Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight
Abstract
:1. Introduction
2. MASLD-Induced HCC
2.1. HCC Tumorigenesis
2.2. Epigenetic Dysregulation in the Pathogenesis of MASLD-Induced HCC
2.2.1. DNA Methylation
2.2.2. Histone Modification
Mechanism | Experimental Model/Sample Data | Target Gene | Reference |
---|---|---|---|
DNA hypomethylation | NAFLD liver tissue and corresponding HCC tissue from HCC patients | DCAF4L2, CKLF, TRIM4, PRC1, UBE2C, TUBA1B | [41] |
Gene promoter hypermethylation | Stelic mouse model of non-alcoholic steatohepatitis-derived HCC | GNMT, EGFR, ESR1 | [42] |
Differential methylation | Mouse models of lean and obese NASH-HCC | In lean NASH-HCC (CHCHD2, FSCN1, ZDHHC12, PNPLA6, LDLRAP1); In obese NASH-HCC (RNF217, GJA8, PTPRE, PSAPL1, LRRC8D) | [44] |
Histone acetylation | The transcriptomic data of human liver samples were integrated from publicly available datasets | HAT1 | [46] |
Histone acetylation | LO2, HepG2, Bel-7404, and PLC5cells; Lentiviral-mediated shRNA knockdown in obesity-promoted NASH and HCC mouse models | SREBP-1 | [47] |
Histone acetylation | STAM NASH-related hepatocarcinogenesis mouse model | Cell death-related genes | [48] |
Histone acetylation | HEK293T, HCT116, and ZR-75-30 cell lines; Human hepatocellular carcinoma samples | HDAC3, FASN | [49] |
2.2.3. NcRNAs
ncRNA | Experimental Model | Expression | Function | Reference |
---|---|---|---|---|
miR-122 | NAFLD, NASH, HCC patients | Downregulated | Silence FRAT2 to avoid dysfunction of metabolism causing liver damage and the dysfunction of apoptosis through the dysregulation of TIMP1 | [51] |
miR-21 | NAFLD-HCC patients, NAFLD-HCC mouse models | Upregulated | Through normalizing liver PPARα, miR-21 inhibition and suppression significantly reduced liver damage, inflammation, and fibrogenesis | [52] |
miR-182 | C57BL/6J mouse models were long-term HF or LF diet-fed | Upregulated | Shows early and significant dysregulation in the hepatocarcinogenesis process, and Cyld and Foxo1 as miR-182 target genes | [53,54] |
miR-483 | HCC patients, HepG2, SK-Hep1, and Hep3B cells, NAFLD mouse models | Downregulated | Inhibits cell steatosis and fibrogenic signaling | [55] |
lncRNA HULC | Hep3B cells, HCC patients, NAFLD rat models | Upregulated | Promotes HCC growth and metastasis Promotes NAFLD development | [57,58] |
lncRNA PVT1 | NAFLD-HCC patients | Upregulated | Circulating could be a useful diagnostic biomarker for discriminating advanced stages | [59] |
lncRNA NEAT1 | HepG2, LO2 cells | Upregulated | Promotes adipogenesis, lipogenesis, and lipid absorption | [61] |
LINC01468 | THLE2 and the HCC cell lines, NAFLD-HCC patients | Upregulated | LINC01468-mediated lipogenesis promotes HCC progression through CUL4A-linked degradation of SHIP2 | [62] |
circMTO1 | HCC patients, HCC-bearing male nude mice models | Downregulated | CircMTO1 inhibits HCC growth by upregulation of p21 via sponging miR-9 | [65] |
circRNA_0046366 | HepG2 cells | Downregulated | Inhibits hepatic steatosis through miR-34a/PPARα | [66] |
2.2.4. m6A Modification
3. Metabolic Shifts and Reprogramming in MASLD-Induced HCC
3.1. Glucose Metabolism
3.1.1. Glycolysis
3.1.2. Pentose Phosphate Pathway
3.1.3. Tricarboxylic Acid Cycle
3.2. Lipid Metabolism
3.2.1. Fatty Acid Metabolism
3.2.2. Cholesterol Metabolism
3.2.3. MUFAs and PUFAs
3.3. Amino Acid Metabolism
3.3.1. Glutamine Metabolism
3.3.2. Branched-Chain Amino Acid
3.3.3. Urea Cycle
3.3.4. One-Carbon Metabolism
4. Interactions between Epigenetic Modifications and HCC Cell Metabolism
4.1. DNA Methylation and Tumor Metabolism in HCC
4.2. Histone Modification and Tumor Metabolism in HCC
4.3. ncRNA and Tumor Metabolism in HCC
4.4. m6A Modification and Tumor Metabolism in HCC
5. Therapeutic Potential of Targeted Epigenetic Modifiers and Metabolic Reprogramming in HCC
5.1. Pre-Clinical Studies
5.1.1. Epigenetic Targets
5.1.2. Targeting Metabolic Reprogramming in HCC
5.2. Clinical Trials
5.2.1. Epigenetic Drugs
5.2.2. Targeting Metabolic Reprogramming in HCC
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Yang, J.; Pan, G.; Guan, L.; Liu, Z.; Wu, Y.; Liu, Z.; Lu, W.; Li, S.; Xu, H.; Ouyang, G. The burden of primary liver cancer caused by specific etiologies from 1990 to 2019 at the global, regional, and national levels. Cancer Med. 2022, 11, 1357–1370. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, B.H.; Park, J.W. Preventive strategy for nonalcoholic fatty liver disease-related hepatocellular carcinoma. Clin. Mol. Hepatol. 2023, 29, S220–S227. [Google Scholar] [CrossRef]
- Cucarull, B.; Tutusaus, A.; Rider, P.; Hernaez-Alsina, T.; Cuno, C.; Garcia, D.F.P.; Colell, A.; Mari, M.; Morales, A. Hepatocellular carcinoma: Molecular pathogenesis and therapeutic advances. Cancers 2022, 14, 621. [Google Scholar] [CrossRef]
- Shi, Y.; Qi, W. Histone modifications in NAFLD: Mechanisms and potential therapy. Int. J. Mol. Sci. 2023, 24, 14653. [Google Scholar] [CrossRef]
- Chen, L.; Huang, W.; Wang, L.; Zhang, Z.; Zhang, F.; Zheng, S.; Kong, D. The effects of epigenetic modification on the occurrence and progression of liver diseases and the involved mechanism. Expert Rev. Gastroenterol. Hepatol. 2020, 14, 259–270. [Google Scholar] [CrossRef]
- Inoue, Y.; Suzuki, Y.; Kunishima, Y.; Washio, T.; Morishita, S.; Takeda, H. High-fat diet in early life triggers both reversible and persistent epigenetic changes in the medaka fish (Oryzias latipes). BMC Genom. 2023, 24, 472. [Google Scholar] [CrossRef]
- Martinez-Reyes, I.; Chandel, N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021, 21, 669–680. [Google Scholar] [CrossRef]
- Finley, L. What is cancer metabolism? Cell 2023, 186, 1670–1688. [Google Scholar] [CrossRef]
- Khalil, A.A.; Elfert, A.; Ghanem, S.; Helal, M.; Abdelsattar, S.; Elgedawy, G.; Obada, M.; Abdel-Samiee, M.; El-Said, H. The role of metabolomics in hepatocellular carcinoma. Egypt. Liver J. 2021, 11, 41. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Gao, P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2022, 13, 877–919. [Google Scholar] [CrossRef]
- Oura, K.; Morishita, A.; Hamaya, S.; Fujita, K.; Masaki, T. The roles of epigenetic regulation and the tumor microenvironment in the mechanism of resistance to systemic therapy in hepatocellular carcinoma. Int. J. Mol. Sci. 2023, 24, 2805. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Chrysavgis, L.; Vachliotis, I.D.; Chartampilas, E.; Cholongitas, E. Nonalcoholic fatty liver disease and hepatocellular carcinoma: Insights in epidemiology, pathogenesis, imaging, prevention and therapy. Semin. Cancer Biol. 2023, 93, 20–35. [Google Scholar] [CrossRef]
- Ito, T.; Nguyen, M.H. Perspectives on the underlying etiology of HCC and its effects on treatment outcomes. J. Hepatocell. Carcinoma 2023, 10, 413–428. [Google Scholar] [CrossRef]
- Rada, P.; Gonzalez-Rodriguez, A.; Garcia-Monzon, C.; Valverde, A.M. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis. 2020, 11, 802. [Google Scholar] [CrossRef]
- Tao, L.; Ding, X.; Yan, L.; Xu, G.; Zhang, P.; Ji, A.; Zhang, L. CD36 accelerates the progression of hepatocellular carcinoma by promoting fas absorption. Med. Oncol. 2022, 39, 202. [Google Scholar] [CrossRef]
- Tanaka, S.; Miyanishi, K.; Kobune, M.; Kawano, Y.; Hoki, T.; Kubo, T.; Hayashi, T.; Sato, T.; Sato, Y.; Takimoto, R.; et al. Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. J. Gastroenterol. 2013, 48, 1249–1258. [Google Scholar] [CrossRef]
- Kakehashi, A.; Suzuki, S.; Ishii, N.; Okuno, T.; Kuwae, Y.; Fujioka, M.; Gi, M.; Stefanov, V.; Wanibuchi, H. Accumulation of 8-hydroxydeoxyguanosine, l-arginine and glucose metabolites by liver tumor cells are the important characteristic features of metabolic syndrome and non-alcoholic steatohepatitis-associated hepatocarcinogenesis. Int. J. Mol. Sci. 2020, 21, 7746. [Google Scholar] [CrossRef]
- Ramai, D.; Facciorusso, A.; Vigandt, E.; Schaf, B.; Saadedeen, W.; Chauhan, A.; di Nunzio, S.; Shah, A.; Giacomelli, L.; Sacco, R. Progressive liver fibrosis in non-alcoholic fatty liver disease. Cells 2021, 10, 3401. [Google Scholar] [CrossRef]
- Mathew, R.; Karp, C.M.; Beaudoin, B.; Vuong, N.; Chen, G.; Chen, H.Y.; Bray, K.; Reddy, A.; Bhanot, G.; Gelinas, C.; et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009, 137, 1062–1075. [Google Scholar] [CrossRef]
- Krishnasamy, Y.; Gooz, M.; Li, L.; Lemasters, J.J.; Zhong, Z. Role of mitochondrial depolarization and disrupted mitochondrial homeostasis in non-alcoholic steatohepatitis and fibrosis in mice. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 190–204. [Google Scholar]
- Longo, M.; Paolini, E.; Meroni, M.; Dongiovanni, P. Remodeling of mitochondrial plasticity: The key switch from NAFLD/NASH to HCC. Int. J. Mol. Sci. 2021, 22, 4173. [Google Scholar] [CrossRef]
- Meroni, M.; Longo, M.; Tria, G.; Dongiovanni, P. Genetics is of the essence to face NAFLD. Biomedicines 2021, 9, 1359. [Google Scholar] [CrossRef]
