Balancing Risks and Benefits: Sodium-Glucose Cotransporter 2 Inhibitors and the Risk of Diabetic Ketoacidosis
Abstract
:1. Introduction
2. Case Presentations
2.1. Case 1
2.2. Case 2
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.C.; Hsu, S.P.; Chiu, Y.L.; Yang, J.Y.; Pai, M.F.; Ko, M.J.; Tu, Y.K.; Hung, K.Y.; Chien, K.L.; Peng, Y.S.; et al. Cardiovascular and Renal Efficacy and Safety of Sodium-Glucose Cotransporter-2 Inhibitors in Patients without Diabetes: A Systematic Review and Meta-Analysis of Randomised Placebo-Controlled Trials. BMJ Open 2022, 12, e060655. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.I.G.; Devries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; et al. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2021, 44, 2589–2625. [Google Scholar] [CrossRef] [PubMed]
- Kitabchi, A.E.; Umpierrez, G.E.; Miles, J.M.; Fisher, J.N. Hyperglycemic Crises in Adult Patients with Diabetes. Diabetes Care 2009, 32, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Colacci, M.; Fralick, J.; Odutayo, A.; Fralick, M. Sodium-Glucose Cotransporter-2 Inhibitors and Risk of Diabetic Ketoacidosis Among Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Can. J. Diabetes 2022, 46, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.M.; Berard, L.D.; Cheng, A.Y.Y.; Gilbert, J.D.; Verma, S.; Woo, V.C.; Yale, J.F. SGLT2 Inhibitor–Associated Diabetic Ketoacidosis: Clinical Review and Recommendations for Prevention and Diagnosis. Clin. Ther. 2016, 38, 2654–2664. [Google Scholar] [CrossRef] [PubMed]
- Fralick, M.; Schneeweiss, S.; Patorno, E. Risk of Diabetic Ketoacidosis after Initiation of an SGLT2 Inhibitor. N. Engl. J. Med. 2017, 376, 2300–2302. [Google Scholar] [CrossRef] [PubMed]
- Hampp, C.; Swain, R.S.; Horgan, C.; Dee, E.; Qiang, Y.; Dutcher, S.K.; Petrone, A.; Tilney, R.C.; Maro, J.C.; Panozzo, C.A. Use of Sodium-Glucose Cotransporter 2 Inhibitors in Patients with Type 1 Diabetes and Rates of Diabetic Ketoacidosis. Diabetes Care 2020, 43, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.I.; Blau, J.E.; Rother, K.I.; Beitelshees, A.L. SGLT2 Inhibitors as Adjunctive Therapy for Type 1 Diabetes: Balancing Benefits and Risks. Lancet Diabetes Endocrinol. 2019, 7, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2 Inhibitors for Primary and Secondary Prevention of Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yu, M.; Mei, M.; Chen, C.; Lv, Y.; Xiang, L.; Li, R. The Association between GLP-1 Receptor Agonist and Diabetic Ketoacidosis in the FDA Adverse Event Reporting System. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Cui, W.; Li, D.; Wang, T.; Zhang, J.; Zhai, S.; Song, Y. Sodium-Glucose Co-Transporter 2 Inhibitors in Addition to Insulin Therapy for Management of Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Diabetes Obes. Metab. 