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Abstract: Human breastmilk is an invaluable nutritional and pharmacological resource with a
highly diverse metabolite profile, which can directly affect the metabolism of infants. Application of
metabolomics can discriminate the complex relationship between such nutrients and infant health.
As the most common biological fluid in metabolomic study, infant urinary metabolomics may
provide the physiological impacts of different nutritional resources, namely human breastmilk and
formulated milk. In this study, we aimed to identify possible differences in the urine metabolome
of 30 infants (1–14 days after birth) fed with breast milk (n = 15) or formulated milk (n = 15). From
metabolomic analysis with gas chromatography-mass spectrometry, 163 metabolites from single
mass spectrometry (GC-MS), and 383 metabolites from tandem mass spectrometry (GC-MS/MS)
were confirmed in urinary samples. Various multivariate statistical analysis were performed to
discriminate the differences originating from physiological/nutritional variables, including human
breastmilk/formulate milk feeding, sex, and duration of feeding. Both unsupervised and supervised
discriminant analyses indicated that feeding resources (human breastmilk/formulated milk) gave
marginal but significant differences in urinary metabolomes, while other factors (sex, duration of
feeding) did not show notable discrimination between groups. According to the biomarker analyses,
several organic acid and amino acids showed statistically significant differences between different
feeding resources, such as 2-hydroxyhippurate.

Keywords: human milk; formula milk; urine; metabolomics; hydroxyhuppiric acid

1. Introduction

Breastfeeding is integral to the healthy growth of newborns, delivering complex bioac-
tive components like glycerolipids, antibodies, and antioxidants [1–3]. However, challenges
arise when mothers face chronic diseases or produce insufficient breast milk, necessitating
the use of formula milk [4,5]. In this context, it becomes crucial for formula milk not only
to meet nutritional needs but also to mirror the bioactive compounds found in breast milk.
Ongoing research is dedicated to enhancing the nutritional composition of infant formula,
aiming to replicate the numerous health benefits associated with breastfeeding [6,7]. These
studies focus on optimizing formula content for optimal growth and development, striving
to provide formula-fed infants with comparable health outcomes, including a bolstered
immune system and enhanced cognitive development.

Analyzing human urine can provide valuable insights into an individual’s health
status, as it contains a wealth of biochemical information, including metabolites, proteins,
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and other biomarkers [8]. This non-invasive and cost-effective method of health assess-
ment offers the advantage of early disease detection, monitoring chronic conditions, and
assessing the impacts of dietary and lifestyle choices on overall well-being [9]. Research
into urine analysis as a diagnostic tool continues to advance, opening new possibilities
for personalized medicine and proactive healthcare interventions [10]. Metabolomics, a
branch of science that focuses on the comprehensive analysis of metabolites in biological
samples, is a powerful method used in urine analysis to unravel the complex metabolic
processes occurring in the human body. By employing metabolomics, researchers can
uncover patterns and alterations in metabolite profiles that may serve as early indicators of
various health conditions, enabling a deeper understanding of an individual’s physiological
state through the analysis of their urine [11–13].

In this paper, urine metabolomics analysis was employed to investigate the differences
between breastfed and formula-fed infants by analyzing their urinary metabolites. The
possible impact of breastfeeding was analyzed via urinary metabolism analysis. This study
could provide fundamental data to understand the urinary metabolome in neonates related
to feeding type.

Additionally, targeted metabolomics was utilized to confirm distinct metabolic pat-
terns between the two groups, including breastmilk/formulate milk feeding, sex, and the
duration of feeding. To investigate key biomarkers between the human-milk-fed group
(HM) and formulated-milk-fed group (FM), supervised statistical analysis and pathway
studies were conducted.

2. Materials and Methods
2.1. Sample Collection

Urine samples were obtained from neonates, with consent from willing mothers at
Soonchunhyang University. This study compared 15 formula-fed and 15 breastfed infants,
analyzing urine samples collected from day 1 up to 17 days post-birth. Gender, twin
status, and birth timing were distributed similarly in each experimental group to ensure
homogeneity. Maternal participants and infants involved in the experiment underwent
BMI measurements and blood tests to confirm the absence of specific diseases, and only
healthy mothers and infants participated in this study. All the mothers who donated urine
for this study did so voluntarily and with consent, and this study was approved by the
Research Ethics Committee (Institutional Review Board of Soonchunhyang University
Hospital, protocol code SCHCA 2020-08-034, 1 September 2020). Detailed information
about urine samples and each neonate’s health are described in Table S1.

