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Constraint-based modelling and genome-scale metabolic models (GEMs) have been
used extensively to analyze omics data, providing a mechanistic perspective on complex
metabolic systems and networks [1]. Since they were first introduced in 1999, the number
and complexity of GEMs have steadily increased [2]. This would not have been possible
without close collaboration between experimentalists, who provided new techniques for
the acquisition of high-throughput data, and a community of in silico researchers, who
provided computational methods and algorithms that have also been incorporated into
different computational toolboxes, such as COBRA [3], COBRApy [4], and RAVEN [5].
These toolboxes provide tools and algorithms not only for reconstructing models (e.g., using
KEGG data [6]) but also for simulating, analysing, and adapting GEMs context-specifically
using experimental high-throughput data [7].

This Special Issue of Metabolites is dedicated to original scientific and review papers
that detail recent advances in the reconstruction, reproducibility, validation, and analysis
of context-specific GEMs. The contributions included focus both on how GEMs have been
applied within systems and personalised medicine and the methodological advances that
have occurred in analysing metabolic pathways.

Understanding the effects of cold storage on human platelets is essential for their use
in medicine and thus the main focus of contribution 1. Jóhannsson et al. applied constraint-
based modelling of metabolomic data to investigate how the temperature and duration
of their storage affect the metabolic state of human platelets (contribution 1), showing
that their metabolic state changes with time and temperature but that this dependence is
complex and does not follow an Arrhenius-type relationship. A cell-scale model of the
platelets revealed that oxidative metabolism is more sensitive to lower temperatures than
glycolysis, with glycolysis contributing a higher percentage of ATP at cold temperatures
than at body temperature.

Meanwhile, Mattei et al. focused on automatically identifying metabolic pathways
related to the production and consumption of specific metabolites (contribution 2). These
authors introduced the MetPath algorithm, a valuable tool for performing metabolic-
network-based statistical analyses of high-throughput data. MetPath is able to identify
metabolic pathways specific to condition-related metabolite production and consumption.
Equally, the tool proposed can be used to perform differential analyses of gene expression
data based on these pathways under various conditions.

Srivastava and Vinod report applying GEMs to studying the metabolic reprogramming
of cancer cells and identifying their metabolic subtypes in contribution 3, applying the
Human Metabolic Reaction (HMR) database 2.0 in combination with transcriptomics data
on endometrial cancer cells retrieved from TCGA. Using non-negative matrix factorisation-
based clustering of the top 1000 genes based on the median absolute deviation score, they
identified two metabolic subtypes of endometrial cancer tumours with different patient
survival outcomes and showed that these two metabolic subtypes were correlated with
histological and clinical features and genomic alterations.
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In contribution 4, Sen and Orešič describe various applications of GEMs to advancing
precision medicine, especially in combination with popular machine learning approaches.
They address context-specific genome-scale metabolic reconstructions using multi-omics
data; modelling the interactions between gut microbial communities and host metabolism;
and the use of machine learning for genome-scale metabolic modelling. In addition,
they discuss the challenges in and future perspectives on improving the reliability and
reproducibility of GEM-based predictions in precision medicine.

Several algorithms for extracting context-specific genome-scale metabolic models
(GEMs) using various types of high-throughput omics data have been proposed in the
past. However, each algorithm has its own advantages and disadvantages. The selection of
the best algorithm usually depends on criteria such as the type of data, the domain of the
data, and the specific research questions. Moškon and Režen provide a thorough review of
these algorithms, referred to as model extraction methods, and discuss their application to
identifying the metabolic signatures of COVID-19 (contribution 5).

Despite rapid advancements in systems biology and systems medicine in recent years,
we are still a long way from fully understanding the dynamics of human cells. However,
the approaches described in this Special Issue are a significant step towards this goal.
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