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Abstract: NMR is widely considered the gold standard for organic compound structure determination.
As such, NMR is routinely used in organic compound identification, drug metabolite characterization,
natural product discovery, and the deconvolution of metabolite mixtures in biofluids (metabolomics
and exposomics). In many cases, compound identification by NMR is achieved by matching measured
NMR spectra to experimentally collected NMR spectral reference libraries. Unfortunately, the number
of available experimental NMR reference spectra, especially for metabolomics, medical diagnostics,
or drug-related studies, is quite small. This experimental gap could be filled by predicting NMR
chemical shifts for known compounds using computational methods such as machine learning
(ML). Here, we describe how a deep learning algorithm that is trained on a high-quality, “solvent-
aware” experimental dataset can be used to predict 1H chemical shifts more accurately than any
other known method. The new program, called PROSPRE (PROton Shift PREdictor) can accurately
(mean absolute error of <0.10 ppm) predict 1H chemical shifts in water (at neutral pH), chloroform,
dimethyl sulfoxide, and methanol from a user-submitted chemical structure. PROSPRE (pronounced
“prosper”) has also been used to predict 1H chemical shifts for >600,000 molecules in many popular
metabolomic, drug, and natural product databases.

Keywords: NMR; chemical shift; machine learning; graph neural network; predictor

1. Introduction

NMR is ideal for determining the structure of small organic molecules, both natural
and synthetic. This is because NMR spectra are characterized by sharp, well-defined
peaks that can be directly associated with specific atoms within a given molecule. These
peaks correspond to the chemical shifts, which can often be assigned to specific atoms
or atomic groups in the molecule of interest. NMR chemical shifts, including 1H, 13C,
and 15N chemical shifts, are very sensitive to the electronic environment surrounding
each nucleus and can provide a wealth of information about a molecule’s covalent and
non-covalent structure. Not only are the chemical shifts sensitive to the type and character
of nearby atoms but chemical shifts are also remarkably consistent or “predictive” for
different chemical groups or chemical environments. This sensitivity and behavioural
consistency have allowed chemists to produce various chemical shift tables that provide
chemical shift ranges for various chemical groups and to use these tables to deduce the
identity of key chemical groups and thereby determine the precise structures of additional
small molecules.

As a result, NMR has become routinely used in the determination of novel structures
prepared via organic synthesis, in characterizing newly discovered compounds or con-
taminants [1–3], in drug metabolite characterization [4,5], in natural product discovery [6],
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and the deconvolution of metabolite mixtures in biofluids, especially in metabolomics and
exposomics [7,8]. The 1H and 13C chemical shift assignments for many of these molecules
have been deposited into a variety of NMR spectral reference libraries. These include the
Human Metabolome Database (HMDB) [9], the Biological Magnetic Resonance Databank
(BMRB) [10], NMRShiftDB2 [11], the Spectral Database System (SDBS) [12], and the Natural
Products Magnetic Resonance Database (NP-MRD) [13]. In addition, several commercial
NMR spectral libraries have been developed, including Advanced Chemistry Development
(ACD/Labs) and the Wiley spectral database collection.

The intention of these experimentally collected NMR spectral libraries is to help others
more easily characterize novel compounds or characterize/quantify known compounds
using NMR analysis. Specifically, by matching or partially matching measured NMR spectra
to experimentally collected NMR spectral reference libraries, it is hoped that the chemical
shift assignment of new compounds can be facilitated, or the identification of previously
known compounds can be rapidly performed. Unfortunately, the number of available
experimental NMR reference spectra for applications in NMR-based metabolomics, NMR-
based medical diagnostics, or NMR-based drug-related studies is quite small. For instance,
in the field of metabolomics, fewer than 1000 compounds with high-quality NMR spectra
have been deposited into the HMDB [9]. This compares to the >250,000 chemicals that
are in the HMDB (which translates to <0.5% compound coverage). Likewise, the number
of experimentally assigned NMR spectra in DrugBank [14] is <200, whereas the number
of known drugs and drug metabolites in DrugBank is >12,700 (which translates to <1.6%
compound coverage). Similarly, the number of experimentally assigned NMR spectra in
the NP-MRD is <20,000 whereas the number of known natural products in the NP-MRD is
>300,000 (which translates to <7% coverage coverage). With the ever-increasing number
of known human metabolites, known drugs or drug metabolites, and known natural
products being studied and identified, collecting experimental NMR data on each of these
compounds and completing their assignments is an almost impossible task.

