCC-positive patients. 4 Control (−): healthy control patients. * Bold: VOC levels
dominant in ccRCC-positive patients’ urine.

In order to better understand the role of the selected VOCs in biological pathways, we
used the metabolite analysis in ConsensusPathDB (http://cpdb.molgen.mpg.de/ (accessed
on 9 August 2023)) to study the 283 urinary VOCs that were selected by their significance
(p < 0.05) in distinguishing ccRCC patients from healthy controls. These 283 significant uri-
nary VOCs were found to be linked to several pathways related to amino acids, lipids, fatty
acids (Figure 5, Table 3). We do not know the definitive trigger for metabolic dysregulation,
but we hypothesized that these compounds may be the result of peroxidation hydrolysis of
lipids and fatty acids.

http://cpdb.molgen.mpg.de/
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Table 3. The 23 CPDB metabolic interaction pathways generated from the 283 significant VOCs
(Wilcoxon rank sum, p < 0.05).

Pathway Name Pathway Source * p-Value

Free fatty acid receptors Reactome 1.16 × 10−4

Fatty acid biosynthesis SMPDB 1.16 × 10−4

Transmission across chemical synapses Reactome 1.63 × 10−4

Neuronal system Reactome 1.63 × 10−4

Acyl-CoA hydrolysis HumanCyc 2.29 × 10−4

Phospholipases HumanCyc 3.34 × 10−4

Triacylgycerol degradation HumanCyc 3.34 × 10−4

Sphingomyelin metabolism/ceramide salvage HumanCyc 3.34 × 10−4

The visual cycle I (vertebrates) HumanCyc 4.66 × 10−4

Sphingosine and sphingosine-1-phosphate metabolism HumanCyc 4.66 × 10−4

Lipid metabolism pathway Wikipathways 5.92 × 10−4

Transport of fatty acids Reactome 5.92 × 10−4

Neurotransmitter release cycle Reactome 6.28 × 10−4

Amino acid conjugation of benzoic acid Wikipathways 7.38 × 10−4

Fatty acid biosynthesis—Homo sapiens (human) KEGG 1.08 × 10−3

Fatty acid β-oxidation HumanCyc 1.54 × 10−3

G alpha (q) signaling events Reactome 1.62 × 10−3

Fatty acid β-oxidation (peroxisome) HumanCyc 1.62 × 10−3

Fatty acid activation HumanCyc 3.04 × 10−3

Retinol biosynthesis HumanCyc 3.35 × 10−3

De novo fatty acid biosynthesis EHMN 4.74 × 10−3

Inflammatory mediator regulation of TRP-channels- Homo sapiens (human) KEGG 7.25 × 10−3

Class A/1 (Rhodopsin-like receptors) Reactome 8.77 × 10−3

* SMPDB—Small Molecule Pathway Database; HumanCyC—Encyclopedia of Human Genes and Metabolism;
KEGG—Kyoto Encyclopedia of Genes and Genomes; EHMN—Edinburgh Human Metabolic Network.

4. Discussion

This study was designed to evaluate the clinical utility of the urinary VOCs metabolomic
approach to diagnose ccRCC. With a total of 276 ccRCC and healthy control urine samples
and using logistic regression, a ccRCC-diagnostic model including 24 VOCs was developed
and evaluated with an AUC of 0.98 in the training cohort (sensitivity: 99% and specificity
86%) and an AUC of 0.94 in the testing cohort (sensitivity: 86% and specificity 92%). Table 4
shows a brief comparison of the prediction performance of other studies in the literature,
including both metabolomic and proteomic approaches, and this study.

In a previous study, Monteiro et al. developed and optimized a headspace-solid phase
microextraction sampling coupled with a gas chromatography/ion trap/mass spectrometry
method to study the volatile human urinary metabolome in RCC patients [27,50]. Using an
unsupervised principal component analysis (PCA), the research demonstrated the ability
of urinary VOCs to discriminate between RCC patients and healthy controls. In the study
of 30 RCC patients and 37 controls, the researchers identified 21 discriminatory VOCs
using the PCA model [27]. However, after two internal independent studies, only 2 VOCs
(2-oxopropanal and 2,5,8-trimethyl-1,2,3,4-tetrahydronaphthalene-1-ol) were validated. In
our ccRCC-specific study, we found 10 VOCs which dominated the ccRCC cancer cohort,
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while 14 VOCs were detected higher in the healthy control cohort. However, the two VOCs
reported in Monteiro’s study were not detected in our list (Tables 2 and 4).

Table 4. A comparison of VOCs biomarkers detected in RCC urine and cell line.

