Secondary Metabolites and Antioxidant Activity against Moko Disease as a Defense Mechanism of Musa spp. from the Ecuadorian Coast Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Collection and Processing
2.3. Active Ingredients Extraction
2.4. Active Ingredients Determination
2.5. Antioxidant Capacity Determination
2.6. LC-MS Determination
2.7. Statistical Test
3. Results
3.1. Active Ingredient Determination
3.2. Antioxidant Activity Determination
3.3. LC-MS Determination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- International Network for the Improvement of Banana and Plantain, International Plant Genetic Resources Institute. 2000. Available online: https://cgspace.cgiar.org/handle/10568/105424?show=full (accessed on 15 June 2023).
- FAO. Banana Market Review—Preliminary Results 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Lopes, S.; Vanz Borges, C.; de Sousa Cardoso, S.M.; de Almeida Pereira da Rocha, M.F.; Maraschin, M. Banana (Musa spp.) as a Source of Bioactive Compounds for Health Promotion. In Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition, 1st ed.; Siddiq, M., Ahmed, J., Lobo, M.G., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Blomme, G.; Dita, M.; Jacobsen, K.S.; Pérez, V.L.; Molina, A.; Ocimati, W.; Poussier, S.; Prior, P. Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management. Front. Plant Sci. 2017, 20, 1290. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Denny, T. Plant pathogenic Ralstonia species. In Plant-Associated Bacteria; Gnanamanickam, S.S., Ed.; Springer Netherlands: Cham, The Netherlands, 2006; pp. 573–644. [Google Scholar]
- Banana Moko: A Silent Threat. 2022. Available online: https://www.ecuadortimes.net/banana-moko-a-silent-threat/ (accessed on 15 June 2023).
- Thwaites, M.; Eden-Green, S. RAPD and rep PCR-based fingerprinting of vascular bacterial pathogens of Musa spp. Plant Pathol. 1999, 48, 121–128. [Google Scholar] [CrossRef]
- Abadie, C.; Baudouin, L.; Daugrois, J.-H.; Dollet, M.; Vuillaume, C.; Wicker, E.; Teycheney, P.-Y. CIRAD invasive species initiatives in the Caribbean Basin. In Proceedings of the 44th Annual Meeting of the Caribbean Food Crop Society, Miami, FL, USA, 13–17 July 2008. [Google Scholar]
- Alvarez, E.; Gomez, E.; Mejia, J.; Prior, P. Developing a TaqMan probe to detect, through real-time PCR, Ralstonia solanacearum which causes Moko in Musa spp. in Colombia. Cirad Ritrop. In Proceedings of the 12th International Conference on Plant Pathogenic Bacteria: Programme, Abstracts, List of Participants, INRA, Université de la Réunion, Saint-Denis, Réunion, 7 June 2010; p. 64. Available online: https://agritrop.cirad.fr/555761/ (accessed on 13 January 2024).