2.2. Sample Extraction for Instrumental Analysis

Urine samples of 100 µL were taken and reacted with a urase solution of 10 µL
(100 units/10 µL) at 37 ◦C for 60 min. We added 890 µL of extraction solvent (methanol/
formic acid = 99.875:0.125, v/v) and vortexed it for 5 min. To precipitate extra protein, we
centrifuged the sample at 16,100× g for 10 min at 4 ◦C. We took 400 µL of supernatant and
dried it in a vacuum concentrator.

Before instrumental analysis, all samples were derivatized with methoxyamine and
sylation. In brief, the dried residue was then treated with 50 µL of a methoxyamine reagent
(20 mg/mL methoxyamine hydrochloride in pyridine) at 37 ◦C for 90 min, followed by
the addition of 50 µL of N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) reagent
(MSTFA + 1% TMCS) and a subsequent reaction at 37 ◦C for 30 min.

2.3. Instrumental Analysis

Untargeted metabolomics employed a GCMS-QP2010SE system (Kyoto, Japan)
equipped with a fused silica Rxi-5 ms column (30 m, 0.5 µm film thickness, 0.25 mm
ID; Restek Corporation, Bellefonte, PA, USA). Helium was utilized as the carrier gas at
a liner flow of 36.7 cm/min (5.8 mL/min total flow). The injector and MS ion source
were maintained at 260 ◦C, while the MS interface was configured to 280 ◦C. The column
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oven temperature was initially at 150 ◦C for 1 min, and then it was increased linearly by
25 ◦C/min until reaching 300 ◦C, where it was held for 30 min. Samples and standards
(1 µL) were introduced at a 1:2 split ratio.

For targeted metabolomics, analysis was conducted using a Shimadzu GC-MS-TQ8040
(Kyoto, Japan) instrument utilizing multiple reaction monitoring (MRM) ions, encompass-
ing a total of 395 metabolites. A 1.0 µL sample aliquot was injected into a BPX-5 column
(30 m × 0.25 mm i.d.; 0.25 µm film thickness) in split (40:1) mode. Optimal GC-MS/MS
parameters were configured, including an injector temperature of 250 ◦C and ion source
and transfer line temperatures of 200 ◦C and 280 ◦C, respectively. The initial oven temper-
ature was set at 60 ◦C (2 min), followed by a rise to 320 ◦C (10 ◦C/min) and a 15-minute
stabilization. Helium was employed as the carrier gas at a flow rate of 1 mL/min, and
argon was used as the collision gas. The electron ionization energy was adjusted to 70 eV.

2.4. Statistical Analysis

MetaboAnalyst 5.0, an online platform for metabolomic analysis, was utilized for
conducting multivariate data analyses. Unsupervised principal component analysis (PCA)
was performed to evaluate clustering separation patterns among different test groups,
while supervised partial least squares-discriminant analysis (PLS-DA) was employed to
differentiate between treatment groups. Metabolites with VIP scores > 1 and standard
errors < 1 were identified through the PLS-DA’s variable importance in the projection
(VIP) scores. Biomarker metabolites significantly affected by exposure to azole pesticides
in the high-concentration group compared to the control group were determined via
one-way ANOVA, with p < 0.05 set as the significance threshold. A heatmap depicting
relative areas of chosen biomarker metabolites, based on VIP, ANOVA, and fold changes,
was generated using MetaboAnalyst 5.0 (www.metaboanalyst.ca, accessed on 7 February
2023). Metabolic pathway analysis plots were also created using MetaboAnalyst 5.0, and
the metabolic pathways were identified through the Kyoto Encyclopedia of Genes and
Genomes (KEGG) library.

3. Results
3.1. Untargeted Metabolomics Using GC-MS

Untargeted metabolomics is a methodology used to comprehensively analyze all
metabolites present in a sample without prior target selection [14]. Using this approach,
specific metabolites are not predefined, allowing for the discovery of novel metabolites and
unique patterns of metabolites that may not naturally occur in the human body or exhibit
distinct tendencies in the sample being studied [15].