Reference Cohort Size Analytical Methods Statistical Methods AUC-ROC
(Sensitivity/Specificity) Selected VOCs or Biomarkers

Monteiro et al. [27] 30 RCC; 37 healthy
(RCC urine) HS-SPME-GC-IT/MS PCA ND *

2-oxopropanal and
2,5,8-trimethyl-1,2,3,4-

tetrahydronaphthalene-1-ol

Wang et al. [47] 22 RCC; 25 healthy
(RCC urine) UPLC-MS

Welch Two Sample
T-Test, Variable

Importance in the
Projection (VIP Values),

PLS-DA

H vs. RCC: 0.702 (76%
and 79%); Pre vs. Post:
0.833 (61% and 88%)

phenol, decanal,1,6-
dioxacyclododecane-7,12-

dione; 1-brom
o-1-(3-methyl-1-

pentenylidene)-2,2,3,3-
tetramethyl-cyclopropane;

nonanal;
3-ethyl-3-methylheptane;

isolongifolene-5-ol;
2,5-cyclohexadiene-1,4-dione,

2,6-bis(1,1-dimethylethyl);
tetradecane; aniline; 2,6,10,14-

tetramethyl-pentadecane;
styrene, 4-heptanone;
dimethylsilanediol;
2-ethyl-1-hexanol;

cyclohexanone;
6-t-butyl-2,2,9,9-tetramethyl-

3,5-decadien-7-yne

Amaro et al. [16] RCC cell lines HS-SPME-GC-MS PCA and PLS-DA ND * for entire VOC
panel

cyclohexanone; acetaldehyde;
cyclohexanol; decanal; decane;

dodecane; and
4-methylbenzaldehyde

Morrissey et al. [48] 19 RCC; 80 healthy
(RCC urine)

ELISA and Western
Blot

One-way ANOVA and
Pearson Chi-square

Test

1.0 (100% and 100%);
0.99 (100% and 98%) AQP-1 and PLIN

Mijuskovic et al. [49] 40 RCC; 40 healthy
(RCC urine) ELISA Smirnov Test and

Mann–Whitney Test ND * KIM-1 and AQP-1

Holbrook et al.
(this study)

233 ccRCC; 43 healthy
(RCC urine) SBSE-GC-MS Linear Regression 0.94 (86% and 92%) 24 (Table 2)

* ND = Not determined.

In another study, Wang et al. tested the urine specimens of 22 RCC patients pre- and
post-operatively and compared them to those of 25 healthy controls [47]. Using PCA,
partial least-squares discriminant analysis (PLS-DA) and two-sided t-tests, distinct VOCs
were selected based on a variable importance in the projection (VIP) value > 1.2 and a
similarity threshold of 75% using the NIST 11 database for VOC screening quality. RCC pa-
tients were found to have increased levels of phenol; decanal;1,6-dioxacyclododecane-7,12-
dione; 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3 -tetramethyl-cyclopropane; nonanal;
3-ethyl-3-methylheptane; isolongifolene-5-ol; 2,5- cyclohexadiene-1,4-dione, 2,6-bis(1,1-
dimethylethyl); tetradecane; aniline; and 2,6,10,14- tetramethyl-pentadecane and decreased
levels of styrene; 4-heptanone; and dimethyl silanediol. These metabolites were linked to
lipid oxidation and oxidative stress [47]. Furthermore, preoperative patients were com-
pared to postoperative patients, and a unique set of three VOCs were identified. These
include elevated levels of 2-ethyl-1-hexanol and cyclohexanone and decreased levels of
6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne in the preoperative patients. The discrep-
ancy between the VOCs identified in the RCC versus control cohort and the pre- and
post-operative RCC cohort are unclear, particularly because no independent validation
in a new cohort of patients was conducted. That said, it raises the question about what
constitutes a more reliable comparative group for identifying RCC-specific urinary VOCs,
RCC patients versus healthy controls or the same patient pre- and post-treatment. In
our study, 2-ethyl-1-hexanol was also found to be significantly more dominant in ccRCC
patients’ urine sample. We also found three cyclohexanol-related compounds which were
dominant in healthy controls.
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Amaro et al. set out to explore the clinical need for RCC early detection [16]. The
premise of the experiment focused on the altered metabolic pathways that have the potential
to discriminate RCC subtypes of clear cell, papillary, and metastatic in six different cell lines.
Using GC-MS coupled with multivariate and univariate analyses, the results suggested
that ketones, alcohols, alkanes, and aldehyde groups played an important role in the
discrimination. The metabolite panel consisted of significant alterations in cyclohexanone,
acetaldehyde, cyclohexanol, decanal, decane, dodecane, and 4-methylbenzaldehyde within
the metastatic RCC cell lines. Interestingly, the group also emphasized that there was
a significant increase in 2-ethylhexanol in RCC cell lines compared to the normal cell
lines; this phenomenon was attributed to the hydroxylation of various reactive oxygen
species (ROS) during mediated lipid peroxidation [16]. This finding supports our study
where 2-ethylhexanol showed the greatest significance between control and RCC patients.
Even though the role of 2-ethylhexanol in RCC is beyond the scope of this study and
more validation is necessary, 2-ethylhexanol could be used as a potential biomarker for
noninvasive urine-based detection. In addition, many alcohols, ketones, and alkanes were
also elected in our RCC diagnostic model (Table 2), supporting the reported findings.