- Oliveira Silva, S.; de Mello Véras, S.; de Gasparotto, L.; de Matos, A.P.; Maciel Cordeiro, Z.; Boher, B. Evaluation of Musa spp. for resistance to Moko disease (Ralstonia solanacearum, race 2). InfoMusa 2000, 9, 19–20. [Google Scholar]
- Prior, P.; Wicker, E.; Fegan, M. The Ralstonia solanacearum species complex: Genetic diversity, phylogeny and molecular typing of strains with particular attention to emerging strains and bacterial wilts of banana known as moko disease, bugtok disease, and blodd disease. In Proceedings of the II Seminario Internacional Sobre Producción, Comercialización e Industrialización de Plátano, Manlzales, Colombia, 29 August–2 September 2005; p. 49. [Google Scholar]
- Tripathi, L.; Ntui, V.O.; Tripathi, J.N. Control of Bacterial Diseases of Banana Using CRISPR/Cas-Based Gene Editing. Int. J. Mol. Sci. 2022, 23, 3619. [Google Scholar] [CrossRef] [PubMed]
- Grajales-Amorocho, M.; Acosta-Minoli, C.; Muñoz-Pizza, D.; Manrique-Arias, O.; Munoz-Loaiza, A. Analysis of Moko disease propagation on plantain (Musa AAB Simmonds) through a model based on system dynamics. Eur. J. Plant Pathol. 2023, 168, 437–445. [Google Scholar] [CrossRef]
- Blanco, G.; Linares, B.; Hernández, J.; Maselli, A.; Rincón, A.; Ortega, R.; Medina, E.; Hernández, L.; Morillo, J. Microbiological composition and safety of pseudostems and leaf blades leachates of “Harton” plantain in Yaracuy state. Agron. Trop. 2013, 63, 111–120. [Google Scholar]
- Ricardo, F.Á.S.; Vicente, L.F.P. Strategic tactics for the integrated management of pests and diseases in banana. Braz. J. Anim. Environ. Res. 2021, 4, 4973–5000. [Google Scholar] [CrossRef]
- Sequeira, L. Bacterial wilt: The missing element in international banana improvement programs. In Bacterial Wilt Disease: Molecular and Ecological Aspects; Prior, P., Elphinstone, A.C.J., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 1998; Volume 6, p. 14. [Google Scholar]
- Álvarez, E.; Pantoja, A.; Gañán, L.; Ceballos, G. Current Status of Moko Disease and Black Sigatoka in Latin America and the Caribbean, and Options for Managing Them; Centro Internacional de Agricultura Tropical (CIAT): Palmira, Colombia; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015; 40p. [Google Scholar]
- Ramirez, G.J.G.O.; Munoz, A.M.; Patino, H.L.F.; Morales, O.J.G. Banana Moko disease management with resistance inducers and chlorine dioxide. Agron. Colomb. 2015, 33, 194–202. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Isroni, M.; EnggarPaskariani, A.; Setiawan, F.; Rakhmawati, A. Banana Peel (Musa paradisiaca) Extract’s Potency as an Antibacterial Ralstonia solanacearum cause Tomato’s Desease. Proceeding Biol. Educ. Conf. 2018, 15, 844–847. [Google Scholar]
- Ploetz, R.C.; Kepler, A.K.; Daniells, J.; Nelson, S.C. Banana and plantain—An overview with emphasis on Pacific island cultivars. In Species Profiles for Pacific Island Agroforestry; Elevitch, C.R., Ed.; Permanent Agricultural Resources: Holualoa, HI, USA, 2007. [Google Scholar]
- Peakland Heritage. 19 July 2002. Available online: https://web.archive.org/web/20160314051757/http://www.peaklandheritage.org.uk/index.asp?peakkey=01001021 (accessed on 18 May 2024).
- Ajijolakewu, K.A.; Ayoola, A.S.; Agbabiaka, T.O.; Zakariyah, F.R.; Ahmed, N.R.; Oyedele, O.J.; Sani, A. A review of the ethnomedicinal, antimicrobial, and phytochemical properties of Musa paradisiaca (plantain). Bull. Natl. Res. Cent. 2021, 45, 86. [Google Scholar] [CrossRef]
- Horry, J.; Ortiz, R.; Arnaud, E.; Crouch, J.H.; Ferris, R.S.B.; Jones, D.R.; Mateo, N.; Picq, C.; Vuylsteke, D. Banana and Plantain. In Biodiversity in Trust Conservation and Use of Plant Genetic Resources in CGIAR Centres; Fuccillo, D., Sears, L., Stapleton, P., Eds.; Cambridge University Press: Cambridge, MA, USA, 1997; pp. 67–81. [Google Scholar]
- Daniells, J.; Jenny, C.; Karamura, D.; Tomekpe, K. Musalogue (A Catalogue of Musa Germplasm): Diversity in the Genus Musa; International Plant Genetic Resources Institute: Rome, Italy, 2001; 207p. [Google Scholar]
- Thaweesang, S. Antioxidant activity and total phenolic compounds of fresh and blanching banana blossom (Musa ABB CV.Kluai “Namwa”) in Thailand. IOP Conf. Series: Mat. Sci. Eng. 2019, 639, 012047. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Met. 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Sachett, A.; Gallas-Lopes, M.; Conterato, G.M.M.; Herrmann, A.; Piato, A. Antioxidant Activity by DPPH Assay: In Vitro Protocol. Protocols Io. 2021. Available online: https://www.protocols.io/view/antioxidant-activity-by-dpph-assay-in-vitro-protoc-btbpnimn (accessed on 13 January 2024).