- Grove, J.I.; Lo, P.; Shrine, N.; Barwell, J.; Wain, L.V.; Tobin, M.D.; Salter, A.M.; Borkar, A.N.; Cuevas-Ocana, S.; Bennett, N.; et al. Identification and characterisation of a rare mttp variant underlying hereditary non-alcoholic fatty liver disease. JHEP Rep. 2023, 5, 100764. [Google Scholar] [CrossRef]
- Pinyol, R.; Torrecilla, S.; Wang, H.; Montironi, C.; Pique-Gili, M.; Torres-Martin, M.; Wei-Qiang, L.; Willoughby, C.E.; Ramadori, P.; Andreu-Oller, C.; et al. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol. 2021, 75, 865–878. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, S.; Jia, Y.; Wang, Y.; Kubota, N.; Fujiwara, N.; Gordillo, R.; Lewis, C.; Zhu, M.; Sharma, T.; et al. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. Cell 2023, 186, 1968–1984. [Google Scholar] [CrossRef]
- Zhang, X.; Coker, O.O.; Chu, E.S.; Fu, K.; Lau, H.; Wang, Y.X.; Chan, A.; Wei, H.; Yang, X.; Sung, J.; et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 2021, 70, 761–774. [Google Scholar] [CrossRef]
- Tang, R.; Liu, R.; Zha, H.; Cheng, Y.; Ling, Z.; Li, L. Gut Microbiota Induced Epigenetic Modifications in the Non-alcoholic Fatty Liver Disease Pathogenesis. Eng. Life Sci. 2023, 24, e2300016. [Google Scholar] [CrossRef]
- Yang, S.; Liu, G. Targeting the ras/raf/mek/erk pathway in hepatocellular carcinoma. Oncol. Lett. 2017, 13, 1041–1047. [Google Scholar] [CrossRef]
- D’Artista, L.; Moschopoulou, A.A.; Barozzi, I.; Craig, A.J.; Seehawer, M.; Herrmann, L.; Minnich, M.; Kang, T.W.; Rist, E.; Henning, M.; et al. MYC determines lineage commitment in KRAS-driven primary liver cancer development. J. Hepatol. 2023, 79, 141–149. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Vander, H.M.; Mccormick, F. The metabolic landscape of RAS-driven cancers from biology to therapy. Nat. Cancer 2021, 2, 271–283. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, R.; Singh, S.; Poddar, M.; Xu, E.; Oertel, M.; Chen, X.; Ganesh, S.; Abrams, M.; Monga, S.P. Targeting beta-catenin in hepatocellular cancers induced by coexpression of mutant beta-catenin and k-ras in mice. Hepatology 2017, 65, 1581–1599. [Google Scholar] [CrossRef]
- Wang, S.; Li, K.; Pickholz, E.; Dobie, R.; Matchett, K.P.; Henderson, N.C.; Carrico, C.; Driver, I.; Borch, J.M.; Chen, L.; et al. An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Sci. Transl. Med. 2023, 15, d3949. [Google Scholar] [CrossRef]
- Filliol, A.; Saito, Y.; Nair, A.; Dapito, D.H.; Yu, L.X.; Ravichandra, A.; Bhattacharjee, S.; Affo, S.; Fujiwara, N.; Su, H.; et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 2022, 610, 356–365. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, J.; Yang, X.; Wang, K.; Sun, K.; Yang, Z.; Zhang, L.; Yang, L.; Gu, C.; Huang, X.; et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol. Ther. 2022, 30, 2342–2353. [Google Scholar] [CrossRef]
- Song, J.; Hao, J.; Lu, Y.; Ding, X.; Li, M.; Xin, Y. Increased m6A Modification of BDNF MRNA via FTO Promotes Neuronal Apoptosis Following Aluminum-Induced Oxidative Stress. Environ. Pollut. 2024, 349, 123848. [Google Scholar] [CrossRef]
- Pirola, C.J.; Sookoian, S. Epigenetics factors in nonalcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 2022, 16, 521–536. [Google Scholar] [CrossRef]
- Braghini, M.R.; Lo, R.O.; Romito, I.; Fernandez-Barrena, M.G.; Barbaro, B.; Pomella, S.; Rota, R.; Vinciguerra, M.; Avila, M.A.; Alisi, A. Epigenetic remodelling in human hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2022, 41, 107. [Google Scholar] [CrossRef]
- Tian, Y.; Wong, V.W.; Chan, H.L.; Cheng, A.S. Epigenetic regulation of hepatocellular carcinoma in non-alcoholic fatty liver disease. Semin. Cancer Biol. 2013, 23, 471–482. [Google Scholar] [CrossRef]
- Tian, Y.; Arai, E.; Makiuchi, S.; Tsuda, N.; Kuramoto, J.; Ohara, K.; Takahashi, Y.; Ito, N.; Ojima, H.; Hiraoka, N.; et al. Aberrant DNA methylation results in altered gene expression in non-alcoholic steatohepatitis-related hepatocellular carcinomas. J. Cancer Res. Clin. Oncol. 2020, 146, 2461–2477. [Google Scholar] [CrossRef]
- Borowa-Mazgaj, B.; de Conti, A.; Tryndyak, V.; Steward, C.R.; Jimenez, L.; Melnyk, S.; Seneshaw, M.; Mirshahi, F.; Rusyn, I.; Beland, F.A.; et al. Gene expression and DNA methylation alterations in the glycine n-methyltransferase gene in diet-induced nonalcoholic fatty liver disease-associated carcinogenesis. Toxicol. Sci. 2019, 170, 273–282. [Google Scholar] [CrossRef]
- Gutierrez-Cuevas, J.; Lucano-Landeros, S.; Lopez-Cifuentes, D.; Santos, A.; Armendariz-Borunda, J. Epidemiologic, genetic, pathogenic, metabolic, epigenetic aspects involved in NASH-HCC: Current therapeutic strategies. Cancers 2022, 15, 23. [Google Scholar] [CrossRef]
- Hymel, E.; Fisher, K.W.; Farazi, P.A. Differential methylation patterns in lean and obese non-alcoholic steatohepatitis-associated hepatocellular carcinoma. BMC Cancer 2022, 22, 1276. [Google Scholar] [CrossRef]
- Ghiraldini, F.G.; Filipescu, D.; Bernstein, E. Solid tumours hijack the histone variant network. Nat. Rev. Cancer 2021, 21, 257–275. [Google Scholar] [CrossRef]
- Herranz, J.M.; Lopez-Pascual, A.; Claveria-Cabello, A.; Uriarte, I.; Latasa, M.U.; Irigaray-Miramon, A.; Adan-Villaescusa, E.; Castello-Uribe, B.; Sangro, B.; Arechederra, M.; et al. Comprehensive analysis of epigenetic and epitranscriptomic genes’ expression in human NAFLD. J. Physiol. Biochem. 2023, 79, 901–924. [Google Scholar] [CrossRef]
- Tian, Y.; Wong, V.W.; Wong, G.L.; Yang, W.; Sun, H.; Shen, J.; Tong, J.H.; Go, M.Y.; Cheung, Y.S.; Lai, P.B.; et al. Histone deacetylase HDAC8 promotes insulin resistance and beta-catenin activation in NAFLD-associated hepatocellular carcinoma. Cancer Res. 2015, 75, 4803–4816. [Google Scholar] [CrossRef]
- de Conti, A.; Dreval, K.; Tryndyak, V.; Orisakwe, O.E.; Ross, S.A.; Beland, F.A.; Pogribny, I.P. Inhibition of the cell death pathway in nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis is associated with histone H4 lysine 16 deacetylation. Mol. Cancer Res. 2017, 15, 1163–1172. [Google Scholar] [CrossRef]
- Lin, H.P.; Cheng, Z.L.; He, R.Y.; Song, L.; Tian, M.X.; Zhou, L.S.; Groh, B.S.; Liu, W.R.; Ji, M.B.; Ding, C.; et al. Destabilization of fatty acid synthase by acetylation inhibits de novo lipogenesis and tumor cell growth. Cancer Res. 2016, 76, 6924–6936. [Google Scholar] [CrossRef]
- Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12, 861–874. [Google Scholar] [CrossRef]
- Li, C.W.; Chiu, Y.K.; Chen, B.S. Investigating pathogenic and hepatocarcinogenic mechanisms from normal liver to HCC by constructing genetic and epigenetic networks via big genetic and epigenetic data mining and genome-wide NGS data identification. Dis. Markers 2018, 2018, 8635329. [Google Scholar] [CrossRef]
- Rodrigues, P.M.; Afonso, M.B.; Simao, A.L.; Islam, T.; Gaspar, M.M.; O’Rourke, C.J.; Lewinska, M.; Andersen, J.B.; Arretxe, E.; Alonso, C.; et al. miR-21-5p promotes NASH-related hepatocarcinogenesis. Liver Int. 2023, 43, 2256–2274. [Google Scholar] [CrossRef]
- Tessitore, A.; Cicciarelli, G.; Del Vecchio, F.; Gaggiano, A.; Verzella, D.; Fischietti, M.; Mastroiaco, V.; Vetuschi, A.; Sferra, R.; Barnabei, R.; et al. MicroRNA Expression Analysis in High Fat Diet-Induced NAFLD-NASH-HCC Progression: Study on C57BL/6J Mice. BMC Cancer 2016, 16, 3. [Google Scholar] [CrossRef]
- Compagnoni, C.; Capelli, R.; Zelli, V.; Corrente, A.; Vecchiotti, D.; Flati, I.; Di Vito, N.M.; Angelucci, A.; Alesse, E.; Zazzeroni, F.; et al. MIR-182-5p is upregulated in hepatic tissues from a diet-induced NAFLD/NASH/HCC C57BL/6J mouse model and modulates Cyld and Foxo1 expression. Int. J. Mol. Sci. 2023, 24, 9239. [Google Scholar] [CrossRef]
- Niture, S.; Gadi, S.; Qi, Q.; Gyamfi, M.A.; Varghese, R.S.; Rios-Colon, L.; Chimeh, U.; Vandana; Ressom, H.W.; Kumar, D. MicroRNA-483-5p inhibits hepatocellular carcinoma cell proliferation, cell steatosis, and fibrosis by targeting PPARalpha and TIMP2. Cancers 2023, 15, 1715. [Google Scholar] [CrossRef]
- Romeo, M.; Dallio, M.; Scognamiglio, F.; Ventriglia, L.; Cipullo, M.; Coppola, A.; Tammaro, C.; Scafuro, G.; Iodice, P.; Federico, A. Role of non-coding RNAs in hepatocellular carcinoma progression: From classic to novel clinicopathogenetic implications. Cancers 2023, 15, 5178. [Google Scholar] [CrossRef]
- Panzitt, K.; Tschernatsch, M.M.; Guelly, C.; Moustafa, T.; Stradner, M.; Strohmaier, H.M.; Buck, C.R.; Denk, H.; Schroeder, R.; Trauner, M.; et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding rna. Gastroenterology 2007, 132, 330–342. [Google Scholar] [CrossRef]
- Shen, X.; Guo, H.; Xu, J.; Wang, J. Inhibition of lncRNA HULC improves hepatic fibrosis and hepatocyte apoptosis by inhibiting the MAPK signaling pathway in rats with nonalcoholic fatty liver disease. J. Cell. Physiol. 2019, 234, 18169–18179. [Google Scholar] [CrossRef]
- Rashad, N.M.; Khalil, U.; Ahmed, S.M.; Hussien, M.; Sami, M.M.; Wadea, F.M. The expression level of long non-coding RNA PVT1 as a diagnostic marker for advanced stages in patients with nonalcoholic fatty liver disease. Egypt. J. Hosp. Med. 2022, 87, 1825–1834. [Google Scholar] [CrossRef]