For the present study, 6 samples from the formulated group and 11 samples from
the breast milk group were selected for untargeted metabolomics analysis out of a total
of 61 urine samples. Gas chromatography-mass spectrometry (GC-MS) was employed
in full scan mode to perform the analysis. The GC-MS analysis identified a maximum of
197 peaks, representing various metabolites such as amino acids, sugars, and fatty acids.

The chromatograms of the human-milk-fed group and formula-milk-fed group ex-
hibited distinct difference patterns. For example, increases in some metabolites such
as ascorbate, threonine, and phenylacetate were found in the human-milk-fed group
(Figure 1).

www.metaboanalyst.ca
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Figure 1. Representative chromatogram from GC-MS (pink: human-milk-fed group, black: formula-
milk-fed group).  

To further explore the metabolomic profile, a total of 163 peaks were chosen for sta-
tistical analysis (Table S2). This selection excluded metabolite peaks that posed challenges 
in quantification or qualitative identification. To conduct statistical analysis, MS total use-
ful signal (MSTUS) approaches were employed for the normalization of urine concentra-
tion. This deliberate exclusion of xenobiotics and artifacts ensures a reliable measure of 
urine concentration [15]. 

In the statistical analysis, the t-test analysis did not identify metabolites that exhibited 
statistically significant differences. This observation suggested that due to substantial in-
ter-individual variations and influences from genetic and environmental factors, it is chal-
lenging to establish statistical significance in urine samples. 

Given the complexity of metabolomics, multivariate statistical analysis methods such 
as principal component analysis (PCA) and partial least squares discriminant analysis 
(PLS-DA) are commonly employed [16,17]. In this study, PCA and PLS-DA were utilized 
to investigate the differences in metabolite paĴerns between the breast milk and formula 
milk groups. 

While the PCA plot did not display a clear separation between the two groups, there 
was a tendency of partial separation along PC1 and PC2, accounting for 30.2% and 10.9% 
of the variance, respectively (Figure 2a,b). 
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Figure 1. Representative chromatogram from GC-MS (pink: human-milk-fed group, black: formula-
milk-fed group).

To further explore the metabolomic profile, a total of 163 peaks were chosen for statis-
tical analysis (Table S2). This selection excluded metabolite peaks that posed challenges in
quantification or qualitative identification. To conduct statistical analysis, MS total useful
signal (MSTUS) approaches were employed for the normalization of urine concentration.
This deliberate exclusion of xenobiotics and artifacts ensures a reliable measure of urine
concentration [15].

In the statistical analysis, the t-test analysis did not identify metabolites that exhibited
statistically significant differences. This observation suggested that due to substantial
inter-individual variations and influences from genetic and environmental factors, it is
challenging to establish statistical significance in urine samples.

Given the complexity of metabolomics, multivariate statistical analysis methods such
as principal component analysis (PCA) and partial least squares discriminant analysis
(PLS-DA) are commonly employed [16,17]. In this study, PCA and PLS-DA were utilized
to investigate the differences in metabolite patterns between the breast milk and formula
milk groups.

While the PCA plot did not display a clear separation between the two groups, there
was a tendency of partial separation along PC1 and PC2, accounting for 30.2% and 10.9%
of the variance, respectively (Figure 2a,b).

Metabolites 2024, 14, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 1. Representative chromatogram from GC-MS (pink: human-milk-fed group, black: formula-
milk-fed group).  

To further explore the metabolomic profile, a total of 163 peaks were chosen for sta-
tistical analysis (Table S2). This selection excluded metabolite peaks that posed challenges 
in quantification or qualitative identification. To conduct statistical analysis, MS total use-
ful signal (MSTUS) approaches were employed for the normalization of urine concentra-
tion. This deliberate exclusion of xenobiotics and artifacts ensures a reliable measure of 
urine concentration [15]. 

In the statistical analysis, the t-test analysis did not identify metabolites that exhibited 
statistically significant differences. This observation suggested that due to substantial in-
ter-individual variations and influences from genetic and environmental factors, it is chal-
lenging to establish statistical significance in urine samples. 

Given the complexity of metabolomics, multivariate statistical analysis methods such 
as principal component analysis (PCA) and partial least squares discriminant analysis 
(PLS-DA) are commonly employed [16,17]. In this study, PCA and PLS-DA were utilized 
to investigate the differences in metabolite paĴerns between the breast milk and formula 
milk groups. 

While the PCA plot did not display a clear separation between the two groups, there 
was a tendency of partial separation along PC1 and PC2, accounting for 30.2% and 10.9% 
of the variance, respectively (Figure 2a,b). 