- Kuskoski, E.M.; Asuero, A.G.; Troncoso, A.M.; Mancini-Filho, J.; Fett, R. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Sci. Technol. 2005, 25, 726–732. [Google Scholar] [CrossRef]
- Tohma, H.; Köksal, E.; Kılıç, Ö.; Alan, Y.; Yılmaz, M.A.; Gülçin, İ.; Bursal, E.; Alwasel, S.H. RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. species. Antioxidants 2016, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.; Skendi, A.; Bouloumpasi, E.; Chatzopoulou, P.; Biliaderis, C.G. LC-MS identification and quantification of phenolic compounds in solid residues from the essential oil industry. Antioxidants 2021, 10, 2016. [Google Scholar] [CrossRef] [PubMed]
- Rajurkar, N.S.; Hande, S.M. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian. J. Pharm. Sci. 2011, 73, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Luskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar]
- Cellier, G.; Moreau, A.; Chabirand, A.; Hostachy, B.; Ailloud, F.; Prior, P. A Duplex PCR Assay for the Detection of Ralstonia solanacearum Phylotype II Strains in Musa spp. PLoS ONE 2015, 10, e0122182. [Google Scholar] [CrossRef]
- Ranjitha, K.; Narayana, C.K.; Roy, T.K. Division of Plant Physiology and Biochemistry, IIHR, Bangalore Aroma profile of fruit juice and wine prepared from Cavendish banana (Musa sp., Group AAA) cv. Robusta. J. Hortl. Sci. 2013, 8, 217–223. [Google Scholar] [CrossRef]
- Parijadi, A.A.R.; Yamamoto, K.; Ikram, M.M.M.; Dwivany, F.M.; Wikantika, K.; Putri, S.P.; Fukusaki, E. Metabolome Analysis of Banana (Musa acuminata) Treated With Chitosan Coating and Low Temperature Reveals Different Mechanisms Modulating Delayed Ripening. Front. Sustain. Food Syst. 2022, 6, 835978. [Google Scholar] [CrossRef]
- Sonibare, M.; Oresanya, A.I.; Guèye, B.; Abberton, M.; Dsouza, R.; Kuhnert, N. Leaves metabolomic profiling of Musa acuminata accessions using UPLC–QTOF–MS/MS and their antioxidant activity. J. Food Meas. Charact. 2018, 12, 1093–1106. [Google Scholar] [CrossRef]
- Matos da Silva, M.; Pereira Alexandre, G.; Magalhães, M.R.; Torres, A.M.; Kato, L.; Costa da Silva, V.; Teixeira de Saboia Morais, S.M.; Garcia Rodriguez, A.; Pacheco Fill, T.; Pereira, A.K.; et al. Musa spp. cultivars as a neutralizing source against some toxic activities of Bothrops and Crotalus genus snake venoms. Toxicon 2023, 228, 107106. [Google Scholar] [CrossRef] [PubMed]
- Behiry, S.I.; Okla, M.K.; Alamri, S.A.; EL-Hefny, M.; Salem, M.Z.M.; Alaraidh, I.A.; Salem, A.Z.M. Antifungal and antibacterial activities of Musa paradisiaca L. Peel Extract: HPLC analysis of phenolic and flavonoid contents. Processes 2019, 7, 215. [Google Scholar] [CrossRef]
- Waghmare, J.S.; Kurhade, A.H. GC-MS analysis of bioactive components from banana peel (Musa sapientum peel). Eur. J. Exper Biol. 2014, 4, 10–15. [Google Scholar]
