Long-Term Adherence to the Mediterranean Diet Reduces 20-Year Diabetes Incidence: The ATTICA Cohort Study (2002–2022)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
Bioethics
2.2. Sample Characteristics
2.3. Baseline Evaluation
2.4. Follow-Up Evaluation
2.5. Statistical Analysis
3. Results
3.1. Incidence of Type II Diabetes Mellitus at 20-Year Follow-Up
3.2. Participants’ Baseline Characteristics and 20-Year Incidence of Type II Diabetes Mellitus
3.3. Participants’ Baseline Characteristics and Trajectories of Adherence to the Mediterranean Diet
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas 10th Edition Scientific Committee, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Rizkalla, S.W. Glycemic index: Is it a predictor of metabolic and vascular disorders? Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 373–378. [Google Scholar] [CrossRef]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858, Erratum in Lancet 2019, 393, e44. [Google Scholar] [CrossRef]
- Gong, Q.; Zhang, P.; Wang, J.; Ma, J.; An, Y.; Chen, Y.; Zhang, B.; Feng, X.; Li, H.; Chen, X.; et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019, 7, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M.; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Lindström, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J.G.; Hemiö, K.; Hämäläinen, H.; Härkönen, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: Follow-up of the Finnish Diabetes Prevention Study. Lancet 2006, 368, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. Overv. Biomed. 2020, 8, 201. [Google Scholar] [CrossRef]
- Esposito, K.; Maiorino, M.I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.; Giugliano, D. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analyses. BMJ Open 2015, 5, e008222. [Google Scholar] [CrossRef]
- Koloverou, E.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Georgousopoulou, E.N.; Grekas, A.; Christou, A.; Chatzigeorgiou, M.; Skoumas, I.; Tousoulis, D.; et al. Adherence to Mediterranean diet and 10-year incidence (2002–2012) of diabetes: Correlations with inflammatory and oxidative stress biomarkers in the ATTICA cohort study. Diabetes Metab. Res. Rev. 2016, 32, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Damigou, E.; Faka, A.; Kouvari, M.; Anastasiou, C.; Kosti, R.I.; Chalkias, C.; Panagiotakos, D. Adherence to a Mediterranean type of diet in the world: A geographical analysis based on a systematic review of 57 studies with 1,125,560 participants. Int. J. Food Sci. Nutr. 2023, 74, 799–813. [Google Scholar] [CrossRef]
- Pitsavos, C.; Panagiotakos, D.B.; Chrysohoou, C.; Stefanadis, C. Epidemiology of cardiovascular risk factors in Greece: Aims, design and baseline characteristics of the ATTICA study. BMC Public Health 2003, 3, 32. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2000, 284, 3043–3045. [CrossRef]
- The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997, 20, 1183–1197. [Google Scholar] [CrossRef] [PubMed]
- Kushner, R.F. Clinical assessment and management of adult obesity. Circulation 2012, 126, 2870–2877. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Katsouyanni, K.; Rimm, E.B.; Gnardellis, C.; Trichopoulos, D.; Polychronopoulos, E.; Trichopoulou, A. Reproducibility and relative validity of an extensive semi-quantitative food frequency questionnaire using dietary records and biochemical markers among Greek schoolteachers. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S118–S127. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef]