 
(a) (b) (c) 

Figure 2. Multivariate statistical analysis of untargeted metabolomics: (a) PCA score plot (2D); (b) 
PCA score plot (3D); (c) PLS-DA plot. 

Figure 2. Multivariate statistical analysis of untargeted metabolomics: (a) PCA score plot (2D);
(b) PCA score plot (3D); (c) PLS-DA plot.



Metabolites 2024, 14, 128 5 of 10

Interestingly, the PLS-DA plot demonstrated a distinct separation between the two
groups. PC1 and PC2 explained 26.7% and 12.3% of the variance, respectively, revealing a
statistically significant differentiation in urine metabolites between the breast milk and for-
mula milk groups. Among the 163 identified peaks, 60 peaks had VIP (Variable Importance
in Projection) values exceeding 1, indicating their substantial contribution to the observed
separation (Figure 2c).

However, because the specific identification of these individual metabolites was not
achieved, potential biomarkers could not be selected via untargeted metabolomics. Conse-
quently, targeted metabolomics was conducted for a more detailed analysis and exploration
of potential biomarkers.

3.2. Targeted Metabolomics and Pathway Analysis

Targeted metabolomics is a quantitative analytical approach that aims to measure and
quantify a predefined set of metabolites within a biological sample, providing insights into
specific metabolic pathways and molecular interactions [18,19]. The utilization of targeted
metabolomics in human urine analysis offers the advantage of the precise and focused
quantification of predetermined metabolites, enabling a comprehensive understanding of
specific biochemical pathways and potential biomarkers [20].

In this study, targeted metabolomics was conducted using GC-MS/MS in MRM mode
to simultaneously analyze a total of 395 metabolites. A total of 383 metabolites were
identified in urine samples and utilized for multivariate statistical analysis (Table S3).

Fold-change analysis was conducted to investigate overall trends in metabolites. Con-
trary to the results of untargeted metabolomics, it was observed that the majority of
metabolites (225 metabolites) decreased in the breast milk feeding group, while 27 metabo-
lites increased. In this study, we observed distinct patterns differentiating the breast milk
and formula groups through untargeted metabolomics analysis. To identify the metabolites
that significantly contributed to this differentiation, we employed targeted metabolomics
to pinpoint biomarkers. The results of targeted metabolomics were then emphasized in
a statistical analysis using orthogonal partial least square discriminant analysis (OPLS-
DA) plots (Figure 3d), which clearly demonstrated a pronounced separation between the
two groups.
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In summary, untargeted metabolomics is useful for quickly comparing patterns and
identifying differences between two groups without specific peak identification. Once
differences are established, targeted metabolomics can be utilized to identify biomarkers
that influence the separation between the groups.

The detailed investigations were obtained via multivariate analysis. The PCA analysis
created a model explaining 26% and 7% of the variance by PC1 and PC2, respectively,
though a clear separation between the breast milk and formula milk groups was not
observed (Figure 3a,b).

For PLS-DA analysis, a model explaining 25.7% and 3.3% of the variance by PC1 and
PC2, respectively, was established, confirming the separation between the breast milk and
formula milk groups. The outcomes of OPLS-DA demonstrated a more distinct separation
between the two groups, with a Q2 value of 0.38, indicating a reasonably reliable model.
This separation implied variations in urinary metabolites between the breast milk and
formula feeding groups, suggesting that the type of feeding may influence the metabolism
of neonates (Figure 3c,d).

Through the multivariate analyses, important biomarkers were selected, with
167 metabolites with VIP values over one identified as biomarkers. These biomarkers
included organic acids, sugars, and amino acids, indicating their importance in distinguish-
ing significant differences between neonates in the breast milk and formula milk groups.

The heatmap of 25 high VIP metabolites in Figure 2 reveals that limited numbers of
metabolites such as 2-hydroxyhippuric acid and 2-phosphoglyceric acid were increased in
the breastfeeding group, while the levels of 21 other metabolites were down-regulated in the
same group. In particular, the t-test showed that 2-hydorxyhippuric acid was significantly
increased in the human-milk-fed group (Figure 4).
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Utilizing these biomarkers, pathway analysis revealed that alanine, aspartate, and
glutathione metabolism, as well as glyoxylate and dicarboxylate metabolism, prominently
influenced metabolic processes (Figure 5).
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4. Discussion

In this study, untargeted metabolomics was employed to reveal comprehensive in-
sights into the urine metabolome, paving the way for potential biomarker discovery, or gain
a deeper understanding of metabolic alterations related to specific conditions or diseases.
The chromatographic trends and patterns between the breastfed and formula-fed groups
exhibited marked differences. These findings suggest distinctions in urine metabolism
between infants receiving breast milk and those receiving formula.