In addition to organic metabolites as RCC biomarkers, researchers have explored
using tumor specific protein for RCC diagnostic and screening biomarkers. Morrissey
et al. targeted the screening biomarkers aquaporin-1 (AQP-1) and perilipin-2 (PLIN2)
to detect and diagnose ccRCC and papillary renal cell carcinoma (pRCC) [48]. Urine
samples were obtained from 720 patients in for routine abdominal CT screening, 80 healthy
volunteers, and 19 patholically confirmed RCC and the biomarkers concentrations were
determined by ELISA and Western blot. Concentrations of AQP-1 and PLIN-2 were
found to be 12 times higher in the RCC cohort compared to the healthy and screening
cohorts. The combined AUC-ROC for the urinary AQP-1 and PLIN-2 detection was greater
than 0.99 with a sensitivity greater than 95% and specificity greater than 91% indicating
the feasibility of AQP-1 and PLIN-2 as potential RCC screening biomarkers. This study
highlighted the potential of using tumor-specific proteins as diagnostic and screening
biomarkers for RCC. Mijuskovic et al. addressed the infamous kidney injury molecule-1
(KIM-1) and AQP-1 as potential urinary biomarkers for ccRCC early detection [49]. Urine
samples were collected from 40 healthy and 40 renal tumor-positive patients and analyzed
using commercially available ELISA kits. The group conducted a comparative study
between clinical and pathological characteristics in healthy volunteers, pre-operative, and
post-operative patients. Results demostrated that patients with higher grade tumors had
an elevated level of urinary kidney injury molecule-1 (uKIM-1) compared to low-grade
lesions. A comparison of urinary aquaporin-1 (uAQP-1) indicated there were no significant
correlations between pre-operative concentrations, grade and stage, and tumor size. In
summary, uKIM-1, but not uAQP-1, was significantly elevated in patients with cRCC
compared to healthy subjects. The overall results did not support the aforementioned
Morrissey et al. study [48] but suggested that uKIM-1, due to its noninvasive sampling,
simplicity, and support by the literature and commercial ELISA kits, can serve as a valuable
and reliable biomarker for cRCC diagnosis and postoperative monitoring in routine clinical
practices [48]. Although the performance of urinary protein markers seems impressive,
the process of protein extraction is time consuming making their application in cancer
screening less attractive.

In this study, our ccRCC-specific urinary VOC model was developed based on the
24 VOCs distributed in the urine of cancer patients as compared to the controls. Several
VOCs display biological significance. For instance, among the 24 VOCs identified in this
study (Table 2), the long carbon chain and/or carbonyl group of Heptadecanolide; 2-
Ethylhexyl methyl isophthalate; Cyclohexanol, 5-methyl-2-(1-methylethyl)-; 1-Propene-1,2,3-
tricarboxylic acid, tributyl ester; Cyclohexane, 1,3,5-triphenyl-; Benzene, 1-methyl-4-(1,2,2-
trimethylcyclopentyl)-, (R)-; cis-Vaccenic acid; Cadala-1(10),3,8-triene; 1,4-Bis(trimethylsilyl)
benzene; l-(+)-Ascorbic acid 2,6-dihexadecanoate; Cyclohexene, 6-ethenyl-6-methyl-1-(1-
methylethyl)-3-(1-methylethylidene)-, (S)-; and 2-Methyl-6-(p-tolyl)hept-2-en-4-ol support
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their role in amino acid conjugation, hydrolysis, and peroxidation of fatty acids [40,51–53].
Additionally, 2-ethyl-1-Hexanol is a peroxidation product of oleic acid (C18H34O2), a (poly)
unsaturated fatty acid with potent anti-inflammatory properties [16,54,55]. The literature
has warranted 2-ethyl-1-Hexanol as a potential VOC that has been detected in urine for
prostate and renal cancer. Interestingly, our research also detected 2-ethyl-1-Hexanol
dominating in ccRCC patients, thus validating the previous literature. It should be noted
that this metabolite could be derived from diethyhexyl phthalate (DEHP), which has the
potential to induce apoptosis, overall leading to renal cancer progression [56].

Three benzene derivative VOCs, Benzene, 1-methyl-4-(1,2,2-trimethylcyclopentyl)-,
(R)-; Benzene, 1,2-dichloro-4-methyl-; and Benzeneethanamine, N-methyl-, were selected
in discriminating ccRCC from healthy controls. Benzene and its derivatives have been
classified as carcinogens based on their metabolic breakdown leading to reactive intermedi-
ates; these metabolized compounds pose the greatest toxicity to the liver [57–59]. Exposure
is commonly encountered in industrial and occupational settings and has been linked to
an increased risk of cancer, particularly bladder cancer [60]. Benzene and some benzene
derivatives have been associated with an increased risk of cancer, especially leukemia [61].
This connection is primarily due to its potential to undergo metabolic activation, leading
to the formation of reactive intermediates that can bind to DNA and cause genetic muta-
tions [62]. However, for reasons unknown, the benzene-related compounds identified in
this study were dominant in the control group.

As the significant VOCs identified in this study (Table S1) were found to be involved
in metabolic pathways, we further discussed some of the metabolic pathways to bring
insight into how these pathways could be linked to cancer. The preliminary pathway
study shown in Figure 5 and Table 3 indicated the involvement of VOCs in fatty acid
biosynthesis, hydrolysis, and degradation pathways. Ultimately, the involvement of VOCs
in these biological processes likely stems from their role as intermediates or byproducts
in metabolic pathways. Fatty acid metabolism and lipid metabolism are broad categories
of metabolic pathways that encompass the breakdown, synthesis, and modification of
compounds with long hydrocarbon chains. In these pathways, alcohols and ketones can
undergo oxidation, reduction, and other reactions to participate in the production of energy
or the synthesis of cellular components [63]. Fatty acid activation is a crucial step in the
utilization of fatty acids for energy, and it ensures that the fatty acids are in a form that can
be further metabolized. Different types of fatty acids can be activated and used in various
metabolic processes, depending on the energy needs of the cell or tissue. The Literature
has not been directly associated with a specific metabolic pathway as it relates to cancer;
however, there are implications that it can potentially be involved in various metabolic
processes that are associated with the metabolism of fatty acids, lipids, and alcohols in
living organisms [10,64–66].

