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Abstract: Metabolic reprogramming is a hallmark of cancer, driving the development of therapies
targeting cancer metabolism. Stable isotope tracing has emerged as a widely adopted tool for
monitoring cancer metabolism both in vitro and in vivo. Advances in instrumentation and the
development of new tracers, metabolite databases, and data analysis tools have expanded the scope
of cancer metabolism studies across these scales. In this review, we explore the latest advancements
in metabolic analysis, spanning from experimental design in stable isotope-labeling metabolomics
to sophisticated data analysis techniques. We highlight successful applications in cancer research,
particularly focusing on ongoing clinical trials utilizing stable isotope tracing to characterize disease
progression, treatment responses, and potential mechanisms of resistance to anticancer therapies.
Furthermore, we outline key challenges and discuss potential strategies to address them, aiming to
enhance our understanding of the biochemical basis of cancer metabolism.
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1. Introduction to Stable Isotope Tracing

Stable isotope tracing is a powerful technique used in metabolic research to investigate
the pathways and dynamics of biochemical reactions within biological systems [1]. It
involves labeling specific atoms within molecules, typically carbon, nitrogen, or hydrogen,
with stable isotopes such as 13C, 15N, or 2H, respectively [2–5]. By tracking the fate of
these labeled atoms through metabolic pathways, researchers can gain insights into various
metabolic processes, including nutrient utilization, energy production, and biosynthesis.
In the context of metabolic diseases, stable isotope tracing offers valuable insights into
altered metabolic fluxes and aberrant pathways associated with conditions such as obesity,
diabetes, and metabolic syndrome. By comparing the metabolism of labeled substrates in
diseased versus healthy states, researchers can identify metabolic signatures, dysregulated
pathways, and potential therapeutic targets. It is also useful in characterizing metabolic
heterogeneity within the tumor microenvironment [6]. Overall, stable isotope tracing is an
indispensable tool for unraveling the complexities of metabolic diseases, providing crucial
information for understanding disease mechanisms and developing novel therapeutic
interventions. Below, we outline the typical steps involved in conducting a stable isotope
tracing assay.

1.1. Overview of Experimental Design of Stable Isotope Tracing Experiments

Unlike untargeted metabolomics analysis, which proceeds without the requirement of
a hypothesis or a focus on a specific metabolic pathway, stable isotope studies begin with the
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design of a tracing protocol, which is optimized largely based on the metabolic pathways of
interest. This process demands the careful consideration of factors such as tracer selection,
labeling protocol, sampling time points, and tissue-specific metabolic dynamics.

Formulation of research question: Building upon prior discoveries and working with a
formulated hypothesis often simplifies the process. However, for discovery studies lacking
a pre-established hypothesis, it is essential to conduct untargeted metabolomics or other
types of omics (e.g., gene expression) studies before performing a stable isotope tracing
analysis [7,8]. These initial investigations help identify dysregulated metabolic pathways
and formulate specific research questions that the stable isotope tracing experiment aims to
address. This step is crucial for guiding the design of an appropriate isotope tracing study
based on the knowledge of biochemical reactions involved in the pathway(s) of interest.
Factors such as cell culture conditions, animal models, or human subjects should also be
considered based on the specific research questions to be addressed.

Selection of tracer(s): The choice of appropriate stable isotopes (e.g., 13C, 15N, 2H,
18O) and specific labeled compounds for tracing the desired metabolic pathway requires
an understanding of the metabolic reactions. The choice of tracers is highly dependent
on the metabolic enzymes of interest. Stable isotope-labeled tracers that closely mimic
endogenous metabolites provide accurate insights into metabolic fluxes. Many types of
cancer cells utilize glucose and glutamine [9,10], and hence, when there is not a well-
formulated hypothesis or a specific metabolic enzyme to monitor, uniformly labeled 13C
tracers (e.g., [U-13C6]glucose or [U-13C5]glutamine) are frequently used to study central
carbon metabolism. These tracers allow researchers to monitor the utilization of glucose or
glutamine carbons for the biosynthesis of downstream metabolites [2,3]. While uniformly
labeled tracers provide a broad view of metabolic flux, singly labeled tracers may be a
good option for monitoring particular metabolic enzyme activities. For example, position-
specific 13C tracers, such as [1-13C1]-pyruvate, result in unlabeled citrate via pyruvate
dehydrogenase activity, while citrate labeled with a single 13C atom ([M+1] isotopologue)
would indicate pyruvate carboxylase activity [11].

15N tracers are commonly used as stable isotope labels for tracking nitrogen metabolism,
such as the incorporation of 15N into amino acids, nucleotides, or hexosamine. 2H tracers
are primarily used for monitoring reactions involving isomerase reactions and dehydroge-
nase reactions with NADH or NADPH as co-factors [12,13]. 2H2O tracing is also widely
used for quantifying gluconeogenesis and pathways leading to the de novo biosynthesis
of macromolecules (e.g., fatty acids, proteins, and DNA), both in vivo and in vitro [14].
To track metabolism involving the use of oxygen or the production of reactive oxygen
species, the use of 18O2 as the tracer can provide essential information [15,16]. Additionally,
H2[18O] as a stable isotope carrier of 18O was used not only for monitoring phosphoryl
turnover but also for tracking oxygen exchange in other reactions, such as the tricarboxylic
acid (TCA) cycle [17]. It is important to consider the compatibility of tracers with analytical
techniques. For example, using an instrument capable of distinguishing between 13C
and 15N isotopologues is beneficial when performing 13C and 15N dual isotopic labeling
experiments. A comprehensive review detailing the choice of stable isotope tracers and the
corresponding metabolic reactions to be monitored is available elsewhere [18].

Labeling protocol optimization: To optimize isotopic enrichment while minimizing
non-specific effects (e.g., insulin fluctuations) and metabolic perturbations, it is essential to
tailor conditions such as tracer concentration, the route and timing of tracer administration,
and labeling duration according to the metabolic activities and kinetics of the pathways
of interest and the specific experimental models to be examined (cells, tumor slices, or
whole organisms) [2,3,19]. In animal studies, tracer administration procedures should
be assessed as certain techniques, such as anesthesia, have been demonstrated to impact
specific metabolic activities [20]. It is also important to optimize the tracer dose to achieve
sufficient measurement sensitivity while minimizing metabolic perturbations that can lead
to experimental artifacts [21]. For monitoring metabolic activities with a fast turnover rate,
such as glycolysis, a bolus injection or short-term infusion of 13C tracers is sufficient to
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achieve high enrichments in measured metabolites, but for monitoring protein or lipid
synthesis, alternative tracer administration methods (e.g., via drinking water or diet) are
necessary due to the slower turnover rate of these pathways [22]. Pilot experiments may be
performed to capture metabolic dynamics under various conditions, guiding the definition
of sampling time points based on pathway kinetics. Sample collection strategies should be
designed to minimize metabolic disruption and post-harvest metabolite turnover, which is
often achieved through snap-freezing in liquid nitrogen [23].

Sample processing and analysis: While errors should be managed throughout the
process, analytical errors can typically be evaluated and minimized by integrating internal
standards or incorporating quality control measures, such as the analysis of unlabeled
samples or labeled standards to detect unexpected measurement interferences. In contrast,
pre-analytical errors, such as delays in sample freezing or improper storage can compromise
metabolite integrity and present significant challenges for monitoring and control. Strict ad-
herence to sample collection and handling protocols is essential to minimize pre-analytical
errors, preserve stable isotopic labeling, and maintain metabolite integrity.