- Papathanasiou, G.; Georgoudis, G.; Papandreou, M.; Spyropoulos, P.; Georgakopoulos, D.; Kalfakakou, V.; Evangelou, A. Reliability measures of the short International Physical Activity Questionnaire (IPAQ) in Greek young adults. Hell. J. Cardiol. 2009, 50, 283–294. [Google Scholar]
- Wang, W.; Liu, Y.; Li, Y.; Luo, B.; Lin, Z.; Chen, K.; Liu, Y. Dietary patterns and cardiometabolic health: Clinical evidence and mechanism. MedComm 2023, 4, e212. [Google Scholar] [CrossRef]
- Jannasch, F.; Kröger, J.; Schulze, M.B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef]
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS ONE 2018, 13, e0194127. [Google Scholar] [CrossRef]
- Amerikanou, C.; Kleftaki, S.A.; Valsamidou, E.; Tzavara, C.; Gioxari, A.; Kaliora, A.C. Dietary Patterns, Cardiometabolic and Lifestyle Variables in Greeks with Obesity and Metabolic Disorders. Nutrients 2022, 14, 5064. [Google Scholar] [CrossRef] [PubMed]
- Kotzakioulafi, E.; Bakaloudi, D.R.; Chrysoula, L.; Theodoridis, X.; Antza, C.; Tirodimos, I.; Chourdakis, M. High versus Low Adherence to the Mediterranean Diet for Prevention of Diabetes Mellitus Type 2: A Systematic Review and Meta-Analysis. Metabolites 2023, 13, 779. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M.Á.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Arós, F.; et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19, Erratum in Diabetes Care 2018, 41, 2259–2260. [Google Scholar] [CrossRef] [PubMed]
- Kahn, B.B.; Flier, J.S. Obesity and insulin resistance. J. Clin. Investig. 2000, 106, 473–481. [Google Scholar] [CrossRef]
- Roglic, G. WHO Global report on diabetes: A summary. Int. J. Noncommun. Dis. 2016, 1, 3–8. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Lee, H.; Steinhauser, M.L. Aging Is a Powerful Risk Factor for Type 2 Diabetes Mellitus Independent of Body Mass Index. Gerontology 2020, 66, 209–210. [Google Scholar] [CrossRef]
- Zaccardi, F.; Webb, D.R.; Yates, T.; Davies, M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgrad. Med. J. 2016, 92, 63–69. [Google Scholar] [CrossRef]
- Perseghin, G.; Scifo, P.; Pagliato, E.; Battezzati, A.; Benedini, S.; Soldini, L.; Testolin, G.; Del Maschio, A.; Luzi, L. Gender factors affect fatty acids-induced insulin resistance in nonobese humans: Effects of oral steroidal contraception. J. Clin. Endocrinol. Metab. 2001, 86, 3188–3196. [Google Scholar] [CrossRef]
- Crandall, C.J.; Mehta, J.M.; Manson, J.E. Management of Menopausal Symptoms: A Review. JAMA 2023, 329, 405–420. [Google Scholar] [CrossRef]
- Trichopoulos, D.; Lagiou, P. Dietary patterns and mortality. Br. J. Nutr. 2001, 85, 133–134. [Google Scholar] [CrossRef]
- Amerikanou, C.; Tzavara, C.; Kaliora, A.C. Dietary Patterns and Nutritional Value in Non-Communicable Diseases. Nutrients 2023, 16, 82. [Google Scholar] [CrossRef]
- Cea-Soriano, L.; Pulido, J.; Franch-Nadal, J.; Santos, J.M.; Mata-Cases, M.; Díez-Espino, J.; Ruiz-García, A.; Regidor, E.; Predaps Study Group. Mediterranean diet and diabetes risk in a cohort study of individuals with prediabetes: Propensity score analyses. Diabet. Med. 2022, 39, e14768. [Google Scholar] [CrossRef]