- Gernapudi, R.; Wolfson, B.; Zhang, Y.; Yao, Y.; Yang, P.; Asahara, H.; Zhou, Q. MicroRNA 140 promotes expression of long noncoding RNA neat1 in adipogenesis. Mol. Cell. Biol. 2016, 36, 30–38. [Google Scholar] [CrossRef]
- Bu, F.T.; Wang, A.; Zhu, Y.; You, H.M.; Zhang, Y.F.; Meng, X.M.; Huang, C.; Li, J. LncRNA neat1: Shedding light on mechanisms and opportunities in liver diseases. Liver Int. 2020, 40, 2612–2626. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Lai, S.; Zhao, L.; Liu, W.; Liu, S.; Chen, H.; Wang, J.; Du, G.; Tang, B. LINC01468 drives NAFLD-HCC progression through CUL4A-linked degradation of SHIP2. Cell Death Discov. 2022, 8, 449. [Google Scholar] [CrossRef]
- Huang, R.; Duan, X.; Fan, J.; Li, G.; Wang, B. Role of noncoding RNA in development of nonalcoholic fatty liver disease. BioMed Res. Int. 2019, 2019, 8690592. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y. Circular RNAs in hepatocellular carcinoma: Emerging functions to clinical significances. Front. Oncol. 2021, 11, 667428. [Google Scholar] [CrossRef]
- Han, D.; Li, J.; Wang, H.; Su, X.; Hou, J.; Gu, Y.; Qian, C.; Lin, Y.; Liu, X.; Huang, M.; et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 2017, 66, 1151–1164. [Google Scholar] [CrossRef]
- Guo, X.Y.; Sun, F.; Chen, J.N.; Wang, Y.Q.; Pan, Q.; Fan, J.G. CircRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J. Gastroenterol. 2018, 24, 323–337. [Google Scholar] [CrossRef]
- Garbo, S.; Zwergel, C.; Battistelli, C. m6A RNA methylation and beyond—The epigenetic machinery and potential treatment options. Drug Discov. Today 2021, 26, 2559–2574. [Google Scholar] [CrossRef]
- Kumari, R.; Ranjan, P.; Suleiman, Z.G.; Goswami, S.K.; Li, J.; Prasad, R.; Verma, S.K. MRNA modifications in cardiovascular biology and disease: With a focus on m6A modification. Cardiovasc. Res. 2022, 118, 1680–1692. [Google Scholar] [CrossRef]
- Ushijima, T.; Clark, S.J.; Tan, P. Mapping genomic and epigenomic evolution in cancer ecosystems. Science 2021, 373, 1474–1479. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Zhang, L.; Wang, J.; Ren, H. Roles of N6-methyladenosine epitranscriptome in non-alcoholic fatty liver disease and hepatocellular carcinoma. Smart Med. 2023, 2, e20230008. [Google Scholar] [CrossRef]
- Gan, X.; Dai, Z.; Ge, C.; Yin, H.; Wang, Y.; Tan, J.; Sun, S.; Zhou, W.; Yuan, S.; Yang, F. Fto promotes liver inflammation by suppressing m6A mRNA methylation of il-17ra. Front. Oncol. 2022, 12, 989353. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, H.; Zhang, X.; Liu, W.; Ding, Y.; Huang, D.; Zhai, J.; Wei, W.; Wen, J.; Chen, D.; et al. Mettl3 drives NAFLD-related hepatocellular carcinoma and is a therapeutic target for boosting immunotherapy. Cell Rep. Med. 2023, 4, 101144. [Google Scholar] [CrossRef]
- Zuo, X.; Chen, Z.; Gao, W.; Zhang, Y.; Wang, J.; Wang, J.; Cao, M.; Cai, J.; Wu, J.; Wang, X. m6A-mediated upregulation of linc00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J. Hematol. Oncol. 2020, 13, 5. [Google Scholar] [CrossRef]
- Guo, J.; Ren, W.; Li, A.; Ding, Y.; Guo, W.; Su, D.; Hu, C.; Xu, K.; Chen, H.; Xu, X.; et al. Fat mass and obesity-associated gene enhances oxidative stress and lipogenesis in nonalcoholic fatty liver disease. Dig. Dis. Sci. 2013, 58, 1004–1009. [Google Scholar] [CrossRef]
- Li, J.; Zhu, L.; Shi, Y.; Liu, J.; Lin, L.; Chen, X. m6A demethylase fto promotes hepatocellular carcinoma tumorigenesis via mediating pkm2 demethylation. Am. J. Transl. Res. 2019, 11, 6084–6092. [Google Scholar] [PubMed]
- Ma, J.Z.; Yang, F.; Zhou, C.C.; Liu, F.; Yuan, J.H.; Wang, F.; Wang, T.T.; Xu, Q.G.; Zhou, W.P.; Sun, S.H. Mettl14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing. Hepatology 2017, 65, 529–543. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, C.; Xu, L.; Yuan, Y.; Zhao, J.; Zhao, W.; Chen, Y.; Qiu, J.; Meng, M.; Zheng, Y.; et al. N6-methyladenosine reader protein yt521-b homology domain-containing 2 suppresses liver steatosis by regulation of mRNA stability of lipogenic genes. Hepatology 2021, 73, 91–103. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, S.; Zhuang, H.; Ruan, S.; Zhou, Z.; Huang, K.; Ji, F.; Ma, Z.; Hou, B.; He, X. Ythdf2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating oct4 expression via m6A RNA methylation. Oncogene 2020, 39, 4507–4518. [Google Scholar] [CrossRef]
- Zhong, L.; Liao, D.; Zhang, M.; Zeng, C.; Li, X.; Zhang, R.; Ma, H.; Kang, T. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 2019, 442, 252–261. [Google Scholar] [CrossRef]
- Benhammou, J.N.; Lin, J.; Aby, E.S.; Markovic, D.; Raman, S.S.; Lu, D.S.; Tong, M.J. Nonalcoholic fatty liver disease-related hepatocellular carcinoma growth rates and their clinical outcomes. Hepatoma Res. 2021, 7, 70. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Liu, N.; Shen, W.; Xu, W.; Yao, P. Identification of glucose metabolism-related genes in the progression from nonalcoholic fatty liver disease to hepatocellular carcinoma. Genet. Res. 2022, 2022, 8566342. [Google Scholar] [CrossRef]
- Ni, X.; Lu, C.P.; Xu, G.Q.; Ma, J.J. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol. Sin. 2024. [Google Scholar] [CrossRef]
- Xia, L.; Oyang, L.; Lin, J.; Tan, S.; Han, Y.; Wu, N.; Yi, P.; Tang, L.; Pan, Q.; Rao, S.; et al. The cancer metabolic reprogramming and immune response. Mol. Cancer 2021, 20, 28. [Google Scholar] [CrossRef]
- Go, Y.; Jeong, J.Y.; Jeoung, N.H.; Jeon, J.H.; Park, B.Y.; Kang, H.J.; Ha, C.M.; Choi, Y.K.; Lee, S.J.; Ham, H.J.; et al. Inhibition of pyruvate dehydrogenase kinase 2 protects against hepatic steatosis through modulation of tricarboxylic acid cycle anaplerosis and ketogenesis. Diabetes 2016, 65, 2876–2887. [Google Scholar] [CrossRef]
- Dewdney, B.; Roberts, A.; Qiao, L.; George, J.; Hebbard, L. A sweet connection? Fructose’s role in hepatocellular carcinoma. Biomolecules 2020, 10, 496. [Google Scholar] [CrossRef]
- Syamprasad, N.P.; Jain, S.; Rajdev, B.; Panda, S.R.; Kumar, G.J.; Shaik, K.M.; Shantanu, P.A.; Challa, V.S.; Jorvekar, S.B.; Borkar, R.M.; et al. Akr1b1 drives hyperglycemia-induced metabolic reprogramming in masld-associated hepatocellular carcinoma. JHEP Rep. 2024, 6, 100974. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, L.; Ren, P.; Sun, X. LncRNA mbnl1-as1 knockdown increases the sensitivity of hepatocellular carcinoma to tripterine by regulating mir-708-5p-mediated glycolysis. Biotechnol. Genet. Eng. Rev. 2023, 1–18. [Google Scholar] [CrossRef]
- Khan, M.W.; Terry, A.R.; Priyadarshini, M.; Ilievski, V.; Farooq, Z.; Guzman, G.; Cordoba-Chacon, J.; Ben-Sahra, I.; Wicksteed, B.; Layden, B.T. The hexokinase “hkdc1” interaction with the mitochondria is essential for liver cancer progression. Cell Death Dis. 2022, 13, 660. [Google Scholar] [CrossRef]
- Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. Ras oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer 2011, 11, 761–774. [Google Scholar] [CrossRef]
- Kim, D.; Min, D.; Kim, J.; Kim, M.J.; Seo, Y.; Jung, B.H.; Kwon, S.H.; Ro, H.; Lee, S.; Sa, J.K.; et al. Nutlin-3a induces kras mutant/p53 wild type lung cancer specific methuosis-like cell death that is dependent on gfpt2. J. Exp. Clin. Cancer Res. 2023, 42, 338. [Google Scholar] [CrossRef]
- Ying, H.; Kimmelman, A.C.; Lyssiotis, C.A.; Hua, S.; Chu, G.C.; Fletcher-Sananikone, E.; Locasale, J.W.; Son, J.; Zhang, H.; Coloff, J.L.; et al. Oncogenic kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012, 149, 656–670. [Google Scholar] [CrossRef]
- Kerr, E.M.; Gaude, E.; Turrell, F.K.; Frezza, C.; Martins, C.P. Mutant kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 2016, 531, 110–113. [Google Scholar] [CrossRef]
- Amendola, C.R.; Mahaffey, J.P.; Parker, S.J.; Ahearn, I.M.; Chen, W.C.; Zhou, M.; Court, H.; Shi, J.; Mendoza, S.L.; Morten, M.J.; et al. Kras4a directly regulates hexokinase 1. Nature 2019, 576, 482–486. [Google Scholar] [CrossRef]
- Humpton, T.J.; Alagesan, B.; Denicola, G.M.; Lu, D.; Yordanov, G.N.; Leonhardt, C.S.; Yao, M.A.; Alagesan, P.; Zaatari, M.N.; Park, Y.; et al. Oncogenic kras induces nix-mediated mitophagy to promote pancreatic cancer. Cancer Discov. 2019, 9, 1268–1287. [Google Scholar] [CrossRef]
- Mathew, M.; Nguyen, N.T.; Bhutia, Y.D.; Sivaprakasam, S.; Ganapathy, V. Metabolic signature of warburg effect in cancer: An effective and obligatory interplay between nutrient transporters and catabolic/anabolic pathways to promote tumor growth. Cancers 2024, 16, 504. [Google Scholar] [CrossRef]
- Ye, M.; Li, X.; Chen, L.; Mo, S.; Liu, J.; Huang, T.; Luo, F.; Zhang, J. A high-throughput sequencing data-based classifier reveals the metabolic heterogeneity of hepatocellular carcinoma. Cancers 2023, 15, 592. [Google Scholar] [CrossRef]
- Yang, H.; Chen, D.; Wu, Y.; Zhou, H.; Diao, W.; Liu, G.; Li, Q. A feedback loop of ppp and pi3k/akt signal pathway drives regorafenib-resistance in HCC. Cancer Metab. 2023, 11, 27. [Google Scholar] [CrossRef]
- Lulli, M.; Del, C.L.; Mello, T.; Sukowati, C.; Madiai, S.; Gragnani, L.; Forte, P.; Fanizzi, F.P.; Mazzocca, A.; Rombouts, K.; et al. DNA damage response protein CHK2 regulates metabolism in liver cancer. Cancer Res. 2021, 81, 2861–2873. [Google Scholar] [CrossRef]