Metabolites or lipids are typically extracted using organic solvents such as methanol–
water mixtures, acetonitrile–water mixtures, or isopropanol–water mixtures, as well as
more hydrophobic solvents like chloroform or methyl tert-butyl ether (MTBE) for lipids.
Analytical techniques such as mass spectrometry (MS) and nuclear magnetic resonance
spectroscopy (NMR) are commonly employed to measure isotopologues or isotopomers,
respectively. Computational tools are used for calculating isotopic enrichment, correcting
for natural isotopic abundance, or performing metabolic flux analysis to identify differences
between experimental groups.

Validation and integration: The conclusions drawn from stable isotope tracing experi-
ments require validation using complementary methods like genetic or pharmacological
interventions. These interventions allow for the direct manipulation of key enzyme ac-
tivities within dysregulated metabolic pathways, thus confirming their significant roles
in cancer biology, such as influencing cancer proliferation or metastasis. Additionally,
integrating stable isotope tracing data with other omics datasets, such as gene expression
profiles or metabolite pool size measurements, facilitates a thorough comprehension of
metabolic regulation and network interactions.

1.2. Analysis of Isotope Labeling with Nuclear Magnetic Resonance (NMR)

NMR spectroscopy: NMR spectroscopy is a powerful tool for analyzing stable isotope
labeling patterns [24]. In NMR analysis, metabolites are exposed to radiofrequency pulses,
and nuclei within the metabolites absorb energy and transition between various energy
states. This process generates frequencies that offer insights into the chemical environment
of the nuclei, facilitating the identification and quantification of metabolites. NMR-based
isotope tracing has roots dating back to as early as the 1970s [25–27]. Isotopically labeled
metabolites exhibit distinct NMR signals compared to their unlabeled counterparts due
to changes in nuclear spin. By comparing the NMR spectra of labeled and unlabeled
samples, researchers can identify isotopically enriched metabolites and quantify the extent
of labeling, which allows for monitoring the fate of stable isotope-labeled tracers. For
instance, in glucose metabolism studies, the incorporation of 13C-labeled glucose into
downstream metabolites, such as lactate, citrate, glutamate, or alanine, can be monitored
using NMR. Furthermore, unlike MS, NMR enables researchers to identify the positions
of labeled atoms within molecules by analyzing the spectral patterns and chemical shifts
of NMR peaks, providing insights into specific metabolic pathways, which is crucial for
understanding pathways like glucose metabolism in which the position of the labeled atom
may be indicative of its origin. By measuring the incorporation of labeled precursors into
metabolites of interest, researchers can calculate flux rates and assess the activity of specific
metabolic pathways.

Magnetic resonance imaging: Various non-invasive and nondestructive imaging tech-
niques have been developed based on the principles of NMR [28–31]. Traditional magnetic
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resonance imaging (MRI) essentially measures hydrogen atoms, which are abundant in
biological organisms, especially in water and fat, and provides information about the shape
and internal structure of soft tissues [32,33]. Due to sensitivity issues, in many instances,
MRI cannot directly monitor other metabolites in tissues unless they are isolated and
enriched. The spatial resolution of metabolism has been achieved by combining PET-CT
scanning or MRI with metabolite extraction from dissected tumors, followed by NMR or
MS-based analysis [34]. By introducing hyperpolarized 13C tracers, hyperpolarized MRI
(HP-MRI) has improved sensitivity [35] and enables the non-radioactive and non-invasive
monitoring of metabolic processes in vivo, offering real-time metabolic information with
spatial resolution [28–31,36]. HP-MRI provides insights into regional metabolic heterogene-
ity and facilitates the characterization of metabolic phenotypes associated with diseases
such as cancer. For instance, MRI has advanced the understanding of glutamine metabolism
in tumor xenograft models, highlighting the heterogeneity of tumor metabolism [37,38].
It has been used to noninvasively monitor pyruvate metabolism in prostate and breast
cancers in the clinical setting [39–41].

Advantages: NMR-based metabolomics is nondestructive, allowing for the repeated
analysis of the same sample without significant sample loss [42]. In contrast, MS-based
methods involve ionization and fragmentation, altering the sample irreversibly with each
analysis. Additionally, since the intensity of an NMR signal correlates directly with the
number of nuclei responsible for a particular resonance, NMR inherently yields quantita-
tive data [43,44]. An underappreciated aspect of NMR is its ability to accurately quantify
low-isotope enrichments (e.g., ~0.1%) that are below the noise threshold of typical MS mea-
surements [45]. Furthermore, NMR’s instrument-independent chemical shifts contribute to
greater reproducibility of metabolomics results across different laboratories, allowing for
data exchange among instruments, especially those with comparable hardware, or even
data from different laboratories and with quite variable skills [44,46].

Limitations: NMR-based metabolomics does have limitations. NMR typically ex-
hibits lower sensitivity compared to MS-based methods, resulting in fewer identified
metabolites [42,47,48]. At the moment, the availability of NMR-specific data processing
software may be more limited compared to MS-based metabolomics [42,49,50]. Despite
these drawbacks, NMR remains a valuable tool for metabolomic studies, particularly for its
nondestructive nature, reproducibility, and capability for spatial metabolite imaging.

1.3. Analysis of Stable Isotope Labeling Using Mass Spectrometry (MS)

Mass spectrometry: In addition to NMR-based metabolomics, MS, especially high-
resolution mass spectrometry (HRMS), is a powerful analytical technique widely employed
for studying stable isotope labeling in metabolomics research [2,5,51]. MS measures the
mass-to-charge ratio (m/z) of ions generated from molecules through ionization techniques
such as electrospray ionization (ESI). Isotopically labeled metabolites exhibit distinct mass
shifts compared to their unlabeled counterparts due to the incorporation of heavier iso-
topes, such as 13C, 15N, 2H, or 18O. Well-calibrated HRMS instruments with high mass
accuracy and resolution ensure the reliable detection and quantification of isotopically
enriched metabolites, even at low abundance levels. Most MS-based metabolomics ap-
proaches typically employ liquid chromatography mass spectrometry (LC-MS) coupled
with electrospray ionization (ESI). However, alternative separation methods, such as gas
chromatography (GC), have also been used [52–54], offering complementary capabilities
for analyzing certain metabolites, such as volatile metabolites. Additionally, tandem mass
spectrometry (MS/MS) is commonly employed in MS-based metabolomics to facilitate
metabolite identification. It involves the fragmentation of precursor ions to provide struc-
tural information, which can offer insights into the position of stable isotopes within the
metabolite molecules [55]. Comprehensive reviews of LC-MS metabolomics method devel-
opment and recent advancements in the field have been previously documented [56–58].

Mass spectrometry imaging: Even though MS data typically lack spatial resolu-
tion, efforts to address this limitation have led to the development of mass spectrometry
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imaging (MSI) [59–61]. MSI typically utilizes matrix-assisted laser desorption ionization
(MALDI) [60] or related techniques, such as desorption ionization electrospray (DESI) [61].
MSI has proven valuable in measuring metabolomic flux in both healthy and tumorous tis-
sues, revealing spatial heterogeneity in metabolic phenotypes [62,63]. However, compared
to MRI, MSI-based techniques typically require the isolation of tissue sections [62,63] and
have not yet been widely applied for the direct measurement of in vivo flux, even though
efforts are made to advance the in vivo applications [64–66].