Acyl-CoA hydrolysis is a cellular process that is involved in the breakdown of fatty
acids for energy production and lipid metabolism. Acyl-CoA hydrolysis is a metabolic
process that involves the enzymatic cleavage of acyl-CoA compounds, which are important
intermediates in fatty acid metabolism. Although acyl-CoA hydrolysis itself is not directly
linked to cancer, alterations in fatty acid metabolism, which includes processes like acyl-
CoA metabolism, have been associated with various types of cancer [67–69]. Specifically,
cancer cells often exhibit changes in fatty acid metabolism to support their rapid growth
and energy needs. Some of the key alterations in fatty acid metabolism associated with
cancer include increased fatty acid synthesis, enhanced lipolysis (breakdown of stored fats),
and alterations in the composition of cellular membranes. Among the 24 VOCs selected
by the ccRCC model, two fatty acid-related compounds were selected (acetic acid, hexyl
ester and 2-Heptenoic acid, octadecyl ester). While fatty acid metabolism and associated
pathways are crucial for normal cellular functions, their involvement in renal cancer still
warrants further investigation.

Triacylglycerols (also known as triglycerides) are a type of lipid molecule that serves
as a storage form of energy in the body [10,65]. The degradation of triacylglycerols is an
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essential metabolic process that releases fatty acids for energy production. The relationship
between free fatty acid receptors (FFARs) and renal cancer is an area of interest due to
the direct link between FFARs and the development or progression of renal cancer [51,52].
FFARs are a class of G protein-coupled receptors (GPCRs) that are involved in mediating
various cellular responses to fatty acids. FFARs, such as FFAR1 (GPR40), FFAR2 (GPR43),
and FFAR3 (GPR41), play important roles in regulating metabolic and immune responses
to fatty acids, with direct linkage to lipid metabolism and immune responses [52]. These
receptors are commonly found in various tissues, including the kidneys, making these
receptors significant in fatty acid metabolism and signaling which can influence cancer cell
behavior and tumor progression [53,67].

The metabolism of sphingosine and its derivative, sphingosine-1-phosphate (S1P), is
an area of ongoing research in the context of cancer, including renal cancer. Sphingolipid
metabolism includes the interconversion of sphingosine and S1P and is known to play a
role in various cellular processes, including cell growth, apoptosis, and cell migration. Sph-
ingomyelin and ceramide are bioactive lipids that play important roles in various cellular
processes, including cell signaling, apoptosis (programmed cell death), and inflammation
within the metabolic pathway of sphingomyelin metabolism and ceramide salvage [70].
Ceramide and related lipid pathways are critical for normal cellular function. The ceramide
salvage pathway involves the recycling of ceramide, which can be generated as a result
of sphingomyelin hydrolysis, into other sphingolipids or used as a signaling molecule.
Ceramide itself has been implicated in various cellular processes, including apoptosis,
regulation of cell growth, and survival [71,72]. There is growing interest in this field for
several reasons: (1) S1P receptors act as a ligand for a family of G protein-coupled recep-
tors known as S1P receptors (S1PRs). Activation of these receptors can influence various
cellular responses, including cell proliferation, angiogenesis, and immune cell trafficking.
Aberrant activation of S1PRs has been associated with cancer development and progression
in several types of cancer. (2) In cancers, including renal cancer, angiogenesis is essential for
tumor growth and metastasis. S1P may influence angiogenesis through its receptors and
downstream signaling pathways. (3) Cell migration is important for cancer cell invasion
and metastasis. The balance between S1P and ceramides (another class of sphingolipids) in
the cell can affect cell migration. Lastly, (4) Sphingosine is a precursor of S1P and has been
associated with apoptosis. Dysregulation of sphingosine metabolism may affect apoptosis
and contribute to tumor development [70–73].

The amino acid conjugation of the benzoic acid pathway or glycine conjugation is
a detoxification process in the liver that helps eliminate xenobiotics (foreign or harmful
compounds) from the body. Benzoic acid is one of the compounds that can be conjugated
with glycine to form hippuric acid, which is then excreted in the urine [60,74]. This process
helps the body rid itself of potentially toxic substances. Benzoic acid has been found in
food additives/preservatives and has been regulated by many health agencies due to the
potential formation of the known carcinogen benzene [60,61,75]. Although amino acid
conjugation is a liver metabolic process, it still plays a role in detoxification. The study of
amino acids as it relates cancer has been proven beneficial in the development of targeted
cancer therapies and possible biomarkers, indicating cancer progression [57]. However, the
complexity of amino acids has the potential to be detrimental in its relationship to cancer,
where they are essential nutrients for cancer cells, supporting synthesis and proliferation,
and also play a role in the immune response, which can ultimately result in metabolic
reprogramming [76,77]. In this study, we used GC-MS as our primary analytical technique.
Thus, we were not able to detect amino acids in urine. Nonetheless, the significant VOCs
found in urine samples were linked to the amino acid conjugation of the benzoic acid
pathway, implying that the urinary metabolites detected in this study presented values to
further understand the mechanisms of cancer progression.