- Oliveira, C.S.R.; Freire, A.J.D.; Silvestre, N.; Cordeiro, I.C.; Torres, D. Lipophilic extractives from different morphological parts of banana plant “Dwarf Cavendish”. Evtuguin Ind. Crops Prod. 2006, 23, 201–211. [Google Scholar] [CrossRef]
- Oresanya, I.O.; Sonibare, M.A.; Gueye, B.; Balogun, F.O.; Adebayo, S.; Ashafa, A.O.T.; Morlock, G. Isolation of flavonoids from Musa acuminata Colla (Simili radjah, ABB) and the in vitro inhibitory effects of its leaf and fruit fractions on free radicals, acetylcholinesterase, 15-lipoxygenase, and carbohydrate hydrolyzing enzymes. J. Food Biochem. 2020, 44, e13137. [Google Scholar] [CrossRef]
- Cittan, M.; Çelik, A. Development and validation of an analytical methodology based on Liquid Chromatography–Electrospray Tandem Mass Spectrometry for the simultaneous determination of phenolic compounds in olive leaf extract. J. Chromatogr. Sci. 2018, 56, 336–343. [Google Scholar] [CrossRef]
- Balamurugan, A.; Sakthivel, K.; Gautam, R.K.; Sharma, S.K.; Kumar, A. Ralstonia solanacearum: Biology and its management in solanaceous vegetable crops. In Rhizosphere Microbes, Microorganisms for Sustainability; Sharma, S.K., Singh, U.B., Sahu, P.K., Singh, H.V., Sharma, P.K., Eds.; Springer: Singapore, 2020; Volume 23, pp. 259–289. [Google Scholar]
- Vaganan, M.M.; Ravi, I.; Nandakumar, A.; Sarumathi, S.; Sundararaju, P.; Mustaffa, M.M. Phenylpropanoid enzymes, phenolic polymers and metabolites as chemical defenses to infection of Pratylenchus coffeae in roots of resistant and susceptible bananas (Musa spp.). Indian. J. Exp. Biol. 2014, 52, 252–260. [Google Scholar]
- Wang, Z.; Jia, C.H.; Li, J.Y.; Huang, S.Z.; Xu, B.Y.; Jin, Z.Q. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish). Funct. Integ. Gen. 2015, 15, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Asaf, S.; Numan, M.L.; Kim, K.-M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Ewané, A.C.; Lepoivre, P.; de Bellaire, L.; Lassois, L. Involvement of phenolic compounds in the susceptibility of bananas to crown rot. A review. BASE 2012, 3, 393–404. [Google Scholar]
- Grene, R. Oxidative Stress and Acclimation Mechanisms in Plants. In The Arabidopsis Book; American Society of Plant Biologists: Rockville, MD, USA, 2002; Volume 1, p. e0036. [Google Scholar] [CrossRef]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications. Intern. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [PubMed]
- Olędzka, A.J.; Czerwińska, M.E. Role of Plant-Derived Compounds in the Molecular Pathways Related to Inflammation. Int. J. Mol. Sci. 2023, 24, 4666. [Google Scholar] [CrossRef] [PubMed]
- Kytidou, K.; Artola, M.; Overkleeft, H.S.; Aerts, J.M.F.G. Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics. Front. Plant Sci. 2020, 11, 357. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Terao, J. Potential Role of Quercetin Glycosides as Anti-Atherosclerotic Food-Derived Factors for Human Health. Antioxidants 2023, 12, 258. [Google Scholar] [CrossRef]