Advantages: The major advantage of MS is that MS methods offer high sensitivity
and resolution compared to NMR, enabling the detection and identification of thousands
of metabolites from a complicated biological sample [42,67]. In addition, the MS can be
coupled with a variety of separation platforms, such as LC, GC, ion chromatography (IC),
supercritical fluid chromatography (SFC), and capillary electrophoresis (CE), which help to
resolve individual chemical components and improve sensitivity.

Limitations: However, there are several weaknesses to MS approaches. In contrast
to NMR, MS-based metabolomics typically tracks isotopologues, and MS1 scans cannot
resolve the positional isotopic isomers of a given metabolite because MS detects the mass-
to-charge ratio rather than the molecular structure. In contrast, NMR spectroscopy can
provide information about the spatial arrangement of atoms within a molecule, allowing
for the resolution of positional isotopic isomers. Additionally, MS itself is not inherently
quantitative. The intensity of MS signals can be influenced by various experimental factors,
such as ionization efficiency, matrix effects, and instrument settings, and hence, directly
comparing datasets from different batches or across laboratories can be challenging [68–70].
However, it is worth noting that Clark et al. report qualitatively similar PCA plots in their
interlaboratory study, indicating that while direct data comparison is often difficult, the
overall trends observed in data across laboratories largely align [69]. Additionally, the
impact of interlaboratory variables on the MS signal readout of isotopologues or isotopic
isomers of the same metabolite is consistent, and hence, variations are minimized when
labeling percentages, rather than relative intensities, are reported in the stable isotope-
tracing analysis.

Because of these complementary capabilities of MS and NMR, efforts have been made
to enable their coupling in metabolomics analysis with enhanced confidence in metabolite
identification [49,71]. Publicly available software for modeling combined MS and NMR
datasets has been developed, which provides improved precision when applied to estimate
metabolic fluxes from stable isotope tracing experiments [72].

1.4. Data Analysis

NMR or MS raw data analysis: Once NMR- or MS-based metabolomic data are
collected, they undergo several preprocessing steps before statistical analysis. The pre-
processing steps include baseline correction and solvent peak suppression to minimize
experimental variability, followed by alignment of spectral peaks. In MS data, alignment
occurs along the retention time of known features, whereas in NMR spectra, alignment
is based on a chemical shift. Depending on the nature of the data, normalization may
also be necessary, which can be achieved through various methods, such as using an in-
ternal standard or total ion chromatogram for normalization. Metabolite identification
in stable isotope tracing studies follows a similar process to general metabolomics. For
example, stable isotope labeled metabolite identification also relies on features like mass-
to-charge ratio (m/z), MS/MS fragmentation patterns, and chromatographic retention
time. Identification based on the isotope pattern may not be applicable in stable isotope
tracing experiments because of the incorporation of exogenous stable isotopes. There-
fore, it is important to analyze unlabeled control samples alongside labeled samples to
facilitate metabolite identification based on comparisons to spectral libraries. In-depth
discussions of spectral alignment and metabolite identification steps have already been
covered elsewhere [44,67,73,74]. In addition to data processing software provided by ven-
dors of NMR or MS instruments, several open-source software options are available for
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metabolomic data analysis. For NMR data, tools like rDolphin and AQuA are used for
targeted or semi-targeted metabolite analysis [75,76], while tools like AlpsNMR or SigMa
offer functionalities for processing and analyzing NMR-based untargeted metabolomics
data [77,78]. Open-source tools, such as MAVEN, Skyline, and PIRAMID, or vendor-
specific commercially available software (e.g., TraceFinder, MassHunter, etc.) are widely
used to analyze data collected using targeted MS acquisition methods such as multiple
reaction monitoring (MRM) or the extraction of targeted metabolite information from
data collected using an untargeted HRMS method [79–81]. Using these tools for targeted
metabolite analysis usually requires a file containing targeted metabolite mass-to-charge
ratio, metabolite retention times, or MRM scan parameters to retrieve peaks from raw data
files. For MS-based untargeted metabolomics data analysis, open-source platforms like
XCMS, MetaboAnalyst, MS-DIAL, and MZmine provide comprehensive solutions for the
peak detection, alignment, normalization, and annotation of MS data [73,82–84]. More
specifically for stable isotope tracing data analysis, software tools such as X13CMS, Dy-
naMet, geoRge, HiResTEC, MetTracer, and others offer a global analysis of 13C enrichment
in metabolites [85–89]. X13CMS is an extension of XCMS, leveraging its output to identify
isotopologue groups corresponding to isotopically labeled compounds [85]. Beyond 13C,
X13CMS can analyze other isotope-labeled metabolites, making it a versatile tool for stable
isotope tracing studies. A comprehensive review of software options for metabolomics
data analysis can be found elsewhere [50].

Natural abundance correction: Since many stable isotopes used for labeling studies
are naturally occurring at measurable levels, the mass isotopologue distribution (MID)
measured by MS does not directly reflect the isotope enrichment from exogenous isotope
tracers, and correcting for naturally occurring isotopic abundances is important when
analyzing labeling data. This correction ensures that the observed isotopic distributions
are attributed solely to the introduced tracer, allowing for the precise quantification and
interpretation of metabolic fluxes and pathways. Contemporary methods for natural abun-
dance correction integrate the observed MID with the theoretical isotope abundance of
the analyte’s constituent atoms to solve for the corrected MID using a linear transforma-
tion or the least-squares regression method. Since natural abundance corrections can be
computationally intensive, several software tools have been developed to facilitate this
process [90–92]. PolyMID-Correct and AccuCor2 are open-source tools that can be used to
handle data with dual-isotope tracers and data collected on low- and high-mass-resolution
mass spectrometers. IsoCorrectoR is primarily used for the natural abundance correction
of multiple-tracer data, such as 13C and 15N, collected using HRMS at the MS1 and/or MS2
level [93], and IsoCor v2 is designed for data with any resolution [91]. It is important to note
that some tools, like IsoCorrectoR, assume that all non-tracer isotopologues are resolved
from tracer isotopologues. However, depending on the mass of the analyte and the resolv-
ing power of the instrument used, some non-tracer isotopologues may not be resolved
from tracer isotopologues, even with a high-resolution instrument. For example, if 13C2
is incorporated into acetyl-CoA, the mass difference from [18O1]-acetyl-CoA arising from
natural abundance of oxygen is only 0.00241, and given that the m/z of [13C2]-acetyl-CoA
is 812.13976 in positive mode, a resolving power of at least 336,929 would be required to
distinguish [13C2]-acetyl-CoA from [18O1]-acetyl-CoA. An in-depth discussion of the math-
ematical calculations involved in natural abundance correction and the potential impact of
corrected MIDs on metabolic flux analysis is elegantly provided elsewhere [90,94].