G alpha (q) signaling events have often been linked with cancer signaling events. G
protein-coupled receptors (GPCRs) are a large family of cell surface receptors and they
transmit signals into the cell through the activation of G proteins. Signaling stimulates
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adenylate cyclase to increase cyclic AMP (cAMP) levels, leading to the activation of protein
kinase A (PKA). Dysregulation of the G signaling can be implicated in various cancers,
thus causing mutations in the guanine nucleotide binding protein and alpha stimulating
(GNAS) gene encoding for the Gs alpha subunit, which is commonly associated with
cancers: pituitary adenomas, ovarian, and pancreatic tumors [78–80]. The signaling of the
Gi protein inhibits adenylate cyclase, leading to decreased cAMP levels, and Gq receptors
activate phospholipase C (PLC), then promoting the generation of inositol trisphosphate
(IP3) and diacylglycerol (DAG), thus causing mutations. Overall, Gi promotes cell survival
and reduces apoptosis [80].

There is a complex inter-relationship between sphingosine and sphingosine-1-phosphate
metabolism, G alpha (q) signaling events, and Class A/1 pathways. Class A/1 (“Rhodopsin-
like receptors”) are a subgroup of GPCRs and are involved in various signaling events [81,82].
Many GPCRs in this class are associated with cancer, as they regulate key cellular processes,
including cell growth, differentiation, and migration. The signaling of GPCRs activates the
Rho family of guanosine triphosphate hydroxylase enzymes (GTPases), while dysregulated
signaling has been linked to cancer metastasis and invasion in various tumor types. Beta-
adrenergic receptors (β-ARs) have been shown to respond to stress at the surface of various
cells. Stimulation of β-ARs can activate the cAMP pathway, leading to the activation
of PKA and other downstream effectors [83]. Therefore, β-Ars and S1PRs have been
associated with cancer proliferation and metastasis as seen in breast, ovarian, and colorectal
cancer [79,80,82,83]. The specific effects of Class A/1 GPCRs in cancer can vary depending
on the receptor subtype and the tumor type, indicating that the activation or inhibition
of these receptors may have different consequences in different cancers. Research into
the roles of GPCRs in cancer is ongoing, and these receptors are considered potential
therapeutic targets in cancer treatment [84,85].

Retinol, or vitamin A, is essential for various biological processes by maintaining
healthy vision, regulating gene expression, and supporting immune function. Its metabolism
is strictly controlled and involves several enzymes and transport proteins. While retinol
itself is not directly related to cancer, deficiencies or excessive intake of vitamin A can
adversely affect its metabolism and can impact cancer risk. They are particularly obtained
in dietary forms, where the body converts carotenoids to retinol via biosynthesis in the
liver and tissues. While retinol/carotenoids have been implicated in various physiological
processes, the direct relationship between retinol synthesis and renal cancer is not well
established. However, retinol has been linked to skin and lung cancer and has also been
targeted as a therapeutic agent [86,87].

In the context of cancer, the relationship between inflammatory mediator regulation
of transient receptor potential (IMRTRP) channels in humans is a complex and evolving
area of research. TRP channels have been primarily associated with sensory physiology
and various pathological conditions including pain, neuroinflammation, and inflammation-
related diseases. It is interesting to note that ccRCC urinary VOCs via pathway analysis
selected the IMRTRP pathway; although it is not directly linked to cancer, the inflammation
response to cancer proliferation influences the activation of the TRP channel [88]. Therefore,
IMRTRP has been researched for cancer by exploring the interactions between TRP channels
and inflammatory mediators which can potentially lead to new therapeutic strategies for
managing cancer-related symptoms and improving cancer treatment outcomes. However,
more research is needed to fully grasp the implications of this relationship [89].

The value of other “omics” approaches versus metabolomics to identify ccRCC-specific
biomarkers is unclear. In a recent tissue-based metabolic flux profiling study comparing
normal renal tissue and adjacent tumors in 138 ccRCC patients, broad shifts in central
carbon metabolism, one-carbon metabolism, anti-oxidant response, and increases in glu-
tathione and cysteine/methionine metabolism pathways were observed in patients with
progressive and metastatic disease [90]. Interestingly, there was no correlation between
metabolic genes expression and corresponding metabolite levels in the tissue.
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The heterogeneity of molecular alterations within and between ccRCC patients sug-
gests that a panel of metabolites will be needed to account for the diversity of this disease.
Therefore, it is very likely our list of ccRCC-specific urinary VOCs could be further ex-
panded. Even though this study shows good discriminatory ability of urinary VOCs to
distinguish between ccRCC and healthy patients, it will be necessary to refine and validate
our panel of cancer-specific VOCs and in a larger patient population.

5. Conclusions

This investigation was designed to evaluate the clinical utility of the urinary VOCs
with statistical modeling for ccRCC diagnoses. The findings indicated that the VOC-based
ccRCC diagnostic model had favorable sensitivity and specificity, with AUCs of 0.98 and
0.94, and the high sensitivity (99% and 86%) and the specificity (97% and 92%) for the
training data set and testing data set, respectively. This investigation supports the ability of
urinary VOC-based diagnostic models for early and noninvasive screening ccRCC patients.