2017, 19, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.K.; Peters, A.L.; Buse, J.B.; Danne, T. Strategy for Mitigating DKA Risk in Patients with Type 1 Diabetes on Adjunctive Treatment with SGLT Inhibitors: A STICH Protocol. Diabetes Technol. Ther. 2018, 20, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Danne, T.; Garg, S.; Peters, A.L.; Buse, J.B.; Mathieu, C.; Pettus, J.H.; Alexander, C.M.; Battelino, T.; Ampudia-Blasco, F.J.; Bode, B.W.; et al. International Consensus on Risk Management of Diabetic Ketoacidosis in Patients with Type 1 Diabetes Treated with Sodium-Glucose Cotransporter (SGLT) Inhibitors. Diabetes Care 2019, 42, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Anson, M.; Zhao, S.S.; Austin, P.; Ibarburu, G.H.; Malik, R.A.; Alam, U. SGLT2i and GLP-1 RA Therapy in Type 1 Diabetes and Reno-Vascular Outcomes: A Real-World Study. Diabetologia 2023, 66, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Leuven, U.; Gillard, B.P.; Mathieu, C.; Groop, P.-H.; Dandona, P.; Phillip, M.; Gillard, P.; Edelman, S.; Jendle, J.; Xu, J.; et al. Effect of Dapagliflozin as an Adjunct to Insulin over 52 Weeks in Individuals with Type 1 Diabetes: Post-Hoc Renal Analysis of the DEPICT Randomised Controlled Trials. Lancet Diabetes Endocrinol. 2020, 8, 845–854. [Google Scholar]
- Zwart, K.; Velthuis, S.; Polyukhovych, Y.V.; Mosterd, A.; Smidt, L.; Serné, E.H.; van Raalte, D.H.; Elders, P.J.M.; Handoko, M.L.; Oldenburg-Ligtenberg, P.C. Sodium-Glucose Cotransporter 2 Inhibitors: A Practical Guide for the Dutch Cardiologist Based on Real-World Experience. Neth. Heart J. 2021, 29, 490–499. [Google Scholar] [CrossRef] [PubMed]
Case 1 | Case 2 | Reference Value | |
---|---|---|---|
pH | 6.67 | 7.28 | 7.35–7.45 |
Bicarbonate (mmol/L) | 4 | 14 | 24–28 |
Sodium (mmol/L) | 138 | 142 | 135–145 |
Chloride (mmol/L) | 107 | 96 | 97–107 |
Potassium (mmol/L) | 8.2 | 4.3 | 3.5–5.0 |
Creatinine (umol/L) | 160 | 73 | 45–80 |
Albumin (g/L) | 41 | 43 | 35–50 |
Anion gap | 27 | 32 | 8–12 |
Lactic acid (mmol/L) | 1.3 | 2.2 | <2.2 |
Glucose (mmol/L) | 35 | 13.7 | <7.8 |
Acetone (mg/L) | n.d. | 739 | 1–20 * |
Urinary ketones | 3+ | 3+ | Negative |
Type 1 Diabetes [9] | Type 2 Diabetes [10] | No Diabetes [2] | |
---|---|---|---|
Major risk | |||
Diabetic ketoacidosis | 5.8 | 2.2 | n.a. |
Absolute DKA risk (events/1000 p.y.) | 40 | 0.8 | 0 |
Major benefits | |||
All-cause mortality | i.d. | 0.85 | 0.88 * |
Cardiovascular death | i.d. | 0.84 | 0.85 |
Hospital admissions for heart failure | i.d. | 0.69 | 0.72 |
Composite renal endpoint ** | i.d. | 0.55 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleinjan, J.P.; Blom, J.; van Beek, A.P.; Bouma, H.R.; van Dijk, P.R. Balancing Risks and Benefits: Sodium-Glucose Cotransporter 2 Inhibitors and the Risk of Diabetic Ketoacidosis. Metabolites 2024, 14, 162. https://doi.org/10.3390/metabo14030162
Kleinjan JP, Blom J, van Beek AP, Bouma HR, van Dijk PR. Balancing Risks and Benefits: Sodium-Glucose Cotransporter 2 Inhibitors and the Risk of Diabetic Ketoacidosis. Metabolites. 2024; 14(3):162. https://doi.org/10.3390/metabo14030162
Chicago/Turabian StyleKleinjan, Jan P., Justin Blom, André P. van Beek, Hjalmar R. Bouma, and Peter R. van Dijk. 2024. "Balancing Risks and Benefits: Sodium-Glucose Cotransporter 2 Inhibitors and the Risk of Diabetic Ketoacidosis" Metabolites 14, no. 3: 162. https://doi.org/10.3390/metabo14030162
APA StyleKleinjan, J. P., Blom, J., van Beek, A. P., Bouma, H. R., & van Dijk, P. R. (2024). Balancing Risks and Benefits: Sodium-Glucose Cotransporter 2 Inhibitors and the Risk of Diabetic Ketoacidosis. Metabolites, 14(3), 162. https://doi.org/10.3390/metabo14030162