Data visualization and mathematical modeling: In some cases, a direct interpretation
of the data, such as simply plotting the abundance of measured isotopomers or isotopo-
logues, is sufficient to provide insights into metabolic alterations, especially for simpler
systems or when focusing on specific metabolites. These plots can be made manually, or
a web-based tool can be employed for a pathway-based visualization of stable isotope
tracing data [95]. Nevertheless, the modeling of stable isotope tracing offers a more com-
prehensive and quantitative approach [96–100]. By integrating metabolite measurements
with computational models that incorporate mass conservation constraints, researchers can
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gain a deeper understanding of metabolic network dynamics and regulation. Flux balance
analysis (FBA) and metabolic flux analysis (MFA) are two commonly used computational
approaches in systems biology for predicting and analyzing metabolic fluxes in biological
systems. FBA assumes that cellular metabolism operates at steady state, with the rates
of metabolite production and consumption balanced, and FBA predicts fluxes based on
biochemical and physiological knowledge, such as reaction stoichiometry, thermodynamics,
enzyme capacity constraints, and optimality assumptions [101]. On the other hand, MFA
estimates metabolic reaction rates and flux distributions by fitting mathematical models
to experimental data obtained from stable isotope labeling experiments [98]. Commonly
used software tools for 13C MFA analysis include 13CFLUX2, FiatFlux, Metran, INCA, and
others [102–109]. A detailed review of MFA analysis and commonly used software tools
can be found in previous publications [110,111].

Interpretation and hypothesis generation: The results obtained from fluxomics anal-
ysis can be used to test existing hypotheses or generate new ones about how metabolic
pathways are regulated and their overall function within the system under study [1,98].
However, to validate these hypotheses and further refine our understanding of metabolism,
experimental testing is essential. Experimental validation could involve a variety of ap-
proaches. For example, genetic or pharmacological manipulations using gene knockout,
knockdown, or overexpression, as well as the use of small molecule inhibitors or activators,
can be employed to directly manipulate the enzymes involved in metabolic pathways. By
perturbing the expression or activity of these enzymes, researchers can assess the impact
on metabolic fluxes and validate hypotheses regarding the importance of these enzymes
in pathway regulation. Additionally, measuring cancer cell physiology, such as prolifera-
tion rate, metastasis potential, and response to anticancer treatments, is also necessary to
validate the regulatory role of a particular metabolic enzyme or pathway in cancer biology.

2. The Applications of Stable Isotope Tracing in Cancer Research

The use of stable isotope tracing in cancer metabolism studies is invaluable for identify-
ing potential drug targets that hinder metabolic reprogramming, including the upregulation
of glycolysis, the pentose phosphate pathway (PPP), the TCA cycle, and nucleotide biosyn-
thesis. In this section, we mainly focus on reviewing the applications of stable isotope
tracing using 13C glutamine, 15N glutamine, and 13C glucose for understanding cancer
metabolism. Due to space limitations, we primarily discuss studies published within the
last three years, and we apologize for any studies not cited here. In vitro or ex vivo, isotope
labeling usually involves the straightforward substitution of unlabeled nutrients with
their labeled counterparts (e.g., replacing glucose with 13C-labeled glucose) [19,112], while
the method for in vivo isotope tracing varies depending on the tracer and the metabolic
pathways of interest [3,113,114].

2.1. Exploring Cancer Metabolism through Glutamine Isotope Tracing

Stable isotope tracing utilizing 13C- or 15N-labeled glutamine, coupled with various
analytical techniques, such as LC-MS, GC-MS, or NMR, has been widely used for quantita-
tively monitoring glutamine metabolism in cancer research (Figure 1). Glutamine plays
a pivotal role in the survival and proliferation of cancer cells by serving as a crucial car-
bon and nitrogen source [9,115]. This multifaceted role contributes to various metabolic
pathways essential for tumor growth. Glutamine is utilized in cancer cells to provide
carbon for the synthesis of lipids and metabolites in the TCA cycle, as well as nitrogen
for the biosynthesis of hexosamine, amino acids, and nucleotides, thus supporting the
demands of cancer cell proliferation and growth [115–117]. Glutamine is converted to glu-
tamate through glutaminolysis catalyzed by glutaminase (GLS). Subsequently, glutamate is
further deaminated to α-ketoglutarate (αKG) through the action of enzymes such as gluta-
mate dehydrogenase (GDH) or various transaminases, including glutamate-oxaloacetate
transaminase (GOT), glutamate-pyruvate transaminase (GPT), and phosphoserine transam-
inase (PSAT) [9,115]. Once present in the TCA cycle, αKG can be oxidized to generate
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four-carbon units or undergo reductive carboxylation to isocitrate and citrate, eventually
leading to the synthesis of fatty acids [115,117].

By using [U-13C5]-glutamine, researchers can track the flux of carbons from glutaminol-
ysis via GLS to oxidative and reductive TCA metabolites (Figure 1). Specifically, they can
analyze the isotopic labeling patterns of metabolites, such as glutamate (M+5) and citrate
(M+4) from oxidative TCA cycle flux and citrate (M+5) from reductive carboxylation flux,
to determine the extent of glutamine-derived carbon incorporation [118]. [1-13C]glutamine
can be applied to specifically confirm reductive carboxylation activity since glutamine C1
is lost as CO2 in the oxidative metabolism of αKG. However, it is important to measure
isotope incorporation in sink products such as palmitate or 2-hydroxyglutarate (2-HG)
and apply comprehensive flux modeling to determine the direction and magnitude of the
isocitrate dehydrogenase (IDH) flux since some labeling in citrate results from reversible
exchange with αKG rather than net reductive flux [119]. Glutamine contains the following
two nitrogens: 5-N or amide-N and 2-N or amine-N. Glutamine with 15N labeling at the
five position ([5-15N]glutamine, or [Amide-15N]glutamine) can be used to monitor nitrogen
incorporation into amino acids, such as asparagine, nucleotides, and hexosamine, while
([2-15N]glutamine, or [Amine-15N]glutamine leads to the 15N labeling at the two position
of amino acids, such as alanine, aspartate, etc. 2-15N labeling in aspartate is subsequently
incorporated into newly synthesized nucleotides [8,120]. Uniformly 15N-labeled glutamine
([U-15N2]glutamine) offers a comprehensive 15N labeling strategy to simultaneously enrich
a variety of downstream nitrogen-containing metabolites.

Metabolic flexibility: Stable isotope tracing with 13C- or 15N-labeled glutamine helps
to understand the metabolic flexibility of cancer cells and provides insights into combi-
nation therapies that target multiple metabolic vulnerabilities simultaneously, thereby
improving the effectiveness of antitumor treatments [121]. In one study, the use of a
[U-13C5]-glutamine tracing analysis of osteosarcoma cells enabled researchers to investi-
gate the contribution of the reductive carboxylation of glutamine-derived α-ketoglutarate
to aspartate production, which helped to explain why osteosarcoma cells with deficien-
cies in succinate dehydrogenase (SDH), also known as electron transport chain (ETC)
complex 2, continue to produce and rely on aspartate synthesis for proliferation [122].
When [U-13C5]-glutamine was used as the tracer, the knockout (KO) of SDH decreased
the oxidative production of aspartate (M+4) but showed an increase in aspartate (M+3)
derived from reductive carboxylation of glutamine-derived α-ketoglutarate in osteosar-
coma cells [122]. The inhibition of ETC complex 1 increased reductive carboxylation and
pyruvate carboxylation-derived aspartate production and rescued cell proliferation in os-
teosarcoma cells with SDS deficiency [122]. In another study, SDH-deficient cells have been
shown to rely on glutamate–pyruvate transaminase (GPT2) for proliferation through GPT2-
dependent α-ketoglutarate and alanine production [123], which was monitored through
isotope tracing using [U-13C5]glutamine and [2-15N]glutamine. GPT2 drives reductive TCA
anaplerosis and regenerates NAD+ to support glycolysis [123]. [U-13C5]glutamine tracing
confirmed that the inhibition of GPT2 in SDH-deficient cells decreased the levels of citrate
(M+5) and cytosolic malate (M+3), accompanied by halting cancer proliferation [123]. In
another study, an unbiased screening approach was employed to elucidate the adaptive
mechanisms of cancers in response to glutamine deprivation, and this approach facili-
tated the identification of ALDH18A1, which encodes P5CS, the rate-limiting enzyme
in the proline biosynthetic pathway, as a gene that cells can downregulate in response
to glutamine starvation [124]. The subsequent [U-13C5]glutamine and [U-13C6]glucose
tracing analysis confirmed decreased proline synthesis, which enabled carbon to be redi-
rected toward de novo glutamate and glutamine synthesis, supporting the proliferation of
glutamine-restricted cancer cells [124].