- Leveille, M.; Estall, J.L. Mitochondrial dysfunction in the transition from NASH to HCC. Metabolites 2019, 9, 233. [Google Scholar] [CrossRef]
- Bhat, N.; Mani, A. Dysregulation of lipid and glucose metabolism in nonalcoholic fatty liver disease. Nutrients 2023, 15, 2323. [Google Scholar] [CrossRef]
- Paul, B.; Lewinska, M.; Andersen, J.B. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep. 2022, 4, 100479. [Google Scholar] [CrossRef]
- Li, X.; Ramadori, P.; Pfister, D.; Seehawer, M.; Zender, L.; Heikenwalder, M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat. Rev. Cancer 2021, 21, 541–557. [Google Scholar] [CrossRef]
- Wang, M.D.; Wang, N.Y.; Zhang, H.L.; Sun, L.Y.; Xu, Q.R.; Liang, L.; Li, C.; Huang, D.S.; Zhu, H.; Yang, T. Fatty acid transport protein-5 (fatp5) deficiency enhances hepatocellular carcinoma progression and metastasis by reprogramming cellular energy metabolism and regulating the ampk-mtor signaling pathway. Oncogenesis 2021, 10, 74. [Google Scholar] [CrossRef]
- Wu, Z.; Ma, H.; Wang, L.; Song, X.; Zhang, J.; Liu, W.; Ge, Y.; Sun, Y.; Yu, X.; Wang, Z.; et al. Tumor suppressor zhx2 inhibits NAFLD-HCC progression via blocking lpl-mediated lipid uptake. Cell Death Differ. 2020, 27, 1693–1708. [Google Scholar] [CrossRef]
- Yang, H.; Deng, Q.; Ni, T.; Liu, Y.; Lu, L.; Dai, H.; Wang, H.; Yang, W. Targeted inhibition of lpl/fabp4/cpt1 fatty acid metabolic axis can effectively prevent the progression of nonalcoholic steatohepatitis to liver cancer. Int. J. Biol. Sci. 2021, 17, 4207–4222. [Google Scholar] [CrossRef]
- Ning, Z.; Guo, X.; Liu, X.; Lu, C.; Wang, A.; Wang, X.; Wang, W.; Chen, H.; Qin, W.; Liu, X.; et al. Usp22 regulates lipidome accumulation by stabilizing PPARgamma in hepatocellular carcinoma. Nat. Commun. 2022, 13, 2187. [Google Scholar] [CrossRef]
- Alannan, M.; Fayyad-Kazan, H.; Trezeguet, V.; Merched, A. Targeting lipid metabolism in liver cancer. Biochemistry 2020, 59, 3951–3964. [Google Scholar] [CrossRef]
- Roumans, K.; Lindeboom, L.; Veeraiah, P.; Remie, C.; Phielix, E.; Havekes, B.; Bruls, Y.; Brouwers, M.; Stahlman, M.; Alssema, M.; et al. Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance. Nat. Commun. 2020, 11, 1891. [Google Scholar] [CrossRef]
- Nakagawa, H.; Hayata, Y.; Kawamura, S.; Yamada, T.; Fujiwara, N.; Koike, K. Lipid metabolic reprogramming in hepatocellular carcinoma. Cancers 2018, 10, 447. [Google Scholar] [CrossRef]
- Ahmed, E.A.; El-Derany, M.O.; Anwar, A.M.; Saied, E.M.; Magdeldin, S. Metabolomics and lipidomics screening reveal reprogrammed signaling pathways toward cancer development in non-alcoholic steatohepatitis. Int. J. Mol. Sci. 2022, 24, 210. [Google Scholar] [CrossRef]
- Carrer, A.; Trefely, S.; Zhao, S.; Campbell, S.L.; Norgard, R.J.; Schultz, K.C.; Sidoli, S.; Parris, J.; Affronti, H.C.; Sivanand, S.; et al. Acetyl-coa metabolism supports multistep pancreatic tumorigenesis. Cancer Discov. 2019, 9, 416–435. [Google Scholar] [CrossRef]
- Lin, M.; Lv, D.; Zheng, Y.; Wu, M.; Xu, C.; Zhang, Q.; Wu, L. Downregulation of cpt2 promotes tumorigenesis and chemoresistance to cisplatin in hepatocellular carcinoma. Oncotargets Ther. 2018, 11, 3101–3110. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Huang, J.; Li, Z.; Gong, Y.; Zou, B.; Liu, X.; Ding, L.; Li, P.; Zhu, Z.; et al. Hif-2alpha upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the pi3k-akt-mtor pathway. Aging 2019, 11, 10839–10860. [Google Scholar] [CrossRef]
- Yamada, K.; Tanaka, T.; Kai, K.; Matsufuji, S.; Ito, K.; Kitajima, Y.; Manabe, T.; Noshiro, H. Suppression of NASH-related HCC by farnesyltransferase inhibitor through inhibition of inflammation and hypoxia-inducible factor-1alpha expression. Int. J. Mol. Sci. 2023, 24, 11546. [Google Scholar] [CrossRef]
- Fujinuma, S.; Nakatsumi, H.; Shimizu, H.; Sugiyama, S.; Harada, A.; Goya, T.; Tanaka, M.; Kohjima, M.; Takahashi, M.; Izumi, Y.; et al. Foxk1 promotes nonalcoholic fatty liver disease by mediating mtorc1-dependent inhibition of hepatic fatty acid oxidation. Cell Rep. 2023, 42, 112530. [Google Scholar] [CrossRef]
- Liu, J.; Waugh, M.G. The Regulation and Functions of ACSL3 and ACSL4 in the Liver and Hepatocellular Carcinoma. Liver Cancer Int. 2022, 4, 2–41. [Google Scholar] [CrossRef]
- Duan, J.; Wang, Z.; Duan, R.; Yang, C.; Zhao, R.; Feng, Q.; Qin, Y.; Jiang, J.; Gu, S.; Lv, K.; et al. Therapeutic targeting of hepatic acsl4 ameliorates NASH in mice. Hepatology 2022, 75, 140–153. [Google Scholar] [CrossRef]
- Chen, J.; Ding, C.; Chen, Y.; Hu, W.; Yu, C.; Peng, C.; Feng, X.; Cheng, Q.; Wu, W.; Lu, Y.; et al. Acsl4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-myc/srebp1 pathway. Cancer Lett. 2021, 502, 154–165. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Meroni, M.; Longo, M.; Fargion, S.; Fracanzani, A.L. Genetics, immunity and nutrition boost the switching from NASH to HCC. Biomedicines 2021, 9, 1524. [Google Scholar] [CrossRef]
- Li, H.; Hu, P.; Zou, Y.; Yuan, L.; Xu, Y.; Zhang, X.; Luo, X.; Zhang, Z. Tanshinone iia and hepatocellular carcinoma: A potential therapeutic drug. Front. Oncol. 2023, 13, 1071415. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, X. The role of gut-liver axis in gut microbiome dysbiosis associated NAFLD and NAFLD-HCC. Biomedicines 2022, 10, 524. [Google Scholar] [CrossRef]
- Peng, L.; Yan, Q.; Chen, Z.; Hu, Y.; Sun, Y.; Miao, Y.; Wu, Y.; Yao, Y.; Tao, L.; Chen, F.; et al. Research progress on the role of cholesterol in hepatocellular carcinoma. Eur. J. Pharmacol. 2023, 938, 175410. [Google Scholar] [CrossRef]
- Kim, J.Y.; He, F.; Karin, M. From liver fat to cancer: Perils of the western diet. Cancers 2021, 13, 1095. [Google Scholar] [CrossRef]
- Che, L.; Chi, W.; Qiao, Y.; Zhang, J.; Song, X.; Liu, Y.; Li, L.; Jia, J.; Pilo, M.G.; Wang, J.; et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut 2020, 69, 177–186. [Google Scholar] [CrossRef]
- Liu, F.; Tian, T.; Zhang, Z.; Xie, S.; Yang, J.; Zhu, L.; Wang, W.; Shi, C.; Sang, L.; Guo, K.; et al. Long non-coding RNA snhg6 couples cholesterol sensing with mtorc1 activation in hepatocellular carcinoma. Nat. Metab. 2022, 4, 1022–1040. [Google Scholar] [CrossRef]
- Tang, W.; Zhou, J.; Yang, W.; Feng, Y.; Wu, H.; Mok, M.; Zhang, L.; Liang, Z.; Liu, X.; Xiong, Z.; et al. Aberrant cholesterol metabolic signaling impairs antitumor immunosurveillance through natural killer t cell dysfunction in obese liver. Cell. Mol. Immunol. 2022, 19, 834–847. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Lyu, H.; Yang, J.; Wei, W.; Wang, Y.; Luo, H.; Zhang, Y.; Jiang, X.; Yi, H.; et al. CSN6-SPOP-HMGCS1 axis promotes hepatocellular carcinoma progression via YAP1 activation. Adv. Sci. 2024, 11, e2306827. [Google Scholar] [CrossRef]
- Hu, J.; Liu, N.; Song, D.; Steer, C.J.; Zheng, G.; Song, G. A positive feedback between cholesterol synthesis and the pentose phosphate pathway rather than glycolysis promotes hepatocellular carcinoma. Oncogene 2023, 42, 2892–2904. [Google Scholar] [CrossRef]
- Galano, M.; Venugopal, S.; Papadopoulos, V. Role of star and scp2/scpx in the transport of cholesterol and other lipids. Int. J. Mol. Sci. 2022, 23, 12115. [Google Scholar] [CrossRef]
- Conde, D.L.R.L.; Garcia-Ruiz, C.; Vallejo, C.; Baulies, A.; Nunez, S.; Monte, M.J.; Marin, J.; Baila-Rueda, L.; Cenarro, A.; Civeira, F.; et al. Stard1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway. J. Hepatol. 2021, 74, 1429–1441. [Google Scholar] [CrossRef]
- Tan, S.; Israeli, E.; Ericksen, R.E.; Chow, P.; Han, W. The altered lipidome of hepatocellular carcinoma. Semin. Cancer Biol. 2022, 86, 445–456. [Google Scholar] [CrossRef]
- Belenguer, G.; Mastrogiovanni, G.; Pacini, C.; Hall, Z.; Dowbaj, A.M.; Arnes-Benito, R.; Sljukic, A.; Prior, N.; Kakava, S.; Bradshaw, C.R.; et al. Rnf43/znrf3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering the liver lipid metabolic ground-state. Nat. Commun. 2022, 13, 334. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Wang, S.; Jiang, Q.; Xu, K. Identification and validation of a nine-gene amino acid metabolism-related risk signature in HCC. Front. Cell. Dev. Biol. 2021, 9, 731790. [Google Scholar] [CrossRef]
- Foglia, B.; Beltra, M.; Sutti, S.; Cannito, S. Metabolic reprogramming of HCC: A new microenvironment for immune responses. Int. J. Mol. Sci. 2023, 24, 7463. [Google Scholar] [CrossRef]
- Yin, H.; Liu, Y.; Dong, Q.; Wang, H.; Yan, Y.; Wang, X.; Wan, X.; Yuan, G.; Pan, Y. The mechanism of extracellular cypb promotes glioblastoma adaptation to glutamine deprivation microenvironment. Cancer Lett. 2024, 216862. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, M.U. The role of amino acid metabolic reprogramming in tumor development and immunotherapy. Biochem. Mol. Biol. 2022, 7, 6–12. [Google Scholar] [CrossRef]
- Zhu, W.W.; Lu, M.; Wang, X.Y.; Zhou, X.; Gao, C.; Qin, L.X. The fuel and engine: The roles of reprogrammed metabolism in metastasis of primary liver cancer. Genes Dis. 2020, 7, 299–307. [Google Scholar] [CrossRef]