- Ismail, T.N.; Awang, R.; Azmans, R.; Sobhan, M.; Shahidan, W.N.S. Chemical compounds and antimicrobial activity of acetone Musa acuminate AA/AAA leaf stalk extracts on selective Gram-negative bacteria. Malays. J. Anal. Sci. 2018, 22, 957–964. [Google Scholar]
- Jouneghani, R.S.; Castro, A.H.F.; Panda, S.K.; Swennen, R.; Luyten, W. Antimicrobial activity of selected banana cultivars against important human pathogens, including candida biofilm. Foods 2020, 9, 435. [Google Scholar] [CrossRef] [PubMed]
- Ghorai, A.K.; Dutta, S.; Barman, R.A. Genetic diversity of Ralstonia solanacearum causing vascular bacterial wilt under different agroclimatic regions of West Bengal, India. PLoS ONE 2022, 17, e0274780. [Google Scholar] [CrossRef] [PubMed]
- Mariano, R.L.R.; Silveira, N.S.S.; Michereff, S.J. Bacterial wilt in Brazil: Current Status and Control Methods. In Bacterial Wilt Disease; Prior, P., Allen, C., Elphinstone, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 386–393. [Google Scholar]
- Jańczak-Pieniążek, M.; Migut, D.; Piechowiak, T.; Buczek, J.; Balawejder, M. The Effect of Exogenous Application of Quercetin Derivative Solutions on the Course of Physiological and Biochemical Processes in Wheat Seedlings. Int. J. Mol. Sci. 2021, 22, 6882. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Kim, S.H.; Bahk, S.; Vuong, U.T.; Nguyen, N.T.; Do, H.L.; Kim, S.H.; Chung, W.S. Naringenin induces pathogen resistance against Pseudomonas syringae through the activation of NPR1 in Arabidopsis. Front. Plant Sci. 2021, 12, 672552. [Google Scholar] [CrossRef] [PubMed]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtić, S.; Havaux, M. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Plant Physiol. 2017, 175, 1381–1394. [Google Scholar] [CrossRef]
- Pavić, V.; Jakovljević, M.; Molnar, M.; Jokić, S. Extraction of carnosic acid and carnosol from sage (Salvia officinalis L.) leaves by supercritical fluid extraction and their antioxidant and antibacterial activity. Plants 2019, 8, 16. [Google Scholar] [CrossRef]
- War, A.R.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav. 2011, 6, 1787–1792. [Google Scholar] [CrossRef]
- Lefevere, H.; Bauters, L.; Gheysen, G. Salicylic Acid Biosynthesis in Plants. Front. Plant Sci. 2020, 11, 338. [Google Scholar] [CrossRef]
HPLC-MS-NEGATIVE IONS | ||||||
---|---|---|---|---|---|---|
ID | Proposed Compound Identity | Molecular Formula | Retention Time | Molecular Ion | Plant Organ | Previously Found in Musa spp. |
8 | Decanoic acid | C10H20O2 | 1.17 | M-H | Both | [35] |
25 | 8-hydroxy-2,7,7,11,15-pentamethyl-5,12,16-trioxapentacyclo [9.8.0]nonadec-13(18)-ene-3,17-dione | C25H40O6 | 1.15 | M-H | Both | |
37 | Caffeyl alcohol | C9H10O3 | 1.15 | M-H | Both | |
77 | Sucrose | C12H22O11 | 1.19 | M-H | Both | |
92 | Citric acid | C6H8O7 | 1.18 | M-H | Both | [35] |
94 | N-Benzoyl-D5-glycine | C7H4D5NO3 | 1.21 | M-H | Both | |
98 | α, α-Trehalose | C12H22O11 | 1.21 | M-H | Both | |