To address this gap between measured experimental NMR data and known structural
data, a number of individuals have proposed “in silico” or “reference-free” approaches to
small molecule characterization [15,16]. In particular, by accurately predicting the NMR
chemical shifts (or other observables such as mass spectra or retention times) using known
or predicted chemical structures, it may be possible to greatly accelerate compound identifi-
cation or confirmation. Indeed, accurate prediction of NMR chemical shifts or NMR spectra
of the millions of known compounds would allow the creation of an enormous library of
predicted NMR spectra that could be readily used for the identification (and quantification)
of compounds in almost any sample. More specifically, these in silico databases could
confirm and validate structures of newly synthesized drugs or drug metabolites, facilitate
the characterization of natural products with compelling medicinal properties, or assist
with the NMR-based metabolomic analysis of urine, blood, or cerebrospinal fluid to aid in
medical diagnoses.

NMR chemical shift prediction is nearly 70 years old [17] and hundreds of papers
have been published on the subject (reviewed in [17]). There are four general approaches:
(1) rule-based methods; (2) structure similarity approaches; (3) quantum mechanical (QM)
approaches; and (4) machine learning (ML) methods. Early examples of rule-based ap-
proaches date from the 1950s [18,19] to estimate 13C chemical shifts of methylene groups.
Since then, many more extensions of this rule-based or additive approach for chemical
shift calculation have been developed, enabling the prediction of chemical shifts for many
different classes of organic compounds. However, because of their high level of uncertainty
and the limited applicability of additive rules to work for more exotic structures, work on
rule-based methods for chemical shift prediction has largely stopped.

Structure similarity methods use databases of structure fragments and their chemical
shifts to predict 1H and/or 13C chemical shifts [11,20,21]. In these methods, the structure is
queried against a large database of structures and experimental 1H/13C shifts to identify
exactly matching or similar substructures. When similar substructures are found, the
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predicted chemical shifts are returned as the weighted average of the experimental chemical
shift values corresponding to the matched structures. A popular method for encoding
atomic environment information is the Hierarchical Ordered Spherical description of
Environment coding (HOSE code) method [21], described in 1978 and first used for chemical
shift prediction in 2003 [11]. NMRShiftDB provides an openly accessible HOSE-code-based
chemical shift prediction tool [22]. HOSE code methods can achieve 1H chemical shift
predictions with errors (MAE) of 0.2–0.3 ppm [22].

More recently, QM calculations that employ Density Functional Theory (DFT) tech-
niques have become particularly popular [23]. DFT can provide chemical shift prediction
results that are reasonably close to experimental values, with RMSEs (root mean square
errors) of 0.2–0.4 ppm for 1H shifts [24,25]. Unfortunately, the time required for performing
a DFT calculation, even for small organic molecules, is very long, and grows exponentially
with the number of atoms. The speed of chemical shift prediction is a very important
criterion, especially if one is trying to calculate chemical shifts for millions of molecules. As
a result, there has been a move towards faster approaches that use ML.

ML-based approaches to predict NMR chemical shifts are often 100-1000X faster than
QM approaches and offer similar accuracy. The first ML methods used relatively simple
Artificial Neural Networks (ANNs) [26]. Meiler et al. [27] developed an ANN model that
had superior performance in comparison with rule-based methods. Aires-DeSousa et al.
used counter propagation neural networks (CPNNs) [28] and later Feed Forward Neural
Networks (FFNNs) [29] and Associative Neural Networks (ASNNs) to predict 1H chemical
shifts, achieving a mean absolute error (MAE) of 0.19 ppm. More recently, deep neural
networks such as Graph Neural Networks (GNNs) have shown particularly promising
results. Jonas and Khun [30] used a GNN to predict both 1H and 13C chemical shifts and
found that their GNN either matched or outperformed the traditional HOSE code method.
In particular, their 1H predictor had a reported MAE of 1.43 ppm for 13C and 0.28 ppm for
1H. In 2021, Guan et al. [24] tried an approach called transfer learning (TL). They developed
a GNN model, which they named CASCADE, using DFT-calculated chemical shift data,
to predict chemical shifts and then applied TL to incrementally improve the DFT-trained
model. Interestingly, this approach bypassed the problems with collecting and curating
(fixing/cleaning) large chemical shift datasets (needed for ML-based training and testing).
Despite these advances, the accuracy of NMR chemical shift prediction remains stuck in a
state where the best predictors can only predict 1H shifts with an error (MAE) of ~0.20 ppm
and 13C shifts with an MAE of >2.00 ppm [11,24].