There are several limitations in this study. First, our hypothesis was based on the
premise that the success of sniffer dogs in discriminating between cancer and controls is
through their ability to detect VOCs emanating from urine samples. However, it is possible
that VOCs may only represent a subset of volatile compounds being detected. Nevertheless,
the ability to discern a difference between cancer and control samples even with our small
sample size supports using VOCs as potential cancer discovery biomarkers. Secondly, uri-
nary metabolite production can vary based on the time of the day urine was collected, age,
gender, race, diet, medications, underlying chronic diseases, level of physical activity, and
living environment. Therefore, standardization of urine collection and processing, as well
as controlling as many of the aforementioned variables as possible, may be crucial to any
urinary biomarker discovery study seeking to identify disease-specific biomarkers [91–95].
To test the flexibility and friendliness of clinical application, we did not control many of
these factors in this study except for the use of urine samples. Thirdly, our sample size
needs to be increased in order to capture the heterogeneity in ccRCC tumor biology. Data
from The Cancer Genome Atlas for RCC identified multiple mutations in patients with
ccRCC, including the VHL, PBRM1, SETD2, KDM5C, PTEN, BAP1, MTOR, and TP53 genes,
thereby emphasizing the anticipated metabolomic heterogeneity in ccRCC [90]. Fourthly, it
is unclear whether healthy controls represent the better comparative group to the ccRCC
cohort for urinary ccRCC-specific VOC biomarker discovery. Perhaps, comparing pre-
and post-treatment samples would provide more confidence in the ccRCC-specific urinary
VOCs discovered as each patient would act as their own control. That said, there may
be other factors beyond ccRCC extirpation that could account for differences in the VOC
profile of the pre- and post-operative patient. Fifthly, the low prevalence of RCC makes
developing a population-based screening program challenging. However, the ability of our
model to discriminate between ccRCC and healthy controls despite our small sample size
appears encouraging.

Overall, our study supports the clinical utility of a urinary VOC-based diagnostic
model as the biomarker for ccRCC and highlights the need to validate this urinary ccRCC-
specific signature in a larger cohort.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo14100546/s1, Table S1. Significant VOCs (p < 0.05) selected and
used in the pathway analysis. The Chemical Abstracts Service (CAS) numbers were used to indicate
each metabolite.

https://www.mdpi.com/article/10.3390/metabo14100546/s1
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Metabolites 2024, 14, 546 16 of 20

Author Contributions: Conceptualization, K.L.H. and W.-Y.L.; Methodology, K.L.H., E.N.L., Q.G.
and W.-Y.L.; Validation, K.L.H., E.N.L., S.B., G.E.Q. and X.S.; Formal Analysis, K.L.H., E.N.L., G.E.Q.
and X.S.; Investigation, K.L.H., E.N.L., G.E.Q., X.S. and W.-Y.L.; Resources, H.W., Q.G. and W.-Y.L.;
Data Curation, K.L.H., E.N.L., G.E.Q., Q.G. and R.Y.; Writing—Original Draft Preparation, K.L.H.
and Q.G.; Writing—Review and Editing, K.L.H., E.N.L., G.E.Q., A.A.C., A.H., S.B., Q.G., H.W.,
X.S. and W.-Y.L.; Visualization, K.L.H., G.E.Q., X.S. and W.-Y.L.; Supervision, W.-Y.L.; Projection
Administration, W.-Y.L.; Funding Acquisition K.L.H. and W.-Y.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the National Institutes of Health provided under Award
Numbers: 1T32GM144919, 5R25GM69621, SC1CA245675 and 2U54MD007592.

Institutional Review Board Statement: This study was reviewed and approved by the Institutional
Review Board (University of Texas at El Paso and Geisinger) under approval number 836503-9. All
research procedures involving human participants were conducted in accordance with the ethical
principles outlined by the IRB.

Informed Consent Statement: Informed consent was obtained from all patients involved in this study.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding/first authors. The data are not publicly available due to institutional policy regarding
data protection.

Acknowledgments: The authors acknowledge the contribution of the East Virginia Medical School
Biorepository in providing some of the patients’ urine samples used in this study. The research
reported in this publication was supported by the National Cancer Institute of the National Institutes
of Health (NCI-NIH) under award numbers SC1CA245675, U54MD007592, 5R25GM69621, and
1T32GM144919. The content is the sole responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

Conflicts of Interest: Qin Gao is an employee of Gilead Sciences Incorporated. The paper reflects the
views of the scientists, and not the company.

References
1. Panwoon, C.; Seubwai, W.; Thanee, M.; Sangkhamanon, S. Identification of Novel Biomarkers to Distinguish Clear Cell and

Non-Clear Cell Renal Cell Carcinoma Using Bioinformatics and Machine Learning. PLoS ONE 2024, 19, e0305252. [CrossRef]
[PubMed]

2. Deng, J.; Tu, S.; Li, L.; Li, G.; Zhang, Y. Diagnostic, Predictive and Prognostic Molecular Biomarkers in Clear Cell Renal Cell
Carcinoma: A Retrospective Study. Cancer Rep. 2024, 7, e2116. [CrossRef] [PubMed]

3. Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [CrossRef] [PubMed]
4. American Cancer Society. Cancer Facts & Figures 2023; American Cancer Society: Atlanta, GA, USA, 2023.
5. Diaz De Leon, A.; Pedrosa, I. Imaging and Screening of Kidney Cancer. Radiol. Clin. N. Am. 2017, 55, 1235–1250. [CrossRef]
6. Posada Calderon, L.P.; Eismann, L.; Reese, S.W.; Reznik, E.; Hakimi, A.A. Advances in Imaging-Based Biomarkers in Renal Cell