- Du, D.; Liu, C.; Qin, M.; Zhang, X.; Xi, T.; Yuan, S.; Hao, H.; Xiong, J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm. Sin. B 2022, 12, 558–580. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, F.; Fan, N.; Zhou, C.; Li, D.; Macvicar, T.; Dong, Q.; Bruns, C.J.; Zhao, Y. Targeting glutaminolysis: New perspectives to understand cancer development and novel strategies for potential target therapies. Front. Oncol. 2020, 10, 589508. [Google Scholar] [CrossRef]
- Linder, S.J.; Bernasocchi, T.; Martinez-Pastor, B.; Sullivan, K.D.; Galbraith, M.D.; Lewis, C.A.; Ferrer, C.M.; Boon, R.; Silveira, G.G.; Cho, H.M.; et al. Inhibition of the proline metabolism rate-limiting enzyme p5cs allows proliferation of glutamine-restricted cancer cells. Nat. Metab. 2023, 5, 2131–2147. [Google Scholar] [CrossRef]
- Tang, L.; Zeng, J.; Geng, P.; Fang, C.; Wang, Y.; Sun, M.; Wang, C.; Wang, J.; Yin, P.; Hu, C.; et al. Global metabolic profiling identifies a pivotal role of proline and hydroxyproline metabolism in supporting hypoxic response in hepatocellular carcinoma. Clin. Cancer Res. 2018, 24, 474–485. [Google Scholar] [CrossRef]
- Marsico, M.; Santarsiero, A.; Pappalardo, I.; Convertini, P.; Chiummiento, L.; Sardone, A.; Di Noia, M.A.; Infantino, V.; Todisco, S. Mitochondria-mediated apoptosis of HCC cells triggered by knockdown of glutamate dehydrogenase 1: Perspective for its inhibition through quercetin and permethylated anigopreissin A. Biomedicines 2021, 9, 1664. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Xu, Y.; Qian, L.; Xu, T.; Meng, G.; Li, H.; Wang, Y.; Zhang, L.; Jiang, X.; et al. Got2 silencing promotes reprogramming of glutamine metabolism and sensitizes hepatocellular carcinoma to glutaminase inhibitors. Cancer Res. 2022, 82, 3223–3235. [Google Scholar] [CrossRef]
- Takegoshi, K.; Honda, M.; Okada, H.; Takabatake, R.; Matsuzawa-Nagata, N.; Campbell, J.S.; Nishikawa, M.; Shimakami, T.; Shirasaki, T.; Sakai, Y.; et al. Branched-chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model. Oncotarget 2017, 8, 18191–18205. [Google Scholar] [CrossRef]
- Ericksen, R.E.; Lim, S.L.; Mcdonnell, E.; Shuen, W.H.; Vadiveloo, M.; White, P.J.; Ding, Z.; Kwok, R.; Lee, P.; Radda, G.K.; et al. Loss of bcaa catabolism during carcinogenesis enhances mtorc1 activity and promotes tumor development and progression. Cell Metab. 2019, 29, 1151–1165. [Google Scholar] [CrossRef]
- Tajiri, K.; Shimizu, Y. Branched-chain amino acids in liver diseases. World J. Gastroenterol. 2013, 19, 7620–7629. [Google Scholar] [CrossRef]
- Pichon, C.; Nachit, M.; Gillard, J.; Vande, V.G.; Lanthier, N.; Leclercq, I.A. Impact of l-ornithine l-aspartate on non-alcoholic steatohepatitis-associated hyperammonemia and muscle alterations. Front. Nutr. 2022, 9, 1051157. [Google Scholar] [CrossRef]
- Thomsen, K.L.; Eriksen, P.L.; Kerbert, A.J.; De Chiara, F.; Jalan, R.; Vilstrup, H. Role of ammonia in NAFLD: An unusual suspect. JHEP Rep. 2023, 5, 100780. [Google Scholar] [CrossRef]
- Tenen, D.G.; Chai, L.; Tan, J.L. Metabolic alterations and vulnerabilities in hepatocellular carcinoma. Gastroenterol. Rep. 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Li, J.T.; Yang, H.; Lei, M.Z.; Zhu, W.P.; Su, Y.; Li, K.Y.; Zhu, W.Y.; Wang, J.; Zhang, L.; Qu, J.; et al. Dietary folate drives methionine metabolism to promote cancer development by stabilizing MAT IIA. Signal Transduct. Target. Ther. 2022, 7, 192. [Google Scholar] [CrossRef]
- Mukha, D.; Fokra, M.; Feldman, A.; Sarvin, B.; Sarvin, N.; Nevo-Dinur, K.; Besser, E.; Hallo, E.; Aizenshtein, E.; Schug, Z.T.; et al. Glycine decarboxylase maintains mitochondrial protein lipoylation to support tumor growth. Cell Metab. 2022, 34, 775–782. [Google Scholar] [CrossRef]
- Simile, M.M.; Cigliano, A.; Paliogiannis, P.; Daino, L.; Manetti, R.; Feo, C.F.; Calvisi, D.F.; Feo, F.; Pascale, R.M. Nuclear localization dictates hepatocarcinogenesis suppression by glycine n-methyltransferase. Transl. Oncol. 2022, 15, 101239. [Google Scholar] [CrossRef]
- Schwartz, L.M.; Persson, E.C.; Weinstein, S.J.; Graubard, B.I.; Freedman, N.D.; Mannisto, S.; Albanes, D.; Mcglynn, K.A. Alcohol consumption, one-carbon metabolites, liver cancer and liver disease mortality. PLoS ONE 2013, 8, e78156. [Google Scholar] [CrossRef]
- Zheng, Q.; Maksimovic, I.; Upad, A.; David, Y. Non-enzymatic covalent modifications: A new link between metabolism and epigenetics. Protein Cell 2020, 11, 401–416. [Google Scholar] [CrossRef]
- Sookoian, S.; Rosselli, M.S.; Gemma, C.; Burgueno, A.L.; Fernandez, G.T.; Castano, G.O.; Pirola, C.J. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: Impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology 2010, 52, 1992–2000. [Google Scholar] [CrossRef]
- Murphy, S.K.; Yang, H.; Moylan, C.A.; Pang, H.; Dellinger, A.; Abdelmalek, M.F.; Garrett, M.E.; Ashley-Koch, A.; Suzuki, A.; Tillmann, H.L.; et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology 2013, 145, 1076–1087. [Google Scholar] [CrossRef]
- Hughey, C.C.; Trefts, E.; Bracy, D.P.; James, F.D.; Donahue, E.P.; Wasserman, D.H. Glycine n-methyltransferase deletion in mice diverts carbon flux from gluconeogenesis to pathways that utilize excess methionine cycle intermediates. J. Biol. Chem. 2018, 293, 11944–11954. [Google Scholar] [CrossRef]
- Wu, T.; Luo, G.; Lian, Q.; Sui, C.; Tang, J.; Zhu, Y.; Zheng, B.; Li, Z.; Zhang, Y.; Zhang, Y.; et al. Discovery of a carbamoyl phosphate synthetase 1-deficient HCC subtype with therapeutic potential through integrative genomic and experimental analysis. Hepatology 2021, 74, 3249–3268. [Google Scholar] [CrossRef]
- Sodum, N.; Kumar, G.; Bojja, S.L.; Kumar, N.; Rao, C.M. Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol. Res. 2021, 167, 105484. [Google Scholar] [CrossRef]
- Xi, C.; Pang, J.; Barrett, A.; Horuzsko, A.; Ande, S.; Mivechi, N.F.; Zhu, X. Nrf2 drives hepatocellular carcinoma progression through acetyl-coa-mediated metabolic and epigenetic regulatory networks. Mol. Cancer Res. 2023, 21, 1079–1092. [Google Scholar] [CrossRef]
- Zhao, L.; Kang, M.; Liu, X.; Wang, Z.; Wang, Y.; Chen, H.; Liu, W.; Liu, S.; Li, B.; Li, C.; et al. Ubr7 inhibits HCC tumorigenesis by targeting keap1/nrf2/bach1/hk2 and glycolysis. J. Exp. Clin. Cancer Res. 2022, 41, 330. [Google Scholar] [CrossRef]
- Dasgupta, A.; Mondal, P.; Dalui, S.; Das, C.; Roy, S. Molecular characterization of substrate-induced ubiquitin transfer by ubr7-phd finger, a newly identified histone h2bk120 ubiquitin ligase. FEBS J. 2022, 289, 1842–1857. [Google Scholar] [CrossRef]
- Hogan, A.K.; Sathyan, K.M.; Willis, A.B.; Khurana, S.; Srivastava, S.; Zasadzinska, E.; Lee, A.S.; Bailey, A.O.; Gaynes, M.N.; Huang, J.; et al. UBR7 acts as a histone chaperone for post-nucleosomal histone H3. EMBO J. 2021, 40, e108307. [Google Scholar] [CrossRef]
- Fu, G.; Li, S.T.; Jiang, Z.; Mao, Q.; Xiong, N.; Li, X.; Hao, Y.; Zhang, H. PGAM5 deacetylation mediated by SIRT2 facilitates lipid metabolism and liver cancer proliferation. Acta Biochim. Biophys. Sin. 2023, 55, 1370–1379. [Google Scholar] [CrossRef]
- Liu, M.X.; Jin, L.; Sun, S.J.; Liu, P.; Feng, X.; Cheng, Z.L.; Liu, W.R.; Guan, K.L.; Shi, Y.H.; Yuan, H.X.; et al. Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene 2018, 37, 1637–1653. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, C.; Liu, R.; Gou, D.; Chang, L.; Deng, H.; Gao, Q.; Zhang, W.; Tuo, L.; Pan, X.; et al. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-glcnacylation and hepatocellular carcinoma growth upon glucose deprivation. J. Clin. Investig. 2021, 131, e144703. [Google Scholar] [CrossRef]
- Gou, D.; Liu, R.; Shan, X.; Deng, H.; Chen, C.; Xiang, J.; Liu, Y.; Gao, Q.; Li, Z.; Huang, A.; et al. Gluconeogenic enzyme PCK1 supports s-adenosylmethionine biosynthesis and promotes H3K9me3 modification to suppress hepatocellular carcinoma progression. J. Clin. Investig. 2023, 133, e161713. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, B.; Xu, Z.; Li, X.; DM, C.; Shao, Z. Genome-wide identification of mammalian cell-cycle invariant and mitotic-specific macroh2a1 domains. Biosci. Trends 2023, 17, 393–400. [Google Scholar] [CrossRef]
- Rivas, S.I.; Romito, I.; Maugeri, A.; Lo, R.O.; Giallongo, S.; Mazzoccoli, G.; Oben, J.A.; Li, V.G.; Mazza, T.; Alisi, A.; et al. A lipidomic signature complements stemness features acquisition in liver cancer cells. Int. J. Mol. Sci. 2020, 21, 8452. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef]
- Xu, K.; Xia, P.; Chen, X.; Ma, W.; Yuan, Y. Ncrna-mediated fatty acid metabolism reprogramming in HCC. Trends Endocrinol. Metab. 2023, 34, 278–291. [Google Scholar] [CrossRef]
- Chi, Y.; Gong, Z.; Xin, H.; Wang, Z.; Liu, Z. Long noncoding RNA lncARSR promotes nonalcoholic fatty liver disease and hepatocellular carcinoma by promoting YAP1 and activating the IRS2/AKT pathway. J. Transl. Med. 2020, 18, 126. [Google Scholar] [CrossRef]
- Xu, K.; Xia, P.; Gongye, X.; Zhang, X.; Ma, S.; Chen, Z.; Zhang, H.; Liu, J.; Liu, Y.; Guo, Y.; et al. A novel lncRNA rp11-386g11.10 reprograms lipid metabolism to promote hepatocellular carcinoma progression. Mol. Metab. 2022, 63, 101540. [Google Scholar] [CrossRef]