Our own experience in building experimental NMR spectral databases for HMDB,
NP-MRD, and DrugBank showed that many of the training datasets used in previously
published ML-based methods had significant problems with erroneous chemical shift
assignments, incorrect chemical shift referencing, and a lack of appropriate accommodation
for solvent effects. We hypothesized that by correcting for these database problems, the
accuracy of 1H (and as will be shown in an upcoming publication, 13C) chemical shift
prediction could be improved. In this paper, we first describe how we built a high-quality,
reference-corrected, “solvent-aware” experimental NMR dataset for developing ML pre-
dictors of 1H chemical shifts. We then demonstrate how this dataset was used to train a
neural network for predicting 1H shifts via transfer learning from an existing GNN that
was trained on DFT chemical shifts. Finally, we present a web-based implementation of this
1H chemical shift predictor which we call PROSPRE (PROton Shift PREdictor). PROSPRE
takes a chemical structure (as a SMILES string) as input and accurately (MAE ~0.10 ppm)
predicts its 1H chemical shifts in water (at neutral pH), chloroform, methanol, and dimethyl
sulfoxide (Figure 1).
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2. Methods

2.1. Creating a Solvent-Aware 1H Chemical Shift Dataset for Training and Validation

Accurately predicting 1H chemical shifts using ML methods requires large collections
of correct chemical structures with correct placement of all protons and accurate, exper-
imentally assigned 1H chemical shifts. These structure/shift collections also must have
consistent atomic numbering schemes and information about solvents that were used to
prepare NMR samples. NMR solvents are known to significantly affect the observed 1H
chemical shifts, the presence/absence of 1H signals, and the time-averaged structures of
organic molecules [31–33]. Different solvents also require the use of different chemical shift
reference standards (such as tetramethylsilane [TMS] or trimethylsilylpropanoic acid [TSP])
which can also lead to systematic chemical shift changes [34]. In the fields of NMR-based
diagnostics, metabolomics, exposomics, and drug metabolism, almost all chemical com-
pounds are dissolved in water. On the other hand, in the fields of organic chemistry and
natural product research, almost all chemical compounds are dissolved in organic solvents
(methanol, dimethyl sulfoxide, chloroform, etc.). As our primary interest is in biological
systems, our initial focus was on assembling a high-quality dataset of small molecule 1H
chemical shift assignments in water. Based on the quality, coverage and solvent choices
among existing NMR databases, we decided to work with just three NMR spectral libraries:
(1) the Human Metabolome Database (HMDB), (2) the Biological Magnetic Resonance
Databank (BMRB), and (3) the Guided Ideographic Spin System Model Optimization
(GISSMO) library [35]. The HMDB [9] is a comprehensive, high-quality, freely available
online database of the small molecule metabolites found in the human body. It contains
experimentally collected 1H NMR spectra for 768 compounds. We found the experimental
NMR data and 1H chemical shift assignments were of very high quality and almost all
were collected in water. The second NMR spectral library we used was the BMRB [10]. The
BMRB contains over 1000 biological small molecules with assigned 1H chemical shifts at
multiple spectrometer frequencies. We found the experimental NMR data and 1H chemical
shift assignments in the BMRB were of high quality (a few assignment errors were evident)
and almost all chemical shifts were collected in water. The third chemical shift library
we chose was GISSMO library [35]. The GISSMO database contains about 1000 small
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molecules and small molecule fragments with assigned or chemical shifts for 1H. Almost all
the chemical shifts in GISSMO were collected in water. Chemical shifts in these databases
were mostly referenced to the internal standard, DSS (4,4-dimethyl-4-silapentane-1-sulfonic
acid) at 0.00 ppm and acquired at a pH between 7.0–7.4. To round out our dataset for
1H chemical shift assignments in non-aqueous solvents and to extend the utility of our
predictor to other applications (natural products and organic synthesis), we also extracted
structures and chemical shift data from the NMRShiftDB database. The NMRShiftDB
contains 1H NMR assignments for mostly non-biological or synthetic compounds where
the most common solvents are chloroform, dimethyl sulfoxide, and methanol.