102 | Shikimic acid | C7H10O5 | 1.20 | M-H | Both | [35] |
124 | Glucose, Fructose, Mannose, Galactose | C6H12O6 | 1.23 | M-H | Both | [36] |
131 | Isoorientin | C21H20O11 | 1.30 | M-H | Both | |
187 | Kaempferol 7-neohesperidoside | C27H30O15 | 1.56 | M-H | Both | [37] |
188 | Coumaroyl + C6H9O8 | C15H12O8 | 1.62 | M-H | Both | |
192 | Isorhamnetin 3-rutinoside | C27H30O15 | 1.59 | M-H | Both | [38] |
198 | Trihydroxyflavone C-hexoside C-pentoside | C23H46O7 | 1.56 | M-H | Both | |
211 | Geniposide | C17H24O10 | 1.59 | M+HCOO | Both | |
213 | Rutin | C27H30O16 | 1.62 | M-H | Both | [39] |
215 | 2-Isopropylmalic acid | C7H12O4 | 1.59 | M-H | Both | [36] |
220 | Epicatechin | C15H14O6 | 1.46 | M-H | Both | [40] |
251 | Isovitexin (4) | C21H20O10 | 1.60 | M-H | Both | |
252 | Spiraeoside, Spiraein, quercetin-4′-glucoside | C21H20O12 | 1.74 | M+H | Both | |
256 | Kaempferol-3-O-glucoside | C21H20O11 | 1.80 | M-H | Both | |
259 | Isoorientin | C19H18O10 | 13.48 | M-H | Leaf | |
268 | Pentose-Hexose + C10H17 | C15H22O10 | 18.59 | M+HCOO | Both | |
313 | (10E,15E)-9,12,13-trihydroxyoctadeca-10,15-dienoic acid | C18H32O5 | 21.48 | M-H | Both | |
322 | Labetalol, 2-hydroxy-5-[1-hydroxy-2-(4-phenylbutan-2-ylamino) ethyl] benzamide | C19H25N3O2 | 23.23 | M-H | Both | |
331 | Dienogest, 2-[(8S,13S,14S,17R)-17-hydroxy-13-methyl-3-oxo-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-17-yl] acetonitrile | C20H25NO2 | 24.00 | M-H | Both | |
337 | 13-HpOTrE, 13S-hydroperoxy-9Z,11E,15Z-octadecatrienoic acid, (9Z,11E,15Z)-13-Hydroperoxy-9,11,15-octadecatrienoic acid | C18H32O3 | 24.62 | M-H | Both | |
338 | Gibberellate, Gibberellic acid, Gibberellin A3, Gibberellin | C19H22O6 | 24.46 | M-H | Both | |
349 | N-Acetylneuraminic acid | C11H17NO8 | 25.25 | M-H | Both | |
351 | 3-[4-methyl-1-(2-methylpropanoyl)-3-oxocyclohexyl] butanoic acid | C13H22O3 | 25.66 | M-H | Both | |
357 | 9-Hydroperoxy-10E,12Z-octadecadienoic acid | C20H36O3 | 26.09 | M-H | Both | |
364 | 9-hydroxy-7-(2-hydroxypropan-2-yl)-1,4a-dimethyl-2,3,4,9,10,10a-hexahydrophenanthrene-1-carboxylic acid | C20H30O4 | 26.50 | M+H | Both | |
384 | 2-Hydroxyhippuric acid | C9H9NO4 | 28.27 | M-H | Both | |
390 | Canrenone, (9S,14S)-10,13-dimethylspiro [2,8,9,11,12,14,15,16-octahydro-1H-cyclopenta[a]phenanthrene-17,5′-oxolane]-2′,3-dione | C22H28O3 | 28.62 | M-H | Both | |
392 | Ajmaline | C20H26N2O | 28.55 | M-H | Both | |
398 | Docosanol | C22H46O | 28.85 | M+H | Both | [41] |
414 | Diacylglycerol 18:3 | C39H68O5 | 29.23 | M+HCOO | Both | |
421 | Medroxyprogesterone | C24H34O4 | 29.26 | M-H | Both | |
422 | Avocadyne Acetate | C21H36O3 | 29.51 | M+H | Both | |
456 | 7-O-Methylrosmanol | C21H36O3 | 29.90 | M+H | Both | |
457 | Hydroxylated linoleic acid | C18H32O4 | 29.93 | M-H | Both | |
458 | Dodecylbenzenesulfonic acid | C18H30O3S | 30.02 | M+H | Both | |
466 | Fucosyltransferase V | - | 30.31 | M+H | Both | |