- Sui, J.; Pan, D.; Yu, J.; Wang, Y.; Sun, G.; Xia, H. Identification and evaluation of hub long noncoding RNAs and mRNAs in high fat diet induced liver steatosis. Nutrients 2023, 15, 948. [Google Scholar] [CrossRef]
- Chu, K.; Zhao, N.; Hu, X.; Feng, R.; Zhang, L.; Wang, G.; Li, W.; Liu, L. LncNONMMUG027912 alleviates lipid accumulation through AMPKα/mTOR/SREBP1C axis in nonalcoholic fatty liver. Biochem. Biophys. Res. Commun. 2022, 618, 8–14. [Google Scholar] [CrossRef]
- Lin, Y.X.; Wu, X.B.; Zheng, C.W.; Zhang, Q.L.; Zhang, G.Q.; Chen, K.; Zhan, Q.; An, F.M. Mechanistic investigation on the regulation of fabp1 by the il-6/mir-603 signaling in the pathogenesis of hepatocellular carcinoma. BioMed Res. Int. 2021, 2021, 8579658. [Google Scholar] [CrossRef]
- Zhang, H.F.; Wang, Y.C.; Han, Y.D. MicroRNA-34a inhibits liver cancer cell growth by reprogramming glucose metabolism. Mol. Med. Rep. 2018, 17, 4483–4489. [Google Scholar] [CrossRef]
- Jiang, J.X.; Gao, S.; Pan, Y.Z.; Yu, C.; Sun, C.Y. Overexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase ii. Mol. Med. Rep. 2014, 10, 995–1002. [Google Scholar] [CrossRef]
- Inomata, Y.; Oh, J.W.; Taniguchi, K.; Sugito, N.; Kawaguchi, N.; Hirokawa, F.; Lee, S.W.; Akao, Y.; Takai, S.; Kim, K.P.; et al. Downregulation of mir-122-5p activates glycolysis via pkm2 in kupffer cells of rat and mouse models of non-alcoholic steatohepatitis. Int. J. Mol. Sci. 2022, 23, 5230. [Google Scholar] [CrossRef]
- Masliah-Planchon, J.; Garinet, S.; Pasmant, E. RAS-MAPK pathway epigenetic activation in cancer: Mirnas in action. Oncotarget 2016, 7, 38892–38907. [Google Scholar] [CrossRef]
- Zhu, W.; Qian, J.; Ma, L.; Ma, P.; Yang, F.; Shu, Y. MiR-346 suppresses cell proliferation through smyd3 dependent approach in hepatocellular carcinoma. Oncotarget 2017, 8, 65218–65229. [Google Scholar] [CrossRef]
- Li, Q.; Pan, X.; Zhu, D.; Deng, Z.; Jiang, R.; Wang, X. Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology 2019, 70, 1298–1316. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Z.; Zhang, Y.; Wang, J.; Zhang, Z.; Wu, J.; Mao, J.; Zuo, X. CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m6A modification in hepatocellular carcinoma. Mol. Ther. Oncolytics 2022, 24, 755–771. [Google Scholar] [CrossRef]
- Kim, D.H.; Marinov, G.K.; Pepke, S.; Singer, Z.S.; He, P.; Williams, B.; Schroth, G.P.; Elowitz, M.B.; Wold, B.J. Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell 2015, 16, 88–101. [Google Scholar] [CrossRef]
- Xu, W.; Deng, B.; Lin, P.; Liu, C.; Li, B.; Huang, Q.; Zhou, H.; Yang, J.; Qu, L. Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Sci. China Life Sci. 2020, 63, 529–542. [Google Scholar] [CrossRef]
- Chen, K.; Wang, X.; Wei, B.; Sun, R.; Wu, C.; Yang, H.J. LncRNA SNHG6 promotes glycolysis reprogramming in hepatocellular carcinoma by stabilizing the BOP1 protein. Anim. Cells Syst. 2022, 26, 369–379. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, C.; Weng, J.; Chen, Z.; Zhou, Q.; Gao, J.; Shi, G.; Ke, A.; Ren, N.; Sun, H.; et al. Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway. J. Exp. Clin. Cancer Res. 2022, 41, 253. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, Z.; Tai, L.; Zhang, L.; Sun, Z.; Zhou, L. Comprehensive analysis of differences of N6-methyladenosine RNA methylomes between high-fat-fed and normal mouse livers. Epigenomics 2019, 11, 1267–1282. [Google Scholar] [CrossRef]
- Peng, H.; Chen, B.; Wei, W.; Guo, S.; Han, H.; Yang, C.; Ma, J.; Wang, L.; Peng, S.; Kuang, M.; et al. N6-methyladenosine (m6A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation. Nat. Metab. 2022, 4, 1041–1054. [Google Scholar] [CrossRef]
- Mizuno, T.M. Fat mass and obesity associated (FTO) gene and hepatic glucose and lipid metabolism. Nutrients 2018, 10, 1600. [Google Scholar] [CrossRef]
- Chen, A.; Chen, X.; Cheng, S.; Shu, L.; Yan, M.; Yao, L.; Wang, B.; Huang, S.; Zhou, L.; Yang, Z.; et al. Fto promotes srebp1c maturation and enhances cidec transcription during lipid accumulation in hepg2 cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 538–548. [Google Scholar] [CrossRef]
- Regue, L.; Minichiello, L.; Avruch, J.; Dai, N. Liver-specific deletion of igf2 mRNA binding protein-2/imp2 reduces hepatic fatty acid oxidation and increases hepatic triglyceride accumulation. J. Biol. Chem. 2019, 294, 11944–11951. [Google Scholar] [CrossRef]
- Simon, Y.; Kessler, S.M.; Bohle, R.M.; Haybaeck, J.; Kiemer, A.K. The insulin-like growth factor 2 (igf2) mrna-binding protein p62/igf2bp2-2 as a promoter of NAFLD and HCC? Gut 2014, 63, 861–863. [Google Scholar] [CrossRef]
- Liao, H.; Gaur, A.; Mcconie, H.; Shekar, A.; Wang, K.; Chang, J.T.; Breton, G.; Denicourt, C. Human nop2/nsun1 regulates ribosome biogenesis through non-catalytic complex formation with box c/d snornps. Nucleic Acids Res. 2022, 50, 10695–10716. [Google Scholar] [CrossRef]
- Zhang, H.; Zhai, X.; Liu, Y.; Xia, Z.; Xia, T.; Du, G.; Zhou, H.; Franziska, S.D.; Bazhin, A.V.; Li, Z.; et al. Nop2-mediated m5c modification of c-myc in an eif3a-dependent manner to reprogram glucose metabolism and promote hepatocellular carcinoma progression. Research 2023, 6, 184. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wei, Y.; Hu, B.; Liao, Y.; Wang, X.; Wan, W.H.; Huang, C.X.; Mahabati, M.; Liu, Z.Y.; Qu, J.R.; et al. c-Myc-driven glycolysis polarizes functional regulatory B cells that trigger pathogenic inflammatory responses. Signal Transduct. Target. Ther. 2022, 7, 105. [Google Scholar] [CrossRef]
- Gimeno-Valiente, F.; Lopez-Rodas, G.; Castillo, J.; Franco, L. Alternative splicing, epigenetic modifications and cancer: A dangerous triangle, or a hopeful one? Cancers 2022, 14, 560. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Li, H.; Hinoue, T.; Zhou, W.; Ohtani, H.; El-Khoueiry, A.; Daniels, J.; O’Connell, C.; Dorff, T.B.; et al. Integrative epigenetic analysis reveals therapeutic targets to the DNA methyltransferase inhibitor guadecitabine (sgi-110) in hepatocellular carcinoma. Hepatology 2018, 68, 1412–1428. [Google Scholar] [CrossRef]
- Topper, M.J.; Vaz, M.; Marrone, K.A.; Brahmer, J.R.; Baylin, S.B. The emerging role of epigenetic therapeutics in immuno-oncology. Nat. Rev. Clin. Oncol. 2020, 17, 75–90. [Google Scholar] [CrossRef]
- Hai, R.; Yang, D.; Zheng, F.; Wang, W.; Han, X.; Bode, A.M.; Luo, X. The emerging roles of hdacs and their therapeutic implications in cancer. Eur. J. Pharmacol. 2022, 931, 175216. [Google Scholar] [CrossRef]
- Toh, T.B.; Lim, J.J.; Chow, E.K. Epigenetics of hepatocellular carcinoma. Clin. Transl. Med. 2019, 8, 13. [Google Scholar] [CrossRef]
- Cheng, C.L.; Tsang, F.H.; Wei, L.; Chen, M.; Chin, D.W.; Shen, J.; Law, C.T.; Lee, D.; Wong, C.C.; Ng, I.O.; et al. Bromodomain-containing protein BRPF1 is a therapeutic target for liver cancer. Commun. Biol. 2021, 4, 888. [Google Scholar] [CrossRef]
- Shirbhate, E.; Veerasamy, R.; Boddu, S.; Tiwari, A.K.; Rajak, H. Histone deacetylase inhibitor-based oncolytic virotherapy: A promising strategy for cancer treatment. Drug Discov. Today 2022, 27, 1689–1697. [Google Scholar] [CrossRef]
- Lin, Z.Z.; Hu, M.C.; Hsu, C.; Wu, Y.M.; Lu, Y.S.; Ho, J.A.; Yeh, S.H.; Chen, P.J.; Cheng, A.L. Synergistic efficacy of telomerase-specific oncolytic adenoviral therapy and histone deacetylase inhibition in human hepatocellular carcinoma. Cancer Lett. 2023, 556, 216063. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, M. Histone demethylation profiles in nonalcoholic fatty liver disease and prognostic values in hepatocellular carcinoma: A bioinformatic analysis. Curr. Issues Mol. Biol. 2023, 45, 3640–3657. [Google Scholar] [CrossRef]
- Bayo, J.; Fiore, E.J.; Dominguez, L.M.; Real, A.; Malvicini, M.; Rizzo, M.; Atorrasagasti, C.; Garcia, M.G.; Argemi, J.; Martinez, E.D.; et al. A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets. J. Hepatol. 2019, 71, 78–90. [Google Scholar] [CrossRef]
- Juhling, F.; Hamdane, N.; Crouchet, E.; Li, S.; El, S.H.; Mukherji, A.; Fujiwara, N.; Oudot, M.A.; Thumann, C.; Saviano, A.; et al. Targeting clinical epigenetic reprogramming for chemoprevention of metabolic and viral hepatocellular carcinoma. Gut 2021, 70, 157–169. [Google Scholar] [CrossRef]
- Dai, E.; Zhu, Z.; Wahed, S.; Qu, Z.; Storkus, W.J.; Guo, Z.S. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol. Cancer 2021, 20, 171. [Google Scholar] [CrossRef]
- Bergamini, C.; Leoni, I.; Rizzardi, N.; Melli, M.; Galvani, G.; Coada, C.A.; Giovannini, C.; Monti, E.; Liparulo, I.; Valenti, F.; et al. MiR-494 induces metabolic changes through g6pc targeting and modulates sorafenib response in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2023, 42, 145. [Google Scholar] [CrossRef]
- Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics—Challenges and potential solutions. Nat. Rev. Drug Discov. 2021, 20, 629–651. [Google Scholar] [CrossRef]