Biomarker research was conducted using untargeted metabolomics approaches. In
particular, 2-hydroxyhippuric acid was significantly increased in the human-milk-fed group.
Hydroxyhippuric acid is a derivative of hippuric acid, which is a highly abundant urinary
metabolite associated with the metabolic end product of most polyphenols [21,22]. Urinary
hippuric acid and hydroxyhippuric acid are promising candidate biomarkers for liver
function, autism spectrum disorder diagnosis, and aromatic compound exposure [23–25].
Notably, previous studies have demonstrated a direct positive correlation between urinary
hippuric acid and the consumption of flavonoids, particularly in fruits and fruit-derived
beverages [26,27]. Breast milk contains various polyphenols, including flavonoids, and the
polyphenol content varies depending on the mother’s diet [28]. In this study, the observed
elevation of hydroxyhippuric acid, a polyphenol metabolite, in the urine of infants in
the breastfed group implied a potential higher intake of polyphenols from human milk
compared to formula-fed infants.

In pathway analysis, amino acid metabolisms were selected as impacted pathways such
as alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism,
and phenylalanine metabolism. The amino acids related with these pathways such as serine,
glycine and alanine showed decreasing trends in the human-milk-fed group compared to
formula-milk-fed group. The secreted amino acid in urine was related to the efficiency of
absorbed dietary protein [29]. The efficiency of protein absorption is typically assessed
via complex calculations involving protein intake and nitrogen metabolites [29]. However,
assuming equal breast milk and formula intake in infants, the observed decrease in amino
acid levels in the urine suggests higher protein absorption efficiency in the breastfed
group. For more precise validation, future research could leverage protein composition and
intake analysis data from breast milk and formula, providing valuable insights for further
investigation.

This study had limitations in its sample size, as specimens from only 30 newborns
were utilized, making the generalization of the results challenging. Despite this limitation,
statistically significant differences were observed in the urinary metabolites of infants
who were breastfed compared to those who were formula-fed, with several biomarkers,
including hippuric acid, identified as contributors to these differences. This study suggests
the potential for future research to evaluate the nutritional intake of newborns through
easily collectible urine samples.

5. Conclusions

In this study, targeted and untargeted metabolomics was used to analyze urine samples
from breastfed and formula-fed infants. Multivariate statistical analysis methods, including
PCA and PLS-DA, confirmed some differentiation between the two groups, with PLS-DA
demonstrating a more distinct separation.

To identify potential biomarkers, targeted metabolomics was conducted, analyzing
395 metabolites. Through multivariate analyses, 167 biomarkers were selected, including
organic acids, sugars, and amino acids, which played a crucial role in distinguishing
between the two feeding groups. Pathway analysis revealed the significant influence
of metabolic processes such as amino acid metabolism. Among these biomarkers, 2-
hydroxyhippuric acid was significantly increased, indicating potential polyphenol intake
from human milk. Significant differences were also observed between the concentrations
of urinary amino acids, suggesting that further research could yield a more profound
interpretation of these findings.
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These findings highlight the intricate metabolic differences between breastfed and
formula-fed infants and the potential impact of feeding type on neonatal metabolism,
emphasizing the importance of using targeted metabolomics in biomarker discovery and
pathway analysis.

The findings from this study suggest that urine metabolomics can be instrumental
in assessing differences and qualities in the dietary intake. Urine, being easily collectible
and non-invasive compared to other invasive samples such as blood and lymph fluid,
offers advantages, making urine metabolite research applicable in various fields. Obtaining
samples from a sufficient number of participants in future studies would likely yield more
robust data, enhancing the potential for research advancement.

Supplementary Materials: The following supporting information can be downloaded via this link:
https://www.mdpi.com/article/10.3390/metabo14020128/s1, Table S1: Information about urine
sample; Table S2: Retention time of peaks from untargeted metabolomics; Table S3: Metabolites from
targeted metabolomics.
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