470 | Furosemide, 4-chloro-2-(furan-2-ylmethylamino)-5-sulfamoylbenzoic acid | C12H11ClN2O5S | 30.22 | M-H | Both | |
472 | Lysophosphatidylcholine 18:3 | C27H50NO7P | 30.29 | M+HCOO | Both | |
474 | 1-[2-methyl-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] oxyphenyl] ethanone | C14H20O8 | 30.42 | M-H | Both | |
495 | Phosphatidylinositol 16:0 | C37H71O8P | 30.67 | M-H | Both | |
520 | [(4E)-7-acetyloxy-6-hydroxy-2-methyl-10-oxo-2,3,6,7,8,9-hexahydrooxecin-3-yl] (E)-but-2-enoate | C14H20O7 | 30.87 | M+H | Both | |
545 | Threo-7′-O-Butylresveptero acyclic dimer | C32H38O4 | 31.19 | M-H | Both | |
546 | Lysophosphatidylethanolamine 18:2 | C40H80NO8P | 31.08 | M-H | Both | |
563 | Monogalactosyldiacylglycerol 18:3 | C57H102O10P | 31.24 | M+HCOO | Both | |
581 | 1-(9Z,12Z-Octadecadienoyl)-2-hydroxy-sn-glycero-3-phosphoethanolamine | C42H78NO8P | 31.56 | M-H | Both | |
588 | Ethylenediaminetetraacetic acid | C10H16N2O8 | 31.66 | M-H | Both | |
620 | [5-acetyloxy-3-(hydroxymethyl)-2-oxo-6-propan-2-ylcyclohex-3-en-1-yl] 3-methylpentanoate | C17H26O6 | 32.15 | M+H | Both | |
621 | Naringenin-7-O-glucoside | C21H22O10 | 32.03 | M-H | Both | [39] |
633 | Hydroxyoctadecadienoic acid | C18H32O3 | 32.23 | M-H1 | Both | |
661 | N-(hexadecanoyl)-1-hydroxyethane-2-amide | C20H41NO8 | 32.76 | M-H | Both | |
684 | 9-Keto-octadecadienoic acid | C18H3O3 | 33.18 | M-H | Both | |
709 | Threo-7′-O-Isopropylresvepterol acyclic dimer | C29H32O6 | 33.87 | M-H | Both | |
716 | Sesamin | C20H18O6 | 33.96 | M+H | Both | |
721 | Methyl (4aR)-5,6-dihydroxy-1,1-dimethyl-7-isopropyl-2,3,4,9,10,10a-hexahydrophenanthrenanthrene-4a-carboxylate | C23H32O4 | 34.19 | M+Na | Both | |
733 | 1-Acyl-sn-glycero-3-phosphocholine | C26H52NO7P | 34.55 | M+HCOO | Both | |
742 | Thymol-beta-D-glucoside | C16H24O6 | 34.68 | M+H | Both | |
777 | Beta-alanyl-L-histidine | C9H14N4O3 | 40.92 | M+H | Both | |
807 | 2,6-Dihydroxybenzoic acid | C7H6O4 | 41.56 | M-H | Both | |
822 | Cystine | C6H12N2O4S2 | 42.03 | M+H | Both | |
824 | Norethindrone | C20H26O2 | 42.07 | M-H | Both | |
839 | Scutellarein 4′-methyl ether | C16H12O7 | 42.95 | M+H | Both | |
HPLC-MS-POSITIVE IONS | ||||||
505 | Candesartan | C24H20N6O3 | 1.41 | M+H | ||
568 | Adenosine | C10H13N5O4 | 1.42 | M+ | ||
577 | Ceramide | C34H66NO3 | 1.40 | M+H | ||
722 | Isoshaftoside | C21H20O11 | 1.53 | - | ||
728 | 9-Methoxycamptothecin | C22H20N2O5 | 1.51 | - | ||
752 | Kaempferol-3-O-rutinoside | C27H30O15 | 1.57 | M+H | [42] | |
758 | Glycochenodeoxycholic acid | C26H43NO6 | 1.57 | M+H | ||
763 | Isovitexin | C21H20O10 | 1.57 | - | ||
769 | Glycolithocholic acid | C26H43NO4 | 1.61 | M+H | ||
974 | Spiraeoside | C21H20O11 | 10.98 | M+H | ||
980 | Kaempferol-7-O-neohesperidoside | C27H30O15 | 11.33 | M+H | ||
984 | Selenomethionine | C5H11NO2Se | 11.48 | M+H | ||
985 | Phytol | C20H40O | 11.60 | M+H | [40] | |
986 | Orientin | C27H120O11 | 11.67 | M+H | ||