- Zhou, C.C.; Yang, F.; Yuan, S.X.; Ma, J.Z.; Liu, F.; Yuan, J.H.; Bi, F.R.; Lin, K.Y.; Yin, J.H.; Cao, G.W.; et al. Systemic genome screening identifies the outcome associated focal loss of long noncoding RNA PRAL in hepatocellular carcinoma. Hepatology 2016, 63, 850–863. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Kalafateli, M.; Tsounis, E.P.; Triantos, C. Epigenetic regulation in lean nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2023, 24, 12864. [Google Scholar] [CrossRef]
- Zhang, X.; Su, T.; Wu, Y.; Cai, Y.; Wang, L.; Liang, C.; Zhou, L.; Wang, S.; Li, X.X.; Peng, S.; et al. N6-methyladenosine reader YTHDF1 promotes stemness and therapeutic resistance in hepatocellular carcinoma by enhancing notch1 expression. Cancer Res. 2024, 84, 827–840. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Wang, Y.; Sharma, A.; Ge, F.; Chen, P.; Yang, Y.; Liu, H.; Liu, H.; Zhao, C.; Mittal, L.; Asthana, S.; et al. Non-oncology drug (meticrane) shows anti-cancer ability in synergy with epigenetic inhibitors and appears to be involved passively in targeting cancer cells. Front. Oncol. 2023, 13, 1157366. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Xu, H.; Wang, X.; Zhang, Y.; Shang, R.; O’Farrell, M.; Roessler, S.; Sticht, C.; Stahl, A.; et al. Therapeutic efficacy of fasn inhibition in preclinical models of HCC. Hepatology 2022, 76, 951–966. [Google Scholar] [CrossRef]
- Shueng, P.W.; Chan, H.W.; Lin, W.C.; Kuo, D.Y.; Chuang, H.Y. Orlistat resensitizes sorafenib-resistance in hepatocellular carcinoma cells through modulating metabolism. Int. J. Mol. Sci. 2022, 23, 6501. [Google Scholar] [CrossRef]
- Attia, Y.M.; Tawfiq, R.A.; Gibriel, A.A.; Ali, A.A.; Kassem, D.H.; Hammam, O.A.; Elmazar, M.M. Activation of fxr modulates socs3/jak2/stat3 signaling axis in a NASH-dependent hepatocellular carcinoma animal model. Biochem. Pharmacol. 2021, 186, 114497. [Google Scholar] [CrossRef]
- Wang, Y.; Stancliffe, E.; Fowle-Grider, R.; Wang, R.; Wang, C.; Schwaiger-Haber, M.; Shriver, L.P.; Patti, G.J. Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells. Mol. Cell 2022, 82, 3270–3283. [Google Scholar] [CrossRef]
- Jiao, F.; Dai, W.; Mao, Y.; Wu, L.; Li, J.; Chen, K.; Yu, Q.; Kong, R.; Li, S.; Zhang, J.; et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J. Exp. Clin. Cancer Res. 2020, 39, 24. [Google Scholar] [CrossRef]
- Ma, W.K.; Voss, D.M.; Scharner, J.; Costa, A.; Lin, K.T.; Jeon, H.Y.; Wilkinson, J.E.; Jackson, M.; Rigo, F.; Bennett, C.F.; et al. ASO-based PKM splice-switching therapy inhibits hepatocellular carcinoma growth. Cancer Res. 2022, 82, 900–915. [Google Scholar] [CrossRef]
- Lei, Y.; Han, P.; Chen, Y.; Wang, H.; Wang, S.; Wang, M.; Liu, J.; Yan, W.; Tian, D.; Liu, M. Protein arginine methyltransferase 3 promotes glycolysis and hepatocellular carcinoma growth by enhancing arginine methylation of lactate dehydrogenase A. Clin. Transl. Med. 2022, 12, e686. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Q.; Liu, P.; Cao, T.; Deng, M.; Liu, Y.; Huang, J.; Hu, Y.; Fu, N.; Zhou, K.; et al. Mechanism, clinical significance, and treatment strategy of warburg effect in hepatocellular carcinoma. J. Nanomater. 2021, 2021, 5164100. [Google Scholar] [CrossRef]
- Li, M.; Zhang, A.; Qi, X.; Yu, R.; Li, J. A novel inhibitor of pgk1 suppresses the aerobic glycolysis and proliferation of hepatocellular carcinoma. Biomed. Pharmacother. 2023, 158, 114115. [Google Scholar] [CrossRef]
- Hong, Z.; Lu, Y.; Liu, B.; Ran, C.; Lei, X.; Wang, M.; Wu, S.; Yang, Y.; Wu, H. Glycolysis, a new mechanism of oleuropein against liver tumor. Phytomedicine 2023, 114, 154770. [Google Scholar] [CrossRef]
- Sheng, Y.; Chen, Y.; Zeng, Z.; Wu, W.; Wang, J.; Ma, Y.; Lin, Y.; Zhang, J.; Huang, Y.; Li, W.; et al. Identification of pyruvate carboxylase as the cellular target of natural bibenzyls with potent anticancer activity against hepatocellular carcinoma via metabolic reprogramming. J. Med. Chem. 2022, 65, 460–484. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, S.; Wang, C.; Zhou, H.; Li, F.; Chen, X.; Zhang, L.; Qin, Y. Effects of deoxydibilin on proliferation, migration and glycolysis of hepatocellular carcinoma HepG2 cells. Chin. Tradit. Pat Med. 2023, 45, 208–212. (In Chinese) [Google Scholar]
- Wu, Q.; Ge, X.L.; Geng, Z.K.; Wu, H.; Yang, J.Y.; Cao, S.R.; Yang, A.L. Huachansu suppresses the growth of hepatocellular carcinoma cells by interfering with pentose phosphate pathway through down-regulation of g6pd enzyme activity and expression. Heliyon 2024, 10, e25144. [Google Scholar] [CrossRef]
- Bhalla, K.; Hwang, B.J.; Dewi, R.E.; Twaddel, W.; Goloubeva, O.; Wong, K.; Saxena, N.K.; Biswal, S.; Girnun, G.D. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev. Res. 2012, 5, 544–552. [Google Scholar] [CrossRef]
- Hu, L.; Zeng, Z.; Xia, Q.; Liu, Z.; Feng, X.; Chen, J.; Huang, M.; Chen, L.; Fang, Z.; Liu, Q.; et al. Metformin attenuates hepatoma cell proliferation by decreasing glycolytic flux through the hif-1alpha/pfkfb3/pfk1 pathway. Life Sci. 2019, 239, 116966. [Google Scholar] [CrossRef]
- He, L. Metformin and systemic metabolism. Trends Pharmacol. Sci. 2020, 41, 868–881. [Google Scholar] [CrossRef]
- Hendryx, M.; Dong, Y.; Ndeke, J.M.; Luo, J. Sodium-glucose cotransporter 2 (sglt2) inhibitor initiation and hepatocellular carcinoma prognosis. PLoS ONE 2022, 17, e274519. [Google Scholar] [CrossRef]
- Martin, W.H.; Hoover, D.J.; Armento, S.J.; Stock, I.A.; Mcpherson, R.K.; Danley, D.E.; Stevenson, R.W.; Barrett, E.J.; Treadway, J.L. Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc. Natl. Acad. Sci. USA 1998, 95, 1776–1781. [Google Scholar] [CrossRef]
- Barot, S.; Stephenson, O.J.; Priya, V.H.; Yadav, A.; Bhutkar, S.; Trombetta, L.D.; Dukhande, V.V. Metabolic alterations and mitochondrial dysfunction underlie hepatocellular carcinoma cell death induced by a glycogen metabolic inhibitor. Biochem. Pharmacol. 2022, 203, 115201. [Google Scholar] [CrossRef]
- Jin, H.; Wang, S.; Zaal, E.A.; Wang, C.; Wu, H.; Bosma, A.; Jochems, F.; Isima, N.; Jin, G.; Lieftink, C.; et al. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer. Elife 2020, 9, e56749. [Google Scholar] [CrossRef]
- Italiano, A.; Soria, J.C.; Toulmonde, M.; Michot, J.M.; Lucchesi, C.; Varga, A.; Coindre, J.M.; Blakemore, S.J.; Clawson, A.; Suttle, B.; et al. Tazemetostat, an ezh2 inhibitor, in relapsed or refractory b-cell non-hodgkin lymphoma and advanced solid tumours: A first-in-human, open-label, phase 1 study. Lancet Oncol. 2018, 19, 649–659. [Google Scholar] [CrossRef]
- Mei, Q.; Chen, M.; Lu, X.; Li, X.; Duan, F.; Wang, M.; Luo, G.; Han, W. An open-label, single-arm, phase I/II study of lower-dose decitabine based therapy in patients with advanced hepatocellular carcinoma. Oncotarget 2015, 6, 16698–16711. [Google Scholar] [CrossRef]
- Barcena-Varela, M.; Caruso, S.; Llerena, S.; Alvarez-Sola, G.; Uriarte, I.; Latasa, M.U.; Urtasun, R.; Rebouissou, S.; Alvarez, L.; Jimenez, M.; et al. Dual targeting of histone methyltransferase g9a and dna-methyltransferase 1 for the treatment of experimental hepatocellular carcinoma. Hepatology 2019, 69, 587–603. [Google Scholar] [CrossRef]
- Yeo, W.; Chung, H.C.; Chan, S.L.; Wang, L.Z.; Lim, R.; Picus, J.; Boyer, M.; Mo, F.K.; Koh, J.; Rha, S.Y.; et al. Epigenetic therapy using belinostat for patients with unresectable hepatocellular carcinoma: A multicenter phase i/ii study with biomarker and pharmacokinetic analysis of tumors from patients in the mayo phase ii consortium and the cancer therapeutics research group. J. Clin. Oncol. 2012, 30, 3361–3367. [Google Scholar] [CrossRef]
- Tak, W.Y.; Ryoo, B.Y.; Lim, H.Y.; Kim, D.Y.; Okusaka, T.; Ikeda, M.; Hidaka, H.; Yeon, J.E.; Mizukoshi, E.; Morimoto, M.; et al. Phase I/II study of first-line combination therapy with sorafenib plus resminostat, an oral hdac inhibitor, versus sorafenib monotherapy for advanced hepatocellular carcinoma in east asian patients. Investig. New Drugs 2018, 36, 1072–1084. [Google Scholar] [CrossRef]
- Falchook, G.; Infante, J.; Arkenau, H.T.; Patel, M.R.; Dean, E.; Borazanci, E.; Brenner, A.; Cook, N.; Lopez, J.; Pant, S.; et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor tvb-2640 alone and with a taxane in advanced tumors. Eclinicalmedicine 2021, 34, 100797. [Google Scholar] [CrossRef]
- Loomba, R.; Mohseni, R.; Lucas, K.J.; Gutierrez, J.A.; Perry, R.G.; Trotter, J.F.; Rahimi, R.S.; Harrison, S.A.; Ajmera, V.; Wayne, J.D.; et al. Tvb-2640 (fasn inhibitor) for the treatment of nonalcoholic steatohepatitis: Fascinate-1, a randomized, placebo-controlled phase 2a trial. Gastroenterology 2021, 161, 1475–1486. [Google Scholar] [CrossRef]
- Jia, D.; Liu, C.; Zhu, Z.; Cao, Y.; Wen, W.; Hong, Z.; Liu, Y.; Liu, E.; Chen, L.; Chen, C.; et al. Novel transketolase inhibitor oroxylin a suppresses the non-oxidative pentose phosphate pathway and hepatocellular carcinoma tumour growth in mice and patient-derived organoids. Clin. Transl. Med. 2022, 12, e1095. [Google Scholar] [CrossRef]