Carcinoma: A Critical Analysis of the Current Literature. Cancers 2023, 15, 354. [CrossRef]
7. Lopez-Beltran, A.; Henriques, V.; Cimadamore, A.; Santoni, M.; Cheng, L.; Gevaert, T.; Blanca, A.; Massari, F.; Scarpelli, M.;

Montironi, R. The Identification of Immunological Biomarkers in Kidney Cancers. Front. Oncol. 2018, 8, 456. [CrossRef]
8. Yong, C.; Stewart, G.D.; Frezza, C. Oncometabolites in Renal Cancer. Nat. Rev. Nephrol. 2020, 16, 156–172. [CrossRef]
9. Kaushik, A.K.; Tarangelo, A.; Boroughs, L.K.; Ragavan, M.; Zhang, Y.; Wu, C.-Y.; Li, X.; Ahumada, K.; Chiang, J.-C.; Tcheuyap,

V.T.; et al. In Vivo Characterization of Glutamine Metabolism Identifies Therapeutic Targets in Clear Cell Renal Cell Carcinoma.
Sci. Adv. 2022, 8, eabp8293. [CrossRef]

10. Yan, F.; Zhao, H.; Zeng, Y. Lipidomics: A Promising Cancer Biomarker. Clin. Transl. Med. 2018, 7, 21. [CrossRef]
11. Rodrigues, D.; Monteiro, M.; Jerónimo, C.; Henrique, R.; Belo, L.; Bastos, M.d.L.; Guedes de Pinho, P.; Carvalho, M. Renal Cell

Carcinoma: A Critical Analysis of Metabolomic Biomarkers Emerging from Current Model Systems. Transl. Res. 2017, 180, 1–11.
[CrossRef]

12. Abooshahab, R.; Hooshmand, K.; Razavi, S.A.; Gholami, M.; Sanoie, M.; Hedayati, M. Plasma Metabolic Profiling of Human
Thyroid Nodules by Gas Chromatography-Mass Spectrometry (GC-MS)-Based Untargeted Metabolomics. Front. Cell Dev. Biol.
2020, 8, 385. [CrossRef] [PubMed]

13. Ather, M.H.; Masood, N.; Siddiqui, T. Current Management of Advanced and Metastatic Renal Cell Carcinoma. Urol. J. 2010, 7,
1–9. [PubMed]

14. Claps, F.; Mir, M.C. Novel Expanding Renal Cell Carcinoma Biomarkers. Société Int. D’urologie J. 2021, 2, 32–42. [CrossRef]

https://doi.org/10.1371/journal.pone.0305252
https://www.ncbi.nlm.nih.gov/pubmed/38857246
https://doi.org/10.1002/cnr2.2116
https://www.ncbi.nlm.nih.gov/pubmed/38837683
https://doi.org/10.3322/caac.21820
https://www.ncbi.nlm.nih.gov/pubmed/38230766
https://doi.org/10.1016/j.rcl.2017.06.007
https://doi.org/10.3390/cancers15020354
https://doi.org/10.3389/fonc.2018.00456
https://doi.org/10.1038/s41581-019-0210-z
https://doi.org/10.1126/sciadv.abp8293
https://doi.org/10.1186/s40169-018-0199-0
https://doi.org/10.1016/j.trsl.2016.07.018
https://doi.org/10.3389/fcell.2020.00385
https://www.ncbi.nlm.nih.gov/pubmed/32612989
https://www.ncbi.nlm.nih.gov/pubmed/20209445
https://doi.org/10.48083/XLQZ8269


Metabolites 2024, 14, 546 17 of 20

15. Kennelley, G.E.; Amaye-Obu, T.; Foster, B.A.; Tang, L.; Paragh, G.; Huss, W.J. Mechanistic Review of Sulforaphane as a
Chemoprotective Agent in Bladder Cancer. Am. J. Clin. Exp. Urol. 2023, 11, 103–120.

16. Amaro, F.; Pinto, J.; Rocha, S.; Araújo, A.M.; Miranda-Gonçalves, V.; Jerónimo, C.; Henrique, R.; Bastos, M.D.L.; Carvalho, M.;
Guedes De Pinho, P. Volatilomics Reveals Potential Biomarkers for Identification of Renal Cell Carcinoma: An In Vitro Approach.
Metabolites 2020, 10, 174. [CrossRef]

17. Di Meo, N.A.; Lasorsa, F.; Rutigliano, M.; Loizzo, D.; Ferro, M.; Stella, A.; Bizzoca, C.; Vincenti, L.; Pandolfo, S.D.; Autorino, R.;
et al. Renal Cell Carcinoma as a Metabolic Disease: An Update on Main Pathways, Potential Biomarkers, and Therapeutic Targets.
Int. J. Mol. Sci. 2022, 23, 14360. [CrossRef]

18. Bax, C.; Taverna, G.; Eusebio, L.; Sironi, S.; Grizzi, F.; Guazzoni, G.; Capelli, L. Innovative Diagnostic Methods for Early Prostate
Cancer Detection through Urine Analysis: A Review. Cancers 2018, 10, 123. [CrossRef]