2.1.1. The Training Dataset

The training dataset consisted of 577 molecules with complete 3D structures (with
attached protons) and fully assigned 1H chemical shifts in water. A total of 430 of these
molecules were obtained from the HMDB library. These 430 molecules had a total of
3333 experimentally measured 1H chemical shift values. Another 103 molecules were
obtained from the BMRB library, which corresponded to 508 experimentally measured
1H chemical shifts. The last set of 44 molecules was collected from the GISSMO library,
which contributed 366 experimentally measured 1H chemical shifts. Altogether, our train-
ing dataset consisted of 4207 experimentally measured 1H chemical shift values from
577 diverse molecules. These 577 molecules had an average molecular weight of 162 Dal-
tons (Da), ranging from 31 Da to 566 Da. All 1H chemical shifts in the training dataset
were collected in water and referenced to DSS. The assembled training dataset contained a
structurally diverse range of molecules including organic acids, alcohols, amino acids, and
nucleotides. Note that most of the molecules chosen were relatively water soluble and had
a biological origin (microbial, plant or animal). The bias towards human metabolites and
natural products was deliberate as we are primarily interested in predicting 1H chemical
shifts for compounds that can be used as biomarkers for diagnostics, for metabolomics or
exposomics applications, and for drug research. All 1H chemical shift assignments were
checked and confirmed by multiple NMR experts through manual inspection of the avail-
able 1D and 2D NMR spectra and by comparison to both published literature assignments
and suggestions provided by commercial NMR assignment tools (see details in Section 2.2).

2.1.2. The Holdout Datasets

Two holdout sets, not previously seen by our ML model, were used to test the per-
formance of the different trained ML models for 1H chemical shift prediction. Our first
holdout dataset consisted of 36 structurally diverse molecules chosen at random from the
HMDB, BMRB, or GISSMO, each of which was dissolved in water and each of which was
referenced to DSS. These 36 molecules had a total of 272 experimentally measured 1H
chemical shifts with an average molecular weight of 156 Da (ranging from 78–307 Da).

The second holdout dataset consisted of 22 organic compounds that were chosen at
random from the NP-MRD database. These 22 compounds had a total of 442 experimentally
determined 1H chemical shifts. All 22 compounds were dissolved in deuterated chloroform
and referenced to tetramethylsilane (TMS). These solvent and chemical shift reference
conditions are obviously different than those in the first holdout set. Therefore, to bring
the chemical shift data in line with what is reported for compounds dissolved in water
and referenced to DSS, we made chemical shift adjustments. Based on data provided by
Wishart et al. [34,36], we adjusted all TMS-referenced 1H chemical shifts in the second
holdout set to match DSS-referenced 1H chemical shifts. Furthermore, because chloroform
has a different polarity and hydrogen bonding character than water, we also had to adjust
the reported 1H chemical shifts to match those reported in water, using a locally developed
solvent scaling equation (see Supplementary Materials, Figure S1). For the molecules in this
second holdout set, the average molecular weight was 306 Da, ranging from 224–429 Da.
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2.2. Data Cleaning and Correction

A persistent problem with chemical shift assignments is that there is no standard or
consistent way to label which atom numbers are assigned to which 1H chemical shifts.
Typically, chemical shift assignments are presented visually with atom labels marked on an
image of the molecular structure and the chemical shifts are presented separately in a table
with the corresponding atom labels from the structural image. While this visual approach
to structural or chemical shift mapping works well for humans, it is not computer readable.
Further complicating the matter is the fact that atom numbering of most molecules drawn
with commercial software tools varies depending on how it was drawn by each user. When
we analyzed publicly available NMR assignments and corresponding structures, we found
that the molecular structures did not have the same pattern of atom numbering. Moreover,
not all structure files were consistent. We found that some of the molecular structure files
for some chemicals were rendered as “flat” two-dimensional structures, whereas others
were rendered as proper 3D structures.

To overcome these problems, we first used a program called Atom Label Assignment
Tool using InChI String (ALATIS) [37] to generate robust 3D molecular structures and
consistent atom numbering. Next, using Marvin Sketch (version 20) from ChemAxon
(Budapest, Hungary), we rotated the structures around different axes to align with the
molecular images available in the databases. After performing these manipulations, we
manually mapped the two atom number schemes to each other by comparing their im-
ages side by side. We then manually changed the atom numbers in the chemical shift
assignment files.