- Sove, R.J.; Verma, B.K.; Wang, H.; Ho, W.J.; Yarchoan, M.; Popel, A.S. Virtual clinical trials of anti-PD-1 and anti-CTLA-4 immunotherapy in advanced hepatocellular carcinoma using a quantitative systems pharmacology model. J. Immunother. Cancer 2022, 10, e005414. [Google Scholar] [CrossRef]
- Kapuy, O.; Makk-Merczel, K.; Szarka, A. Therapeutic approach of kras mutant tumours by the combination of pharmacologic ascorbate and chloroquine. Biomolecules 2021, 11, 652. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, A.; Quan, C.; Pan, Y.; Zhang, H.; Li, Y.; Gao, C.; Lu, H.; Wang, X.; Cao, P.; et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat. Commun. 2022, 13, 4594. [Google Scholar] [CrossRef]
- Guilliams, M.; Bonnardel, J.; Haest, B.; Vanderborght, B.; Wagner, C.; Remmerie, A.; Bujko, A.; Martens, L.; Thone, T.; Browaeys, R.; et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 2022, 185, 379–396. [Google Scholar] [CrossRef]
- Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [Google Scholar] [CrossRef]
- Foerster, F.; Gairing, S.J.; Muller, L.; Galle, P.R. Nafld-driven HCC: Safety and efficacy of current and emerging treatment options. J. Hepatol. 2022, 76, 446–457. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From NASH to HCC: Current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 411–428. [Google Scholar] [CrossRef]
- Papadakos, S.P.; Machairas, N.; Stergiou, I.E.; Arvanitakis, K.; Germanidis, G.; Frampton, A.E.; Theocharis, S. Unveiling the Yin-Yang balance of M1 and M2 macrophages in hepatocellular carcinoma: Role of exosomes in tumor microenvironment and immune modulation. Cells 2023, 12, 2036. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.; Jiang, L.; Chen, Y. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark. Res. 2022, 10, 3. [Google Scholar] [CrossRef]
- Chan, L.L.; Chan, S.L. Novel perspectives in immune checkpoint inhibitors and the management of non-alcoholic steatohepatitis-related hepatocellular carcinoma. Cancers 2022, 14, 1526. [Google Scholar] [CrossRef]
- Lee, H.A.; Kim, H.Y. Therapeutic mechanisms and clinical effects of glucagon-like peptide 1 receptor agonists in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2023, 24, 9324. [Google Scholar] [CrossRef]
- Arvanitakis, K.; Koufakis, T.; Kotsa, K.; Germanidis, G. How far beyond diabetes can the benefits of glucagon-like peptide-1 receptor agonists go? A review of the evidence on their effects on hepatocellular carcinoma. Cancers 2022, 14, 4651. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, S.; Yang, M. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapy. World J. Hepatol. 2023, 15, 180–200. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the american association for the study of liver diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef]
- Miallot, R.; Galland, F.; Millet, V.; Blay, J.Y.; Naquet, P. Metabolic landscapes in sarcomas. J. Hematol. Oncol. 2021, 14, 114. [Google Scholar] [CrossRef]
Involved Pathogenic Mechanisms | Outcomes | References |
---|---|---|
Lipotoxicity | The molecular mechanism by which CD36 accelerated the progression of HCC was to promote the expression of AKR1C2 and thus enhance FA intake | [17] |
Oxidative DNA damage | Oxidative stress and 8-OHdG formation in the DNA in mice liver cells are the important characteristics of MASH-associated hepatocarcinogenesis | [19] |
Mitophagy | Hepatic mitochondrial depolarization occurs early in mice fed a Western diet, followed by increased mitophagic burden, suppressed mitochondrial biogenesis and dynamics, and mitochondrial depletion, which ultimately contributes to the progression of MASH toward HCC | [22] |
Genetic factor | A rare genetic variant in the gene MTTP has been identified as responsible for the development of progressive MASLD in a four-generation family with no typical disease risk factors | [25] |
Genetic factor | Mutational profiling of MASH-HCC tumors revealed TERT promoter (56%), CTNNB1 (28%), TP53 (18%), and ACVR2A (10%) as the most frequently mutated genes. ACVR2A mutation rates were higher in MASH-HCC than in other HCC aetiologies (10% vs. 3%, p < 0.05) | [26] |
Genetic factor | Somatic mutations in MASH mice did not reveal increased tumorigenesis | [27] |
Dysbiosis in gut microbiota | Dietary cholesterol drives NAFLD-HCC formation by inducing the alteration of gut microbiota and metabolites in mice | [28] |
Other mechanisms | The activation of the RAS/RAF/MEK/ERK pathway may contribute to HCC development; KRAS activation downstream of c-Met is sufficient to induce clinically relevant HCC in cooperation with mutant β-catenin. | [30,33] |
Other mechanisms | The dynamic shift in HSC subpopulations and their mediators during MASLD is associated with a switch from HCC protection to HCC promotion | [35] |
Agents | Developmental Stage | Functions in HCC | Target | Reference/Clinical Trial Number |
---|---|---|---|---|
Epigenetic drugs | ||||
Guadecitabine (SGI-110) | Pre-clinical | Anti-proliferative effects on HCC cell lines; enhances the sensitivity of immune checkpoint inhibitors in organisms | DNMT | [198,199] |
Panobinostat | Pre-clinical | Triggers apoptosis, reprograms cancer cell metabolism, and mitigates tumor angiogenesis | HDAC | [201] |
GSK5959 | Pre-clinical | Suppresses HCC cell growth | BRPF1 | [202] |
AR42 + Telomelysin | Pre-clinical | AR42 reduced Telomelysin-induced phospho-Akt activation and enhanced Telomelysin-induced apoptosis | HDAC | [204] |
JIB-04, GSK-J4, SD-70 | Pre-clinical | Attenuates HCC aggressiveness and viability | JmjC lysine HDM | [206,207] |
AntimiR-494 oligonucleotides + Sorafenib | Pre-clinical | Inhibition of HCC cells to a glycolytic phenotype | miR-494 | [209] |
lncRNA-PRAL | Pre-clinical | Inhibits HCC growth and induces apoptosis | p53 | [211] |
PLGA-based nanoplatform encapsulating LINC00958 siRNA | Pre-clinical | Inhibits HCC lipogenesis and progression | LINC00958 | [73] |
STM2457 | Pre-clinical | Elicits a profound anti-tumor immune response | METTL3 | [72] |
5AC + Meticrane; CUDC-101 + Meticrane; ACY1215 + Meticrane | Pre-clinical | Inhibited the viability of liver cancer cells | DNMT1; HDACs; HDAC6 | [215] |
Guadecitabine (SGI-110) + Sorafenib + Oxaliplatin | Phase II | - | DNMT | NCT01752933 |
Decitabine | Phase II | - | DNMT | [237] |
BIX-01294 + Decitabine | - | - | HMT G9a + DNMT | [238] |
Belistat | Phase I/II | - | HDAC | [239] |
Resimonstat + Sorafenib | Phase I/II | - | HDAC | [240] |
Agents targeted metabolism | ||||
TVB3664 | Pre-clinical | Ameliorates the fatty liver phenotype in the aged mice and AKT-induced hepatic steatosis | FASN | [216] |
Orlistat | Pre-clinical | Disrupts HCC’s metabolic reprogramming | FASN | [217] |
Obeticholic acid | Pre-clinical | Attenuates the development and progression of NASH-dependent HCC, possibly by interfering with SOCS3/Jak2/STAT3 pathway | FXR | [218] |
SGC707 | Pre-clinical | Prevents PRMT3-mediated LDHA methylation and indirectly suppresses glycolysis, as well as HCC progression | PRMT3 | [222] |
BAY-876 | Pre-clinical | Inhibits glucose uptake, proliferation, and EMT of HCC | Glut1 | [223] |
Ilicicolin H | Pre-clinical | Inhibits the lactate production and glucose uptake of HCC cells | PGK1 | [224] |
Oleuropein | Pre-clinical | Inhibits HCC cell glycolysis | G6PI | [225] |
Erianin | Pre-clinical | Impairs glycolysis and induces oxidative stress | PC | [226] |
Deoxyelephantopin | Pre-clinical | Inhibits glycolysis and reduces glucose uptake and lactic acid production | PI3K/Akt/mTOR/HIF-1α pathway | [227] |
HuaChanSu | Pre-clinical | Inhibits PPP flux | G6PD | [228] |
Metformin | Pre-clinical | Mitigates the Warburg effect and promotes FAO | PFK1 | [230,231] |
Canagliflozin | Pre-clinical | Inhibits glucose uptake in HCC cells | SGLT2 | [232] |
CP-91149 | Pre-clinical | Inhibits glycogenolysis, interfering with glycolysis and the PPP | PG | [234] |
Epalrestat/NAR1-29 | Pre-clinical | Combats diabetes-induced MASLD and even HCC | AR | [65] |
CB-839 + V-9302 | Pre-clinical | Targets the metabolic vulnerability of glutamine-dependent HCC | GLS and ASCT2 | [235] |
TVB-2640 | Phase II | Reduces liver fat and improves biochemical biomarkers | FASN | [242] |
PF-5221304 | Phase II | - | ACC | NCT04321031 |
Oroxylin A | Phase I | Inhibits non-oxidative PPP and triggers p53 signaling | TK | ChiCTR2100051434 |
Olutasidenib (FT-2102) | Phase Ib/II | - | IDH1 | NCT03684811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Wang, R.; Zhao, Y.; Zhao, P.; Yang, J. Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight. Metabolites 2024, 14, 325. https://doi.org/10.3390/metabo14060325
Li A, Wang R, Zhao Y, Zhao P, Yang J. Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight. Metabolites. 2024; 14(6):325. https://doi.org/10.3390/metabo14060325
Chicago/Turabian StyleLi, Anqi, Rui Wang, Yuqiang Zhao, Peiran Zhao, and Jing Yang. 2024. "Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight" Metabolites 14, no. 6: 325. https://doi.org/10.3390/metabo14060325
APA StyleLi, A., Wang, R., Zhao, Y., Zhao, P., & Yang, J. (2024). Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight. Metabolites, 14(6), 325. https://doi.org/10.3390/metabo14060325