Metabolic heterogeneity: It is acknowledged that tumors display significant levels of
genomic and metabolic heterogeneity [125–127]. Stable isotope tracing is of great value
in examining both inter- and intratumoral metabolic heterogeneity. For example, stable
isotope tracing assays with [U-13C5]glutamine in precision-cut slices of patient-derived
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xenografts (PDX), followed by GC-MS analysis, demonstrated the metabolic heterogeneity
of human prostate tumors [128]. In another study, multi-isotope imaging mass spectrometry
with isotope ratio mass spectrometry was used to analyze tumors isolated from mice
bearing melanoma and malignant peripheral nerve sheath tumors injected with multiple
tracers, including 15N-labeled glutamine [129]. The 15N labeling was monitored through
an increase in the 12C15N−/12C14N− ratio [129]. The results revealed tumor metabolic
heterogeneity [129].

Metabolic requirements in tumor metastasis: CB-839 is a GLS inhibitor and reduces the
conversion of glutamine to glutamate [130]. CB-839, when combined with metformin, re-
sults in both primary osteosarcoma growth inhibition and a notable reduction in metastatic
outgrowth in vivo [131]. A [U-13C6,15N2]glutamine tracing analysis confirmed that the
diminished M+4 or M+2 TCA intermediates without affecting M+5 or M+3 TCA metabo-
lites, indicating a reduction in oxidative TCA cycle activity but no effect on reductive
activity [131]. In another study, a gene expression analysis of breast cancer (BT474) growth
in various tissues suggested the upregulation of genes related to lipid metabolism in breast
tumors growing in the brain [7]. A subsequent [U-13C6]glucose tracing analysis with
GC-MS and MALDI-MSI confirmed the elevated fatty acid synthesis. The genetic and phar-
macological inhibition of FASN suppresses breast cancer growth in the brain, indicating
that fatty acid synthesis could potentially serve as a therapeutic target for breast cancer
brain metastases [7].

Tumor microenvironment: Stable isotope tracing using [U-13C5]glutamine in vitro
and in vivo has been employed to investigate the interplay between tumor metabolism
and immunogenicity within the tumor microenvironment (TME) and the association with
immunogenicity [132]. The findings indicate distinct metabolic profiles between immuno-
logically “hot” and “cold” melanoma tumors, with immunologically hot tumors exhibit-
ing increased utilization of glutamine compared to immunologically cold tumors, both
in vivo and in vitro [132]. The results not only highlight the potential significance of glu-
tamine metabolism activity as a prognostic factor in melanoma but also offer insights
for designing metabolic therapies to enhance immunotherapy efficacy [132]. In another
study, a [U-13C5]glutamine tracing analysis revealed that proline originates from glutamine
metabolism in cancer-associated fibroblasts, supporting the production of pro-tumorigenic
collagen [133]. Decreasing proline synthesis by reducing the level of pyrroline-5-carboxylate
reductase 1 (PYCR1) in cancer-associated fibroblasts is sufficient to reduce tumor collagen
production, tumor growth, and metastatic spread in vivo [133].

Drug target engagement: Advancements in understanding glutamine metabolism have
paved the way for identifying potential drug targets aimed at disrupting cancer proliferation
by targeting enzymes involved in glutaminolysis [9,115,134]. As of now, the primary drug
targets for inhibiting the incorporation of glutamine carbons into the TCA cycle and nitrogens
into nucleotide and amino acid synthesis are glutaminase (GLS) and amidotransferases.
Researchers have monitored the efficacy of inhibiting various enzymes associated with the
TCA cycle, glutaminolysis, amino acid synthesis, and nucleotide synthesis using isotopes of
glutamine, such as [U-13C5] and [5-15N]glutamine (Table 1) [98,118,131,135–137].

The effect of CB-839 on glutamine metabolism was confirmed by using [U-13C5]glutamine
or [U-13C5,15N2]glutamine in sarcoma cells [131,138], ovarian cancer cells [139], prostate
cancer cells [140], glioblastoma cells [136], and patient-derived xenografts from renal
cell carcinoma [118]. Additionally, HP-MRI using [5-13C,4,4-2H2,5-15N]-L-glutamine was
employed for monitoring glutamine metabolism in pancreatic cancer xenograft models and
confirmed the reduced glutamine conversion to glutamate in vivo by CBP-839 [37].

6-Diazo-5-oxo-l-norleucine (DON), recognized as a glutamine antagonist, along with
its prodrug, DRP-104, effectively inhibits the glutamine-dependent metabolism [141–144].
The impacts of DRP-104 on TCA cycle intermediates or nucleotide biosynthesis were veri-
fied through a [U-13C5]glutamine or [U-13C5,15N2]glutamine flux analysis in mice bearing
lymphoma EL4 tumors [143], a syngeneic model of pancreatic ductal adenocarcinoma
(PDAC) [143], or Keap1 mutant lung cancer cells [145]. Specifically, the decrease in the
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enrichment of the M+4 TCA intermediates (e.g., succinate, fumarate, and malate) in DRP-
104–treated tumors compared to the control indicates that DRP-104 impeded the influx of
glutamine-derived glutamate into the TCA cycle [143].

Dihydroorotate dehydrogenase (DHODH), an enzyme involved in the de novo pyrim-
idine nucleotide synthesis pathway, has been specifically targeted in cancer cells with IDH
mutations. An analysis of [5-15N]glutamine metabolism has revealed that the inhibition
of DHODH effectively halts nucleotide synthesis, particularly of pyrimidine nucleotides,
thereby impeding cancer cell proliferation [146].

Table 1. Representative examples of isotope tracing analysis in characterizing cancer responses to
treatments targeting metabolic enzymes.