After completing the structure “cleaning” and remediation process, we then manually
checked all the 1H chemical shift assignments for all the molecules in both the training
and the two holdout datasets. To facilitate this checking and correction procedure, we
used a commercial program called MNOVA [38]. MNOVA is a popular NMR data analysis
package which offers a full selection of software tools for processing and visualizing
high-resolution NMR spectra. We used MNOVA-predicted chemical shifts to identify
manually assigned chemical shifts that seemed unusual or questionable. If the difference
between the MNOVA predicted shift and the observed/reported shifts was >1.0 ppm for
any hydrogen atom in any given molecule, we manually rechecked those assignments by
inspecting the available 1H and/or 1H-13C NMR spectra and, if necessary, made appropriate
corrections if errors were found. If we could not rationalize the difference, we discarded
that entry. We also used information from the Reich 1H chemical shift database [39] to cross-
check the experimentally reported 1H NMR chemical shift values against those predicted
based on their known positions within molecules. Additionally, we used the BMRB
database to compare reported 1H chemical shift assignments against those reported in the
HMDB database (where structural overlaps occurred). This also helped correct misassigned
chemical shifts. To further confirm the chemical shift assignments or assignment changes,
several NMR experts with >10 years of NMR experience reviewed each other’s assignments.

2.3. Machine Learning Method

To train our 1H NMR predictor, we used a graph neural network (GNN) and a
similar fine-tuning or TL strategy that was previously employed for refining 13C NMR
predictions in CASCADE [24]. Specifically, the CASCADE GNN (Figure S2), which was
originally trained on the DFT8K dataset (consisting of 8000 DFT optimized structures
and ~200,000 DFT computed 1H chemical shifts), served as the starting point for our fine-
tuning process [24]. The input for our modified GNN model included nodes that encode
atom types with edges representing interatomic distances, targets for the chemical shift
values, and connectivity between atoms in a tensor form. Feature initialization involved
creating embeddings. These embeddings included 256 entries, each, for node and edge
features based on atom types and interatomic distances, respectively. For later steps in
the network, edge features were updated by combining edge and node features through
trainable weights and activation functions. Unlike previous layers, weights in dense layers
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of the message passing and edge network were kept trainable. Only 6 layers in our GNN
were allowed to be trainable or tunable so that original weights in most of the other layers
of the GNN remained unaffected. After the edge feature update, the message-passing step
allowed atoms to exchange information based on their spatial and chemical contexts by
combining updated edge features with atom (i.e., node) features. If multiple messages to
the same node were present, they were pulled into a single node before updating the node
features. Just as with previous steps, weights in the message passing and node updating
steps were frozen. The final prediction of NMR chemical shifts was achieved by passing
the updated node features through three dense layers with sizes of 256, 256, and 128. The
final readout layer generated a single number (i.e., chemical shift value).

Our GNN was implemented utilizing Keras (version 2.3.1) [40] and TensorFlow (ver-
sion number 2.2.0) [41] frameworks. The model training was conducted with batch size of
32 on an in-house Dell Precision 5820 with 24 GB Nvidia RTX A5000 (Nvidia Corporation,
Santa Clara, USA). Optimization of the models was performed with the Adam optimizer,
a first-order gradient-based optimization method, in conjunction with using MAE as the
loss function. An initial learning rate of 5 × 10−4 was set with a follow-up learning rate
decay of 4% every 70 epochs. The maximal number of epochs was set to 1200. An early
stopping mechanism was implemented to evaluate the validation loss at every 10 epochs.
The termination rule was to stop the training when the validation loss increased by more
than 10% compared to the previous checkpoint and then select the model from the iteration
exhibiting the lowest validation loss for further use.

2.4. 1H NMR Chemical Shift Predictions for Different Solvents and Internal Standards

All of the training data for our 1H chemical shift predictor were determined with
compounds dissolved in H2O. While water is a common solvent used in NMR-based
metabolomics, in the world of natural product chemistry and organic chemical synthesis,
most compounds are dissolved in other solvents, such as methanol, chloroform, or dimethyl
sulfoxide. It is also known that different solvents will cause systematic “solvent” shifts (due
to anisotropic effects) that will move chemical shifts upfield or downfield relative to those
measured in water. Likewise, organic solvents tend to prevent hydrogen exchange (unlike
water) and so hydrogen atoms from labile hydrogens attached to OH and NH function
groups will be visible in the NMR spectrum. To determine the systematic shift arising from
methanol, chloroform, and dimethyl sulfoxide relative to water, we evaluated the reported
1H chemical shift values of a number of identical compounds dissolved in water, methanol,
chloroform, and dimethyl sulfoxide [33]. With this information in hand, we were able to
identify straightforward linear relationships between the 1H chemical shift values reported
in water and those reported in methanol, chloroform as well as dimethyl sulfoxide. These
equations and the quality of the fit between the different pairs of 1H chemical shifts are
shown in Figure S1. The equations have been incorporated into PROSPRE (PROtein Shift
PREdictor) to adjust the predicted 1H chemical shift values for molecules dissolved in
methanol, chloroform, and dimethyl sulfoxide, respectively. The linear relationship we
determined for solvent correction was quite surprising but has proven to be robust for the
solvents evaluated in subsequent studies. To adjust chemical shifts for different internal
chemical shift referencing standards, we used correction factors published elsewhere [42].