- Stentz, F.B.; Brewer, A.; Wan, J.; Garber, C.; Daniels, B.; Sands, C.; Kitabchi, A.E. Remission of pre-diabetes to normal glucose tolerance in obese adults with high protein versus high carbohydrate diet: Randomized control trial. BMJ Open Diabetes Res. Care 2016, 4, e000258. [Google Scholar] [CrossRef]
- Urquiaga, I.; Echeverría, G.; Dussaillant, C.; Rigotti, A. Origen, componentes y posibles mecanismos de acción de la dieta mediterránea [Origin, components and mechanisms of action of the Mediterranean diet]. Rev. Med. Chil. 2017, 145, 85–95. [Google Scholar] [CrossRef]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61 (Suppl. S6), 1402S–1406S. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Sci. Cult. Updates Public. Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Koloverou, E.; Esposito, K.; Giugliano, D.; Panagiotakos, D. The effect of Mediterranean diet on the development of type 2 diabetes mellitus: A meta-analysis of 10 prospective studies and 136,846 participants. Metabolism 2014, 63, 903–911. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.E.; Hu, E.A.; Steffen, L.M.; Selvin, E.; Rebholz, C.M. Adherence to a Mediterranean-style eating pattern and risk of diabetes in a U.S. prospective cohort study. Nutr. Diabetes 2020, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Morze, J.; Hoffmann, G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br. J. Pharmacol. 2020, 177, 1241–1257. [Google Scholar] [CrossRef] [PubMed]
- Dayi, T.; Ozgoren, M. Effects of the Mediterranean diet on the components of metabolic syndrome. J. Prev. Med. Hyg. 2022, 63 (Suppl. S3), E56–E64. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef] [PubMed]
- Weickert, M.O.; Pfeiffer, A.F.H. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Colditz, G.; Liu, S.; Solomon, C.G.; Willett, W.C. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med. 2001, 345, 790–797. [Google Scholar] [CrossRef] [PubMed]
Age at Baseline | 20-Year Incidence (%) of T2DM | Total (N = 2000) | p-Value 1 | Men-to-Women Ratio | |
---|---|---|---|---|---|
Men (N = 974) | Women (N = 1026) | ||||
≤35 y (N = 613) | 22.1% (17.5, 27.4) | 15.8% (12.3, 20.1) | 18.6% (15.7, 21.9) * | <0.001 | 1.4 |
36–45 y (N = 602) | 31.3% (26.3, 36.8) | 21.0% (16.8, 25.9) | 26.1% (22.7, 29.7) * | 1.5 | |
46–55 y (N = 496) | 37.1% (31.6, 43.0) | 26.8% (21.4, 32.9) | 32.5% (28.5, 36.7) * | 1.4 | |
56–65 y (N = 183) | 46.7% (35.8, 57.8) | 24.1% (17.0, 32.9) | 33.3% (26.9, 40.4) * | 1.9 | |
66+ y (N = 106) | 29.3% (19.2, 42.0) | 33.3% (21.7, 47.5) | 31.1% (23.1, 40.5) | 0.9 | |
Total | 31.4% (28.6, 34.4) ** | 21.4% (19.0, 24.1) ** | 26.3% (24.4, 28.3) | 1.5 | |
p-value 2 | <0.001 |
Total Sample (N = 2000) | Developed T2DM during 20-Year FU | p-Value | ||
---|---|---|---|---|
Yes (N = 526) | No (N = 1474) | |||
Sociodemographic characteristics | ||||
Age; years, Mean (SD) | 42.7 (12.9) | 45.2 (12.6) | 41.8 (12.9) | <0.001 |
Sex; % men | 48.7 | 58.2 | 45.3 | <0.001 |
Years of school; Median (IQR) | 12 (12–16) | 12 (12–16) | 12 (12–16) | 0.079 |
Anthropometric characteristics | ||||
Body Mass Index; kg/m2, Mean (SD) | 26 (4.4) | 27 (4.6) | 25.6 (4.3) | <0.001 |
Waist circumference; cm, Mean (SD) | 89.1 (15.1) | 93.1 (13.9) | 87.7 (15.3) | <0.001 |