Drug Target Isotope Tracer Pathway Key Metabolite(s) Cancer/Cell Type Reference

Glutaminase (GLS)

[U-13C5]glutamine
[U-13C5, 15N2]glutamine

Oxidative TCA Cycle
alpha-ketoglutarate
(M+5), other TCA
metabolites (M+4)

Renal cell
carcinoma tumorgrafts [118]

Reductive TCA Cycle

alpha-ketoglutarate
(M+5), citrate (M+5),

other TCA
metabolites (M+3)

[5-15N]glutamine Amidotransferase Asparagine (M+1)

Glutamine-using
enzymes [U-13C5]glutamine

Glutamine
contribution to

TCA cycle

alpha-ketoglutarate
(M+5), other TCA
metabolites (M+4)

Lymphoma xenograft [143]

Ornithine
aminotransferase [2-15N]glutamine

Ornithine and
polyamine synthesis

Ornithine and
putrescine (M+1 and

M+2)

Xenografts of
pancreatic ductal
adenocarcinoma

[147]

Glutamine-fructose-6-
phosphate transaminase 2 [5-15N]glutamine

Hexosamine
biosynthesis

GlcNAc-6-P,
UDP-HexNAc
and ManNAc

KRAS/LKB1
co-mutant lung

cancer cells
[8]

PYCR1,
P5CS [U-13C5]glutamine Proline biosynthesis Proline (M+5)

Cancer-associated
fibroblasts,

gastric cancer cell
[124,133]

IDH1 Mutations HP [1-13C]glutamine
2-Hydroxyglutarate

(2-HG) formation
Ratio of [1-13C] 2-HG

to 13C urea

Chondrosarcoma
xenograft with
IDH1 mutation

[38]

Dihydroorotate
dehydrogenase [5-15N]glutamine

De novo pyrimidine
synthesis

Uridine
monophosphate

(M+1)
IDH mutant gliomas [146]

Alanine transaminase
[U-13C6]isoleucine,

[U-13C6]leucine,
[U-13C5]valine

BCAA contribution
to TCA cycle

TCA metabolites
(M+2 and M+3)

Melanoma-bearing
zebrafish [148]

ETC Complex 1 [U-13C5]glutamine

Reductive TCA cycle

alpha-ketoglutarate
(M+5), citrate (M+5),

other TCA
metabolites (M+3) Neuroblastoma

xenograft [149]

Oxidative TCA cycle
alpha-ketoglutarate
(M+5), other TCA
metabolites (M+4)

Autophagy Related 5
(ATG5) [U-13C3]lactate

Gluconeogenesis
Glycolytic

intermediates (M+3
or M+6)

KP lung tumor
bearing mice [150]

Serine biosynthesis Serine (M+3)

Fatty acid synthase
(FASN) [U-13C6]glucose De novo lipogenesis Palmitate (M+n)

n = 2, 4, 6, etc.

Mice carrying breast
cancer with brain

metastases
[7]

2.2. The Use of Other Isotope Tracers for Investigating Cancer Metabolism

Glucose tracers: The Warburg effect is the hallmark of cancer and is characterized
by the preferential utilization of glycolysis over oxidative phosphorylation, even in the
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presence of oxygen [151]. The significance of glucose in supporting the survival of pro-
liferating cancer cells underscores the critical role of glucose isotope tracers, such as [U-
13C6]glucose, in elucidating dysregulated cancer metabolism and monitoring metabolic
responses to anticancer treatment (Figure 2). By studying the incorporation of carbon from
[U-13C6]glucose into glycolysis, the TCA cycle, the PPP, amino acids such as serine, or newly
synthesized fatty acids, researchers can gain valuable insights into metabolic dynamics
(Figure 2 and Table 1). Similar to what has been discussed in Section 2.1, [U-13C6]glucose
tracing serves not only to elucidate tumor metabolism but also to explore the interplay
with the surrounding tumor environment and cells. For example, cancer cells harboring
mutant IDH are known to overproduce D-2-hydroxyglutarate (D-2HG), which has been
shown, through the isotope-tracing of [U-13C6]glucose and [U-13C3]lactate, to modulate
glycolysis in CD8+ T cells by inhibiting lactate dehydrogenase (LDH) [152]. In another
study, [U-13C6]glucose together with N-[1,2-13C2]acetyl-d-glucosamine revealed that in
a PDA tumor microenvironment with limited glutamine and glucose, the hexosamine
salvage played an important role in supporting hexosamine biosynthesis and PDA tumor
proliferation [153].
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Figure 1. Schematic depicting the potential fates of 13C and 15N in [U-13C6, 15N2]glutamine.
Abbreviations: MDH, malate dehydrogenase; ACYL, ATP citrate lyase; IDH, isocitrate dehy-
drogenase; IDH mut, IDH mutant; GDH, glutamate dehydrogenase; GLS, glutaminase; GFAT,
fructose-6-phosphate amidotransferase; P5CS, pyrroline-5-carboxylate synthase; PYCR, ∆1-pyrroline-
5-carboxylate reductase; OAT, ornithine aminotransferase; ODC1, ornithine decarboxylase 1; GOT,
glutamate-oxaloacetate transaminase 2; ASNS, asparagine synthetase; OAA, oxaloacetate; α-kG,
alpha-ketoglutarate; 2-HG, 2-hydroxyglutarate; P5C, pyrroline-5-carboxylate.

M+n denotes the incorporation of n 13C- or 15N-heavy isotopes. For example, M+4
citrate indicates the citrate containing four 13C and two 12C. For metabolites containing
both 13C and 15N, such as [13C5, 15N1]glutamate derived from [U-13C5, 15N2]glutamine,
M+5 glutamate indicates glutamate with five 13C, while M+1 glutamate indicates glutamate
with one 15N. This diagram summarizes the possible fates of both 13C and 15N, and for
studies using glutamine tracer that only contains one isotope, such as 15N, but not 13C, the
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M+n would only indicate the incorporation of n 15N. The green line indicates oxidative
TCA and related reactions, while the pink line indicates the reductive TCA and related
reactions. Dashed lines indicate multi-step reactions.
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Figure 2. Schematic depicting the potential fates of 13C in [U-13C6]glucose. Abbreviations: HK, hexose
kinase; ACYL, ATP citrate lyase; IDH, isocitrate dehydrogenase; IDH mut, IDH mutant; UGDH, UDP-
glucose dehydrogenase; GFAT, fructose-6-phosphate amidotransferase; PHGDH, phosphoglycerate
dehydrogenase; LDH, lactate dehydrogenase; ALT, alanine transaminase; FASN, fatty acid synthase;
GOT, glutamate-oxaloacetate transaminase 2; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase;
Ac, acetyl; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate; F6P, fructose-6-phosphate; R5P,
ribose-5-phosphate; PRPP, phosphoribosyl pyrophosphate; UDP-GlcA, UDP-glucuronate; UDP-
GlcNAc, UDP-N-acetylglucosamine; DHAP, dihydroxyacetone phosphate; G3P, glycerol-3-phosphate;
3PG, 3-phosphoglycerate; Pyr, pyruvate; Lac, lactate; OAA, oxaloacetate; a-kG, alpha-ketoglutarate;
2-HG, 2-hydroxyglutarate.

M+n denotes the incorporation of n 13C. For simplicity, this schematic does not take
into consideration complicated situations, such as tracer recycling or multiple rounds of
the TCA cycle. Furthermore, this diagram can serve as a reference when downstream
metabolites are utilized as tracers. For instance, when acetyl-CoA is labeled using [U-
13C]glucose, a similar labeling pattern of acetylated proteins or lipids is expected as when
acetyl-CoA is labeled using [13C2]acetate. Dashed lines indicate multi-step reactions.