19. Feil, C.; Staib, F.; Berger, M.R.; Stein, T.; Schmidtmann, I.; Forster, A.; Schimanski, C.C. Sniffer Dogs Can Identify Lung Cancer
Patients from Breath and Urine Samples. BMC Cancer 2021, 21, 917. [CrossRef]

20. Fischer-Tenhagen, C.; Johnen, D.; Nehls, I.; Becker, R. A Proof of Concept: Are Detection Dogs a Useful Tool to Verify Potential
Biomarkers for Lung Cancer? Front. Vet. Sci. 2018, 5, 52. [CrossRef]

21. Cornu, J.-N.; Cancel-Tassin, G.; Ondet, V.; Girardet, C.; Cussenot, O. Olfactory Detection of Prostate Cancer by Dogs Sniffing
Urine: A Step Forward in Early Diagnosis. Eur. Urol. 2011, 59, 197–201. [CrossRef]

22. Boedeker, E.; Friedel, G.; Walles, T. Sniffer Dogs as Part of a Bimodal Bionic Research Approach to Develop a Lung Cancer
Screening. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 511–515. [CrossRef] [PubMed]

23. Willis, C.M.; Britton, L.E.; Harris, R.; Wallace, J.; Guest, C.M. Volatile Organic Compounds as Biomarkers of Bladder Cancer:
Sensitivity and Specificity Using Trained Sniffer Dogs. Cancer Biomark. 2011, 8, 145–153. [CrossRef] [PubMed]

24. Amann, A.; Costello Bde, L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The Human Volatilome:
Volatile Organic Compounds (VOCs) in Exhaled Breath, Skin Emanations, Urine, Feces and Saliva. J. Breath Res. 2014, 8, 034001.
[CrossRef] [PubMed]

25. Amann, A.; Smith, D. Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine; Elsevier: Boston, MA, USA, 2013;
ISBN 0-444-62620-4.

26. Costantini, M.; Filianoti, A.; Anceschi, U.; Bove, A.M.; Brassetti, A.; Ferriero, M.; Mastroianni, R.; Misuraca, L.; Tuderti, G.;
Ciliberto, G.; et al. Human Urinary Volatilome Analysis in Renal Cancer by Electronic Nose. Biosensors 2023, 13, 427. [CrossRef]

27. Monteiro, M.; Moreira, N.; Pinto, J.; Pires-Luis, A.S.; Henrique, R.; Jeronimo, C.; Bastos, M.L.; Gil, A.M.; Carvalho, M.; Guedes de
Pinho, P. GC-MS Metabolomics-Based Approach for the Identification of a Potential VOC-Biomarker Panel in the Urine of Renal
Cell Carcinoma Patients. J. Cell. Mol. Med. 2017, 21, 2092–2105. [CrossRef]

28. Linehan, W.M.; Schmidt, L.S.; Crooks, D.R.; Wei, D.; Srinivasan, R.; Lang, M.; Ricketts, C.J. The Metabolic Basis of Kidney Cancer.
Cancer Discov. 2019, 9, 1006–1021. [CrossRef]

29. Janfaza, S.; Khorsand, B.; Nikkhah, M.; Zahiri, J. Digging Deeper into Volatile Organic Compounds Associated with Cancer. Biol.
Methods Protoc. 2019, 4, bpz014. [CrossRef]

30. Vuong, L.; Kotecha, R.R.; Voss, M.H.; Hakimi, A.A. Tumor Microenvironment Dynamics in Clear-Cell Renal Cell Carcinoma.
Cancer Discov. 2019, 9, 1349–1357. [CrossRef]

31. Weiss, R.H. Metabolomics and Metabolic Reprogramming in Kidney Cancer. Semin. Nephrol. 2018, 38, 175–182. [CrossRef]
32. Ganti, S.; Weiss, R.H. Urine Metabolomics for Kidney Cancer Detection and Biomarker Discovery. Urol. Oncol. Semin. Orig.

Investig. 2011, 29, 551–557. [CrossRef]
33. Atrih, A.; Mudaliar, M.A.V.; Zakikhani, P.; Lamont, D.J.; Huang, J.T.-J.; Bray, S.E.; Barton, G.; Fleming, S.; Nabi, G. Quantitative

Proteomics in Resected Renal Cancer Tissue for Biomarker Discovery and Profiling. Br. J. Cancer 2014, 110, 1622–1633. [CrossRef]
[PubMed]

34. McClain, K.M.; Sampson, J.N.; Petrick, J.L.; Mazzilli, K.M.; Gerszten, R.E.; Clish, C.B.; Purdue, M.P.; Lipworth, L.; Moore, S.C.
Metabolomic Analysis of Renal Cell Carcinoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Metabolites
2022, 12, 1189. [CrossRef] [PubMed]

35. Arendowski, A.; Ossolinski, K.; Niziol, J.; Ruman, T. Screening of Urinary Renal Cancer Metabolic Biomarkers with Gold
Nanoparticles-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Sci. 2020, 36, 1521–1525. [CrossRef] [PubMed]

36. Falegan, O.; Ball, M.; Shaykhutdinov, R.; Pieroraio, P.; Farshidfar, F.; Vogel, H.; Allaf, M.; Hyndman, M. Urine and Serum
Metabolomics Analyses May Distinguish between Stages of Renal Cell Carcinoma. Metabolites 2017, 7, 6. [CrossRef]
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