Waist-to-hip ratio; units, Mean (SD) | 0.9 (0.1) | 0.9 (0.1) | 0.8 (0.1) | <0.001 |
Waist-to-height ratio; units, Mean (SD) | 0.5 (0.1) | 0.5 (0.1) | 0.5 (0.1) | <0.001 |
Lifestyle characteristics | ||||
MedDietScore; units (0–55), Median (IQR) | 27 (25–28) | 26 (25–27) | 27 (26–28) | <0.001 |
High level of adherence to Mediterranean diet; % | 72.7 | 63.1 | 76.1 | <0.001 |
Total energy intake; kcal, Mean (SD) | 2338 (932) | 2479 (978) | 2283 (908) | 0.006 |
Current smoking; % yes | 43.2 | 42.9 | 43.3 | 0.865 |
Physical activity; % yes | 36.4 | 37.1 | 36.1 | 0.688 |
Clinical characteristics | ||||
Hypertension; % | 27.5 | 35.5 | 24.7 | <0.001 |
Hypercholesterolemia; % | 39.2 | 46.9 | 36.5 | <0.001 |
Family history of T2DM; % | 53.4 | 54.5 | 53.0 | 0.901 |
Biochemical parameters | ||||
Total cholesterol; mg/dL, Mean (SD) | 191.9 (41.2) | 202.1 (41) | 188.6 (40.7) | <0.001 |
LDL cholesterol; mg/dL, Mean (SD) | 120.7 (37.2) | 128.5 (36.6) | 118.1 (37) | <0.001 |
HDL cholesterol; mg/dL, Mean (SD) | 49 (14.3) | 46.4 (11.9) | 49.8 (15) | <0.001 |
Triglycerides; mg/dL, Mean (SD) | 112.3 (80.2) | 130.2 (108.7) | 106.6 (67.7) | <0.001 |
Non-HDL cholesterol; mg/dL, Mean (SD) | 142.6 (43.1) | 155.2 (42.7) | 138.3 (42.4) | <0.001 |
ApoB100; mg/dL, Mean (SD) | 106.0 (40.3) | 113.6 (30.3) | 103.6 (42.7) | <0.001 |
Fasting glucose; mg/dL, Mean (SD) | 88.7 (12) | 104.2 (6.4) | 83.7 (8.7) | <0.001 |
Fasting insulin; μU/mL, Mean (SD) | 12.5 (2.1) | 14.2 (3) | 12 (1.2) | <0.001 |
HOMA-IR; units, Mean (SD) | 2.8 (0.7) | 3.7 (0.5) | 2.5 (0.5) | <0.001 |
C-reactive protein; mg/L, Mean (SD) | 1.9 (2.4) | 2.2 (2.6) | 1.8 (2.3) | 0.001 |
Interleukin-6; pg/mL, Mean (SD) | 1.4 (0.5) | 1.5 (0.6) | 1.4 (0.5) | <0.001 |
Tumor necrosis factor-alpha; pg/mL, Mean (SD) | 6.1 (4.6) | 6.1 (4.1) | 6.0 (4.7) | 0.718 |
Trajectories of Participants’ Adherence Level to the Mediterranean Diet (2002–2012) | p-Value | ||||
---|---|---|---|---|---|
Sustained Low Adherence Level | Increasing Adherence Level | Decreasing Adherence Level | Sustained High Adherence Level | ||
No. participants | 418 (21%) | 158 (8%) | 978 (49%) | 446 (22%) | |
Sociodemographic characteristics | |||||
Age; years, Mean (SD) | 51.6 (13.6) | 51.9 (10.4) | 41.8 (11.3) | 34.9 (9.7) | <0.001 |
Sex; % men | 77.3 | 82.9 | 46.0 | 15.4 | <0.001 |
Years of school; Median (IQR) | 12 (6–16) | 12 (12–16) | 12 (12–16) | 12 (12–16) | <0.001 |
Anthropometric characteristics | |||||
Body Mass Index; kg/m2, Mean (SD) | 29.5 (4.6) | 30.1 (4.1) | 25.5 (3.4) | 22.5 (2.5) | <0.001 |
Waist circumference; cm, Mean (SD) | 100.8 (13.4) | 102.1 (11) | 87.7 (12.9) | 77.3 (10.1) | <0.001 |
Waist-to-hip ratio; units, Mean (SD) | 0.9 (0.1) | 0.9 (0.1) | 0.8 (0.1) | 0.8 (0.1) | <0.001 |
Waist-to-height ratio; units, Mean (SD) | 0.6 (0.1) | 0.6 (0.1) | 0.5 (0.1) | 0.5 (0.1) | <0.001 |
Lifestyle characteristics | |||||
MedDietScore; units (0–55), Median (IQR) | 20 (15–25) | 25 (24–25) | 27 (26–28) | 28 (28–29) | <0.001 |
Total energy intake; kcal, Mean (SD) | 2498 (979) | 2392 (878) | 2424 (951) | 2109 (879) | <0.001 |
Current smoking; % yes | 39.2 | 42.1 | 43.0 | 45.2 | 0.358 |
Physical activity; % yes | 36.7 | 40.8 | 34.5 | 37.1 | 0.431 |
Clinical characteristics | |||||
Hypertension; % | 48.5 | 45.8 | 25.2 | 8.9 | <0.001 |
Hypercholesterolemia; % | 50.6 | 51.3 | 40.2 | 25.9 | <0.001 |