Fatty acid tracers: Due to the metabolic flexibility of many types of cancer, multiple
tracers are often employed in the same study to gain a comprehensive understanding of
metabolic adaptations. Certain cancer cell populations acquire the ability to utilize alterna-
tive nutrients as part of resistance mechanisms to chemotherapy. For example, resistance to
cisplatin, a platinum-based chemotherapy drug, has been associated with increased fatty
acid accumulation and beta-oxidation for energy production [154]. Fatty acid uptake and
glucose anabolism were monitored using deuterium tracers ([D31]-palmitic acid, [D34]-oleic
acid, or [D7]-glucose) through hyperspectral stimulated Raman scattering imaging of C-D
bonds in cisplatin-resistant and cisplatin-sensitive cells [154]. The results revealed a higher
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uptake of palmitic and oleic acid fatty acids and a decreased uptake of glucose in resis-
tant cells. These findings underscore the reliance on fatty acid accumulation for energy
production in resistant cells, thus presenting novel targets for drug development [154].

Nucleoside tracers: PDAC is highly lethal due to resistance to many chemotherapy
treatments [155]. In one study, PDAC is characterized by elevated levels of uridine phos-
phorylase 1 (UPP1), an enzyme that cleaves uridine to ribose-1-phosphate and uracil.
In vivo and in vitro isotope tracing using [13C5]uridine with uniformly labeled ribose car-
bon demonstrated labeling of ATP (M+5), AMP (M+5), ADP (M+5), and NAD+ (M+5,
M+10), confirming the utilization of uridine metabolism for the ribosylation of adenine.
Additionally, 13C labeling of glycolytic, PPP, and TCA cycle intermediates was observed,
indicating that uridine can serve as an alternative energy and carbon source [156].

2.3. Uncovering Mechanisms of Resistance to Cancer Treatments through Stable Isotope
Tracing Analysis

Challenges in the development of cancer therapies: The development of cancer ther-
apeutics is challenging, partly due to the high resistance of cancer cells to treatments
and their metabolic plasticity [9,10,157–162]. To address this, researchers have turned to
comparing metabolic profiles using isotope tracing between resistant and sensitive cancer
cells. By employing isotope tracers, researchers can track the fate of labeled metabolites
within cancer cells, revealing metabolic adaptations that contribute to treatment resistance.
Another critical consideration in drug development is adverse effects either due to off-target
activity or unintended actions in normal tissues [9,163,164]. As a result, there is a growing
trend toward using multiple inhibitors targeting different metabolic enzymes at tolerable
doses to achieve minimal adverse effects and enhance antitumor efficacy [165,166]. Insights
gained from isotope tracing studies can inform the development of combination therapies
that target both the genetic and metabolic vulnerabilities of cancer cells, thereby enhancing
treatment efficacy and overcoming resistance. In this section, we explore studies employing
stable isotope tracing to uncover resistance mechanisms in cancer cells, with a particular
emphasis on the utilization of 13C- or 15N-labeled glutamine, since glucose tracing has been
extensively studied.

Resistant mechanisms of GLS inhibitors: Despite being recognized as a potent and
well-tolerated GLS inhibitor, CB-839 has shown mixed results in clinical trials [167,168].
While it has demonstrated efficacy in certain patients [167], a randomized clinical trial
investigating its combination with cabozantinib in metastatic renal cell cancer (RCC) did
not improve efficacy [168]. Similarly, during a phase II clinical trial involving patients with
stage IV non-small cell lung cancer (NSCLC) tumors carrying loss-of-function mutations
in KEAP1 (KEAPSAKE trial, NCT04265534), CB-839 did not show advantageous effects
compared to standard-of-care immunotherapy. To understand the resistant mechanisms,
[U-13C5]glutamine tracing was performed in mice carrying liver tumors with the deletion
of GLS1 and a reduced expression of GLS2 (Gls1KO/shGls2). The presence of a substantial
fraction of the M+4 malate derived from [U-13C5]glutamine suggests that other enzymes can
utilize glutamine as an amide nitrogen donor and generate glutamate [121]. This finding
led to the approach of synergistic inhibition of both glutaminases and compensatory
amidotransferases to block glutamine catabolism and the proliferation of cancer cells
in vitro and in vivo [121]. In another study, infusions of [5-15N]glutamine in clear cell RCC
tumorgrafts unveiled sustained amidotransferase activity despite glutaminase inhibition
by CB-839 [118]. When JHU-083, a prodrug of DON, was tested, [U-13C5, 15N2]glutamine
tracing demonstrated a greater inhibition of the 15N labeling of metabolites catalyzed by
amidotranferases than the 13C labeling of TCA cycle intermediates, suggesting that JHU-
083 inhibited amidotransferases more effectively than GLS, subsequently resulting in more
robust inhibition of tumor growth in both immunocompromised and immunocompetent
mice than CB-839 [118].

Identifications of resistant cells to chemotherapy and radiotherapy: Glutamine tracing
experiments were also performed to understand the resistant mechanisms of other types
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of cancer treatments. For example, [U-13C5]glutamine or [15N2]glutamine was injected
intravenously into acute myeloid leukemia (AML)-bearing mice with vehicle or induction
chemotherapy (iCT) for assessing labeled metabolites in AML cells or residual AML cells
surviving iCT treatment [169]. The results revealed an increase in glutamine metabolism
and 15N incorporation into pyrimidines in residual AML compared to the control AML
cells [169]. The subsequent inhibition of de novo pyrimidine synthesis by brequinar (BRQ)
post-iCT treatment significantly prolonged the survival of AML-bearing mice compared
to iCT treatment alone, suggesting that glutamine metabolism drives AML chemoresis-
tance by supporting pyrimidine synthesis [169]. Metabolomics and [U-13C5]glutamine
tracing analysis of ovarian cancer cells, which were sensitive or resistant to cisplatin treat-
ment, revealed that glutamine metabolism is enhanced in cisplatin-resistant ovarian cancer
cells [170]. The inhibition of glutaminase by compound 968 partially reversed the resistance
to cisplatin treatment in these ovarian cancer cells [170]. In another study, metabolomics
and a [U-13C5]glutamine tracing analysis of prostate cancer cells sensitive or resistant to ra-
diotherapy demonstrated that radioresistant prostate cancer cells and prostate cancer stem
cells have a high glutamine demand, and reducing glutamine metabolism via glutamine
depletion or the inhibition of critical regulators of glutamine utilization restored prostate
cancer cell radiosensitization [171].

Mechanisms of resistance to immunotherapy: It is increasingly recognized that nutri-
ent availability and metabolic activities in the tumor microenvironment play a role in deter-
mining immune cell function and antitumor immunity [145,172–174]. [U-13C5]glutamine
was used to monitor the glutamine uptake by dendritic cells, regulated by the transporter
SLC38A2 [173]. Limited glutamine availability in the tumor microenvironment or impaired
glutamine uptake due to SLC38A2 deletion compromised antitumor immunity [173]. In a
separate study, inhibiting glutamine utilization by tumor cells enhanced antitumor T cell
responses, and the combination of a GLS inhibitor, CB-839, with a glutamine antagonist,
DRP-104, demonstrated a synergistic effect, enhancing the response to anti-PD1 checkpoint
inhibitor therapy in Keap1 mutant lung tumors [145]. The [U-13C5]glutamine tracing analy-
sis suggests distinct actions of CB-839 and DRP-104 in vivo and specifically, that DRP-104
impairs tumor proliferation by inhibiting glutamine-dependent nucleotide synthesis rather
than inhibiting glutaminolysis [145].