3. Results
3.1. Performance Evaluation

To evaluate PROSPRE, we first assessed the improvement achieved via fine tuning
of our GNN on the training set of 4027 1H chemical shifts. Prior to fine tuning (using
the original CASCADE model), the MAE between the predicted and the observed 1H
chemical shifts was 0.28 ppm for the training set. After fine tuning, the MAE was just
0.08 ppm. Clearly, fine tuning led to a substantial improvement in the accuracy of our
predictor. Next, we assessed both the chemical shift correlation and the 1H chemical
shift errors (MAE) and between predicted and observed 1H chemical shifts for the two
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holdout datasets. As noted earlier, one holdout set was for compounds dissolved in
water and the other holdout set was for compounds dissolved in organic solvents. The
correlation between PROSPRE-predicted and experimental 1H chemical shifts for the
holdout datasets is shown in Figure 2A,C. In addition, we compared PROSPRE’s accuracy
with the accuracies of other popular algorithms, including MNOVA [38], NMRShiftDB2 [11],
and CASCADE [24] (Figures 2B–D and S3). Specifically, for the first holdout dataset of 272
1H chemical shifts from 36 HMDB entries dissolved in water, we found that PROSPRE
substantially outperformed all three predictors. In particular, PROSPRE had an MAE of
0.10 ppm for the first holdout dataset. MNOVA, NMRShiftDB2, and CASCADE yielded
MAEs of 0.15, 0.17, and 0.21 ppm, respectively. To further test the performance of PROSPRE,
we also evaluated it against a second holdout dataset. This second holdout set consisted
of 1H chemical shift assignments from the NP-MRD that included 22 molecules with
442 experimental 1H chemical shift assignments in chloroform. PROSPRE had a MAE of
0.19 ppm for the second holdout dataset. In comparison, MNOVA, NMRShiftDB2, and
CASCADE had MAEs of 0.20, 0.25, and 0.46, respectively (Table 1). However, all MAEs
from the second holdout set were higher than those of the first holdout set. The higher
MAE for PROSPRE with the second holdout set was not unexpected due to the fact that
PROSPRE was trained on water-soluble compounds, which tend to be chemically less
diverse that water-insoluble compounds.
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Figure 2. Correlation of 1H chemical shifts predicted with PROSPRE (A,C) and CASCADE
(B,D) with experimental shifts for holdout dataset 1 (A,B) and holdout dataset 2 (C,D). Mean absolute
error (MAE, in ppm) and R2 (coefficient of determination) are shown on the plots. Regression trend
lines (shown in red) were obtained by fitting the data with equation Y = AX, where A = slope.
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Table 1. Performance of PROSPRE, NMRShiftDB, MNOVA, and CASCADE for predicting 1H
chemical shifts for holdout datasets #1 and #2.

Method\Dataset Holdout Dataset #1 (MAE) 1 Holdout Dataset #2 (MAE)

PROSPRE 0.10 ppm 0.19 ppm
NMRShiftDB 0.17 ppm 0.25 ppm

MNOVA 0.15 ppm 0.20 ppm
CASCADE 0.21 ppm 0.46 ppm

1 MAE: mean absolute error.

3.2. Applications

The high quality of PROSPRE’s 1H chemical shift predictions led us to use PROSPRE
to predict the chemical shifts for >400,000 biologically important compounds. These
are compounds that have structures but do not have experimental 1H chemical shift
assignments. Specifically, we applied PROSPRE to the prediction of 1H chemical shifts
(and the generation of the corresponding 1D 1H NMR spectra at multiple spectrometer
frequencies) for nearly 250,000 molecules in the latest release of HMDB [9], for nearly
13,000 molecules in the latest release of DrugBank [14], and for nearly 280,000 molecules in
the latest release of NP-MRD [13]. Plans are being made to apply PROSPRE to the prediction
of 1H chemical shifts for all compounds in MiMeDB [43] (a microbial metabolite database),
ECMDB [44] (an E. coli metabolome database), YMDB [45] (a yeast metabolome database),
the NORMAN-SLE [46] (a database of exposure and exposome compounds), and DARK-
NPS [47] (a database of 8.9 million hypothesized novel psychoactive substances). The intent
of these accurate, large-scale predictions is to generate sufficient quantities of high-quality
NMR data to facilitate NMR spectral matching for facile compound identification (of
known unknowns) and to support the development of resources for in silico metabolomics
for the identification of unknown unknowns [48]. Requests for large scale or custom 1H
chemical shift predictions and the generation of corresponding predicted 1H NMR spectra
at multiple NMR spectrometer frequencies are welcome and can be made directly to the
corresponding author.