990 | Cis-Nerolidol | C15H26O | 12.05 | M+ | ||
991 | Luteolin 4′-O-glucoside | C21H20O11 | 12.11 | M-2H | ||
1004 | Vitexin-2′‘-O-rhamnoside | C27H30O14 | 12.67 | M+H | ||
1012 | Apigenin 7-O-neohesperidoside | C27H30O15 | 12.91 | M+H | ||
1018 | 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-[3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl] oxymethyl] oxan-2-yl] oxychromen-4-one | C27H30O17 | 13.21 | M+H | ||
1731 | 6-Acetoxy-9-benzoyloxy-1,8-dihydroxydihydro-β-agarofuran | C26H30O8 | 28.93 | M+H | ||
1741 | Methyl 4-hydroxy-3,5-dimethoxybenzoate | C10H12O5 | 29.02 | - | ||
1755 | Lauryl diethanolamide | C14H31NO2 | 29.19 | - | ||
1765 | (Z)-9,12,13-trihydroxyoctadec-15-enoic acid | C18H34O5 | 29.24 | M-H | ||
1788 | (1R,9S,10S)-3,4-dihydroxy-11,11-dimethyl-5-(propan-2-yl)-16-oxatetracyclo [7.5.2.0] hexadeca-2(7),3,5-triene-8,15-dione | C19H22O5 | 29.26 | M-H | ||
2542 | Dibutylphthalate | C16H22O4 | 33.90 | M+H | ||
2543 | 1-Palmitoylglycerophosphocholine | C24H50NO7P | 33.88 | M+ | ||
2544 | Diacylglycerol trimethylhomoserine | C31H60NOPS | 33.92 | M+H | ||
2548 | 1-Hexacosanol | C26H54O | 33.94 | - | ||
2551 | 1-Oleoylglycerophosphocholine | C30H60NO7P | 34.00 | M+ | ||
2614 | Beta-Peltatin | C18H23NO5 | 34.46 | M-H | ||
2624 | 8-(2-hydroxy-3-methoxy-3-methylbutyl)-7-methoxychromen-2-one | C16H18O5 | 34.56 | M+NH4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, R.A.; Terán-Maza, V.A.; Portilla-Benalcazar, K.A.; Ramos-Guaytarilla, L.E.; Vizuete-Cabezas, M.J.; Melo-Heras, E.J.; Cubi-Insuaste, N.S.; Catana, R.D. Secondary Metabolites and Antioxidant Activity against Moko Disease as a Defense Mechanism of Musa spp. from the Ecuadorian Coast Area. Metabolites 2024, 14, 307. https://doi.org/10.3390/metabo14060307
Mihai RA, Terán-Maza VA, Portilla-Benalcazar KA, Ramos-Guaytarilla LE, Vizuete-Cabezas MJ, Melo-Heras EJ, Cubi-Insuaste NS, Catana RD. Secondary Metabolites and Antioxidant Activity against Moko Disease as a Defense Mechanism of Musa spp. from the Ecuadorian Coast Area. Metabolites. 2024; 14(6):307. https://doi.org/10.3390/metabo14060307
Chicago/Turabian StyleMihai, Raluca A., Vanessa A. Terán-Maza, Karen A. Portilla-Benalcazar, Lissette E. Ramos-Guaytarilla, María J. Vizuete-Cabezas, Erly J. Melo-Heras, Nelson S. Cubi-Insuaste, and Rodica D. Catana. 2024. "Secondary Metabolites and Antioxidant Activity against Moko Disease as a Defense Mechanism of Musa spp. from the Ecuadorian Coast Area" Metabolites 14, no. 6: 307. https://doi.org/10.3390/metabo14060307
APA StyleMihai, R. A., Terán-Maza, V. A., Portilla-Benalcazar, K. A., Ramos-Guaytarilla, L. E., Vizuete-Cabezas, M. J., Melo-Heras, E. J., Cubi-Insuaste, N. S., & Catana, R. D. (2024). Secondary Metabolites and Antioxidant Activity against Moko Disease as a Defense Mechanism of Musa spp. from the Ecuadorian Coast Area. Metabolites, 14(6), 307. https://doi.org/10.3390/metabo14060307