Family history T2DM; % | 51.1 | 57.1 | 51.5 | 54.3 | 0.916 |
Biochemical parameters | |||||
Total cholesterol; mg/dL, Mean (SD) | 204.6 (42) | 200.2 (34.8) | 193 (41.9) | 178.4 (36.5) | <0.001 |
LDL cholesterol; mg/dL, Mean (SD) | 131.2 (39.1) | 128 (33.9) | 121.6 (37.3) | 109.4 (33.1) | <0.001 |
HDL cholesterol; mg/dL, Mean (SD) | 45.1 (14) | 43.4 (10.4) | 49.6 (13.9) | 53.5 (15.5) | <0.001 |
Triglycerides; mg/dL, Mean (SD) | 143.3 (118.7) | 141.5 (86.9) | 110.5 (67.6) | 80.9 (38.3) | <0.001 |
Non-HDL cholesterol; mg/dL, Mean (SD) | 162.0 (45.2) | 159.0 (37.8) | 143.5 (43.1) | 125.3 (38.7) | <0.001 |
ApoB100; mg/dL, Mean (SD) | 120.6 (46.6) | 119.0 (28.0) | 106.6 (38.0) | 92.0 (28.9) | <0.001 |
Fasting glucose; mg/dL, Mean (SD) | 91.4 (12.8) | 94.1 (11.4) | 88.2 (11.7) | 86 (11.3) | <0.001 |
Fasting insulin; μU/mL, Mean (SD) | 13.6 (3.2) | 13.7 (1.3) | 12.4 (1.5) | 11.5 (1.4) | <0.001 |
HOMA-IR; units, Mean (SD) | 3.7 (2.5) | 4.1 (3.3) | 2.9 (1.5) | 2.5 (0.9) | <0.001 |
C-reactive protein; mg/L, Mean (SD) | 2.5 (2.8) | 2.3 (2.4) | 1.8 (2.2) | 1.4 (2.2) | <0.001 |
Interleukin-6; pg/mL, Mean (SD) | 1.7 (0.6) | 1.6 (0.4) | 1.4 (0.5) | 1.3 (0.5) | <0.001 |
Tumor necrosis factor-alpha; pg/mL, Mean (SD) | 8.6 (5.4) | 8.4 (4.0) | 5.8 (4.4) | 4.7 (5.1) | <0.001 |
Crude Model | Age-, Sex-Adjusted Model | Adjusted Model without BMI * | Fully Adjusted Model with BMI | |
---|---|---|---|---|
RR (95%CI) | RR (95%CI) | RR (95%CI) | RR (95%CI) | |
Increasing vs. Sustained low adherence level | 1.22 (0.83–1.79) | 1.19 (0.84–1.69) | 1.23 (0.72–2.05) | 1.24 (0.74–2.06) |
Decreasing vs. Sustained low adherence level | 0.62 (0.48–0.80) | 0.69 (0.53–0.89) | 0.72 (0.49–0.92) | 0.96 (0.65–1.88) |
Sustained high vs. Sustained low adherence level | 0.43 (0.32–0.60) | 0.58 (0.40–0.85) | 0.59 (0.45–0.93) | 0.79 (0.43–0.92) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kechagia, I.; Tsiampalis, T.; Damigou, E.; Barkas, F.; Anastasiou, G.; Kravvariti, E.; Liberopoulos, E.; Sfikakis, P.P.; Chrysohoou, C.; Tsioufis, C.; et al. Long-Term Adherence to the Mediterranean Diet Reduces 20-Year Diabetes Incidence: The ATTICA Cohort Study (2002–2022). Metabolites 2024, 14, 182. https://doi.org/10.3390/metabo14040182
Kechagia I, Tsiampalis T, Damigou E, Barkas F, Anastasiou G, Kravvariti E, Liberopoulos E, Sfikakis PP, Chrysohoou C, Tsioufis C, et al. Long-Term Adherence to the Mediterranean Diet Reduces 20-Year Diabetes Incidence: The ATTICA Cohort Study (2002–2022). Metabolites. 2024; 14(4):182. https://doi.org/10.3390/metabo14040182
Chicago/Turabian StyleKechagia, Ioanna, Thomas Tsiampalis, Evangelia Damigou, Fotios Barkas, Georgia Anastasiou, Evrydiki Kravvariti, Evangelos Liberopoulos, Petros P. Sfikakis, Christina Chrysohoou, Costas Tsioufis, and et al. 2024. "Long-Term Adherence to the Mediterranean Diet Reduces 20-Year Diabetes Incidence: The ATTICA Cohort Study (2002–2022)" Metabolites 14, no. 4: 182. https://doi.org/10.3390/metabo14040182
APA StyleKechagia, I., Tsiampalis, T., Damigou, E., Barkas, F., Anastasiou, G., Kravvariti, E., Liberopoulos, E., Sfikakis, P. P., Chrysohoou, C., Tsioufis, C., Pitsavos, C., & Panagiotakos, D. (2024). Long-Term Adherence to the Mediterranean Diet Reduces 20-Year Diabetes Incidence: The ATTICA Cohort Study (2002–2022). Metabolites, 14(4), 182. https://doi.org/10.3390/metabo14040182