3.3. The PROSPRE Webserver

We programmed PROSPRE as a comprehensive suite to support the prediction of 1H
NMR chemical shifts in multiple solvents. It accepts user input in the form of SMILES
via ChemAxon’s JChem interface [49], translates the SMILES notation into 3D atomic
coordinates in the SDF format and restores or/and renumbers hydrogen atoms utilizing the
RDKit library. Subsequently, the GNN algorithm calculates ML features from the 3D model
and predicts 1H NMR chemical shifts. The front end of PROSPRE is coded with Ruby
on Rails while all backend calculations are done with Python. PROSPRE is available at
https://prospre.ca as of 10 May 2024. A separate version of PROSPRE can also be found on
the NP-MRD database (https://np-mrd.org/) at the top of the homepage under “Utilities”
as “1H NMR Predictor” in the dropdown menu.

To operate the PROSPRE webserver, users must provide: (1) a SMILES string or SDF
file, which can be directly pasted into the MarvinJS applet (or users can draw the structure
into the MarvinJS applet), (2) the type of solvent, and (3) the reference. For the type of
solvent, users can choose from methanol, water, chloroform, or dimethyl sulfoxide from the
dropdown menu. For the type of reference, users can choose from TMS, DSS, or TSP. After
pressing the “Predict” button, the submitted structure and predicted 1H chemical shifts are
generated in a separate window. To assist users in running the PROSPRE, two example
compounds (Example 1 and Example 2) are provided. Clicking on the corresponding
“Load Example” buttons will autofill the required fields after which users can press the
“Predict” button to obtain the NMR prediction. A sample input interface of PROSPRE for
ethyl acetate (HMDB0031217) is shown in Figure 3A. The SMILES string of ethyl acetate
(CCOC(C)=O) was converted by ChemAxon’s JChem plugin to atomic coordinates and
displayed in a standard 2D format. Users must then select the solvent and internal standard

https://prospre.ca
https://np-mrd.org/
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from the pull-down options listed under “Solvent” and “Reference”, respectively. The
output page of PROSPRE (Figure 3B) shows a model of ethyl acetate with numbered atoms
using Jmol plugin [50,51], predicted 1H chemical shift values, the selected solvent, and the
chemical shift reference. Predicted chemical shifts can be downloaded from the webserver
as a CSV file.
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4. Discussion

Our results demonstrated that using a carefully curated “solvent-aware” training set
of experimental 1H shifts, with detailed information about solvents and chemical shift
reference compounds, made it possible to generate a high-quality predictive ML model
for 1H chemical shift prediction. As shown in the Results section, PROSPRE outperformed
other well-regarded, popular 1H chemical shift prediction tools that were tested in this
study. Indeed, as far as we are aware, PROSPRE appears to be the most accurate 1H
chemical shift predictor that has so far been described. We attribute this result to the careful,
painstaking curation of the training dataset that was done in this study. As noted earlier,
the performance of PROSPRE was higher for the first HMDB-derived holdout dataset than
for the second, NP-MRD-derived dataset. We suspected that the reduced performance by
PROSPRE for the second holdout dataset was due to undertraining on chemical structure
classes that were more frequent in the second holdout dataset but under-represented in the
training dataset and holdout dataset #1.