Identifications of resistant cells to hormone therapy: The contribution of metabolic
alterations to hormonal therapy resistance in prostate cancer remains poorly understood.
A [U-13C5]glutamine tracing analysis played an important role in revealing the types of
prostate cancer cells in which glutamine metabolism was more susceptible to CB-839 and
pinpointing the isoform of GLS1 that was more sensitive to CB-839 [140]. These experiments
also led to the discovery that GLS1 isoform switch is one of the key mechanisms in hormonal
therapy resistance and disease progression [140].

Mechanisms of resistance to targeted therapy: Epidermal growth factor receptor ty-
rosine kinase inhibitors (EGFR-TKIs), which target early-stage lung cancer with EGFR
mutations, have been among the most successful targeted cancer therapies [175–177]. How-
ever, the development of resistance to EGFR-TKIs poses a significant challenge in clinical
management [178]. A [U-13C5]glutamine tracing analysis of acquired EGFR-TKI-resistant
lung cancer cell lines has unveiled a critical dependency on glutamine for supporting
TCA cycle activity and glutathione (GSH) biosynthesis [179]. This finding offers valuable
insights into the metabolic adaptations underlying EGFR-TKI resistance [179].

2.4. Current Clinical Trials Employing Stable Isotope Tracing Techniques

Alongside stable isotope tracing investigations into glucose and glutamine metabolism
in vitro and mouse models of cancer, patient clinical trials are progressing to monitor anti-
cancer drug actions, including target engagement and off-target effects, as well as metabolic
adaptations within the human body [1]. Table 2 summarizes current clinical trials utilizing
labeled glucose and glutamine, outlining the cancer type, isotope tracer used, and the
measurement technique for metabolite analysis. Stable isotope tracing analysis emerges as
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a catalyst for discovery and therapy in the clinical setting [180]. The administration of la-
beled glucose or glutamine intravenously to cancer patients before surgery or tumor biopsy
provides insights into cancer cell reliance on these molecules for proliferation and sur-
vival across various cancer types. For example, in an ongoing clinical trial (NCT05296421)
sponsored by the State University of New Jersey to identify targetable metabolic pathways
that sustain pancreatic cancer, patients will receive [U-13C6]glucose intravenously until the
time of biopsy, followed by metabolite extraction and analysis using LC-MS. In a separate
study [181], to understand the association of glutamine anaplerosis with the progression of
pre-malignant to malignant plasma cells, tracing with [U-13C5]glutamine was performed
and revealed that the flux of glutamine into the TCA cycle was elevated in malignant bone
marrow plasma cells compared to their pre-malignant counterparts relative to the remain-
ing paired bone marrow mononuclear cells. This finding aligns with RNA sequencing
results indicating higher mRNA expression levels of glutamine transporters, such as ASCT2
and SN2, in malignant bone marrow plasma cells compared to pre-malignant ones [181].

Table 2. Current clinical trials using isotope tracing analysis.

Cancer Type Isotope Tracer Analytical Technique ClinicalTrials.gov Identifier

Pancreatic Ductal
Adenocarcinoma [U-13C6]glucose LC-MS NCT05296421

Multiple Myeloma [U-13C5]glutamine LC-MS NCT03119883 [181]

Hormone Receptor Positive
(HR+)/Her 2 Negative (Her2-)

Breast Cancer
[U-13C6]glucose LC-MS NCT05736367

Kidney or Urothelial Cancer

[U-13C6]glucose,
[U-13C2]acetate,
[U-13C3]lactate,

[U-13C5]glutamine,
[U-13C6]fructose

Unspecified NCT04623502

Brain Cancer [U-13C6]glucose,
[1,2-13C2]glucose

13C NMR NCT01668082

3. Limitations and Future Directions

While stable isotope tracing analysis is a valuable tool in metabolic research, it does
have certain limitations:

Technical limitations, such as limited spatial resolution: Stable isotope tracing tech-
niques typically provide bulk measurements of metabolic fluxes within tissues or whole
organisms. They may lack the spatial resolution required to study metabolic dynamics at
the cellular or subcellular level. Metabolic pathways are compartmentalized within cells and
tissues, and tracer kinetics may differ between compartments. Failure to account for compart-
mentalization can lead to inaccuracies in flux estimates and the misinterpretation of metabolic
fluxes. The stable isotope-labeling of essential nutrients in cell culture subcellular fractionation
(SILEC-SF) and immunopurification-based subcellular fraction approaches show promise in
quantifying metabolites in subcellular compartments [182,183]. Additionally, considerable
progress has been achieved in the field of single-cell metabolomics [59,184–187].

Perturbations of systemic and tumor metabolism through the administration of a
stable isotope tracer in vivo: The methods of fasting, administration of tracers, tracer
dosage, and other experimental parameters can all exert significant influences on both
systemic and tumor metabolism, potentially leading to variability in experimental out-
comes [188]. It is crucial to optimize tracing protocols tailored to the specific metabolic
pathway under investigation.

Complexity of interpretation: Factors such as tracer recycling and interorgan conver-
sion of the tracer increase the complexity of metabolic networks in vivo [188–191], posing
challenges to the accurate interpretation of tracer kinetics and fluxes. Furthermore, the
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rapid exchange of labeled atoms can occur without the net conversion of substrates to
products when there is significant reaction reversibility. A comprehensive interpretation of
stable isotope tracing data requires sophisticated mathematical modeling and analytical
techniques [99,189,191–193].

Assumptions and limitations of tracer incorporation: Stable isotope tracer studies
often assume rapid mixing and equilibration of the tracer throughout the target tissue,
which may not always hold true. In addition, many studies assume that the labeling of
downstream products has reached a steady state without direct confirmation, which can
dramatically impact the assumptions and modeling approaches used to interpret the results.
Tracer incorporation rates can vary depending on factors such as tissue type, metabolic
state, and the specific pathway being investigated [22]. Hence, pilot studies are necessary
to determine the metabolic dynamics and ensure a properly optimized tracing protocol.

Cost and difficulties in clinical translation: Stable isotope tracing experiments can be ex-
pensive and require specialized equipment and technical expertise for tracer administration,
sample collection, isotope analysis, and data interpretation. These practical considerations
are amplified in the clinical setting in which large doses of pharmaceutical-grade tracers
are required and invasive or burdensome protocols are unlikely to be tolerated by patients.
This could hinder access for researchers lacking adequate resources and training. However,
advancements in developing more sensitive methods have the potential to reduce costs.
Furthermore, collaborative efforts among different teams with shared or complementary
interests could help distribute the financial burden.

4. Conclusions

In summary, stable isotope tracing analysis has emerged as a widely utilized tool for
mechanistic studies aimed at understanding various facets of cancer metabolism. This
includes exploring cancer metabolic rewiring, metabolic heterogeneity, the interplay with
the immune system in the tumor microenvironment, adaptive responses to cancer therapies,
and more. Despite its current limitations, including the technical challenges and the high
cost, stable isotope tracing remains a powerful methodology for investigating metabolic
pathways and dynamics in both health and disease contexts. Integrating tracer data with
other omics and imaging approaches holds promise in mitigating some of these limitations
and offering a more comprehensive understanding of metabolic regulation. Furthermore,
the ongoing advancements in clinical applications not only enhance but also extend the
significance of stable isotope tracing beyond experimental models in cancer research.
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