To test this hypothesis, we used ClassyFire (version 1.0) [52] to quantitatively assess
the chemical structure classes seen in PROSPRE training dataset and the two (HMDB/water
and NP-MRD/chloroform) holdout datasets. ClassyFire is a computer program that auto-
matically classifies all known chemical compounds into one of more than 4800 different
structural categories using chemical structure information. Using ClassyFire, we found that
our original training dataset contained molecules from 90 different chemical subclasses.
For the first holdout dataset (with 36 molecules from the HMDB), 34/36 had structures that
belonged to at least one of these chemical subclasses. On the other hand, for the second
holdout dataset (with 22 molecules from the NP-MRD), only 3/22 molecules belonged to
chemical subclasses found in the original training dataset. Table S1 shows the chemical
subclass distribution for the training dataset, the first holdout dataset (from HMDB), and
the second holdout dataset (NP-MRD). We also evaluated the chemical similarity of the two
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holdout sets against the training dataset via a cosine similarity score using the percentage
of each ClassyFire chemical subclasses (Table S1). The cosine similarity between holdout
set 1 and the training set was 0.95, while the cosine similarity between holdout set 2 and the
training set was just 0.22. Given the data distribution, the variation in the structures in the
training dataset and cosine similarity scores, we can conclude that its inferior performance
for the NP-MRD (second) holdout dataset was largely due to the fact that PROSPRE had not
been trained on a sufficient number of molecules belonging to the chemical subclasses seen
in the NP-MRD (second) holdout dataset. Given the focus on water-soluble metabolites for
the training set of molecules and chemical shifts originally used to develop PROSPRE, this
was not entirely unexpected.

Therefore, future efforts will be focused on accumulating 1H NMR assignments
and corresponding molecular structures from classes that are under-represented in the
PROSPRE training set (Figure 4, Table S1). In addition, we would like to evaluate how
much the inclusion of multiple conformers (generated via rapid conformer generation tools
such as RDKit [53] or OpenBabel [54]) could help improve the accuracy of PROSPRE’s 1H
chemical shift predictions.
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5. Conclusions
1H NMR spectroscopy is widely used in organic synthetic chemistry for organic com-

pound identification. It is also used for drug metabolite characterization, natural product
discovery, and the deconvolution of metabolite mixtures in biofluids (metabolomics and
exposomics). In many cases, compound identification by NMR can be achieved by match-
ing measured NMR spectra to experimentally collected NMR spectral reference libraries.
However, the limited availability of experimental NMR reference spectra, especially for
many biologically relevant molecules, has significantly hindered this process. Indeed, with
<5% of many biologically relevant compounds having experimental 1H NMR spectra, the
fields of NMR-based metabolomics, exposomics, and natural product chemistry have suf-
fered enormously. PROSPRE is intended to alleviate this problem by enabling the accurate
prediction of 1H NMR chemical shifts using only a chemical structure as input. As shown in
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this manuscript, PROSPRE achieves the highest accuracy yet reported for 1H chemical shift
prediction, especially for water-soluble, biologically relevant compounds. PROSPRE is also
capable of accurately predicting 1H chemical shifts in a number of other solvents commonly
used in NMR spectroscopy, including chloroform, dimethyl sulfoxide, and methanol. This
ability to handle different solvents enhances the versatility and applicability of PROSPRE
across different experimental conditions.

In addition to making PROSPRE freely available as an easy-to-use webserver, we have
applied PROSPRE to the prediction of 1H chemical shifts (and the generation of 1H NMR
spectra) for nearly 600,000 known, biologically relevant compounds. This information has
been deposited into publicly available databases such as HMDB, DrugBank, and the NP-
MRD. These spectra should facilitate the identification of known unknowns for applications
in metabolomics, exposomics, pharmacology, and clinical diagnostics. Through this work,
we believe that PROSPRE will significantly expand the coverage of metabolites that can be
analyzed using NMR spectroscopy, thereby broadening the potential scope of metabolomics
studies. We are in the process of providing similar predicted 1H chemical shift data and
NMR spectral datasets to facilitate the identification of unknown unknowns for applications
in natural product chemistry, drug metabolism, and forensic science. We are also planning
to update PROSPRE to include predictions for molecules dissolved in aromatic solvents
such as pyridine or benzene. For these solvents, it is expected that more complex non-linear
effects would be more evident and more complex solvent correction effects will have to
be developed. Overall, our hope is that PROSPRE will allow the fields of NMR-based
metabolomics, exposomics, drug discovery, and clinical diagnostics to prosper well into
the 21st century.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo14050290/s1, Figure S1: Linear equations that can be used
to predict the 1H chemical shift values of hydrogen atoms for molecules dissolved in chloroform
(CDCl3), DMSO ((CD3)2SO), and methanol (CD3OD) relative to those dissolved in water; Figure
S2: Illustration of the modified GNN process used to create 1H chemical shift predictions; Figure
S3: Correlation of 1H chemical shifts predicted with NMRShiftDB (A,C) and MNOVA (B,D), with
experimental shifts for holdout dataset 1 (A,B) and holdout dataset 2 (C,D); Table S1: Distribution
(by percentage) of compounds by chemical subclass in the PROSPRE training dataset compared to
the first holdout dataset (from HMDB) and the second holdout dataset (NP-MRD).
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