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Abstract: Biocide resistance poses a significant challenge in industrial processes, with bacteria
like Pseudomonas oleovorans exhibiting intrinsic resistance to traditional antimicrobial agents. In
this study, the impact of biocide exposure on the metabolome of two P. oleovorans strains, namely,
P. oleovorans P4A, isolated from contaminated coating material, and P. oleovorans 1045 reference
strain, were investigated. The strains were exposed to 2-Methylisothiazol-3(2H)-one (MI) MIT,
1,2-Benzisothiazol-3(2H)-one (BIT), and 5-chloro-2-methyl-isothiazol-3-one (CMIT) at two different
sub-inhibitory concentrations and the lipids and polar and semipolar metabolites were analyzed by
ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry UPLC–
Q–TOF/MS. Exposure to the BIT biocide induced significant metabolic modifications in P. oleovorans.
Notable changes were observed in lipid and metabolite profiles, particularly in phospholipids, amino
acid metabolism, and pathways related to stress response and adaptation. The 1045 strain showed
more pronounced metabolic alterations than the P4A strain, suggesting potential implications for lipid,
amino acid metabolism, energy metabolism, and stress adaptation. Improving our understanding of
how different substances interact with bacteria is crucial for making antimicrobial chemicals more
effective and addressing the challenges of resistance. We observed that different biocides trigged
significantly different metabolic responses in these strains. Our study shows that metabolomics can
be used as a tool for the investigation of metabolic mechanisms underlying biocide resistance, and
thus in the development of targeted biocides. This in turn can have implications in combating biocide
resistance in bacteria such as P. oleovorans.

Keywords: biocides; Pseudomonas oleovorans; metabolomics; biocides resistance; 2-Methylisothiazol-
3(2H)-one; 1,2-Benzisothiazol-3(2H)-one; 5-chloro-2-methyl-isothiazol-3-one

1. Introduction

Biocides are chemical substances designed to inhibit or kill a wide range of microorgan-
isms, including bacteria, fungi, algae, and viruses, in diverse industrial settings. They are
especially important in water-based industrial products, such as those in the construction
industry [1]. While their usage is crucial for preserving the integrity and aesthetics of
coated surfaces, their indiscriminate deployment can lead to adverse consequences for
both the environment and human health. The limitations associated with biocide dosage
in coating materials encompass environmental concerns, health hazards, and compliance
with regulatory frameworks [2].

Biocides are used worldwide for an increasing number of applications despite the
tightening regulations in Europe and the United States. Numerous nations have enacted
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stringent regulations and guidelines governing the application of biocides in coatings to
mitigate their environmental and health repercussions [3].

Non-adherence to these mandates can result in legal ramifications. Biocides are widely
utilized in various industrial and consumer products. However, their extensive use has
raised significant health and environmental concerns. Among these biocides, CMIT, MIT,
and BIT have been particularly scrutinized. CMIT is known for its genotoxic and toxic
properties, which can have trans- and multigenerational effects [1,4]. MIT is commonly
associated with allergic reactions and skin sensitization. Its presence in cosmetic products
has raised public health concerns, prompting restrictions on its use [5]. Exposure to MIT
can result in dermatitis and other skin issues [6]. Similarly, BIT is known to cause allergic
reactions and skin sensitization. Despite its stability up to pH 14 and low volatility, BIT can
irritate the skin, eyes, and respiratory system [7].

Moreover, the emergence of biocide resistance poses a significant threat to the long-
term effectiveness of these materials [8]. New regulations force industries to comply with
minimized doses of biocide in their products, with ramifications on product quality and
potentially increasing biocide resistance. Thus, understanding the metabolism of the target
microbes will help in developing more efficient and sustainable preservation agents.

Contaminating microorganisms are responsible for the degradation of coating materi-
als, which leads to significant losses of revenue and time for the industry [9]. Water-based
coating materials produced from raw non-sterile materials are particularly susceptible to
microbial deterioration due to the availability of nutrients supporting microbial growth.
Product spoilage in coating materials is a significant concern in various industrial settings,
with microorganisms, such as bacteria, fungi, and yeasts, often playing a key role in these
incidents. Microbial growth modifies the coating viscosity, color, odor, and pH and may
also produce visible surface growth. The pH of the product impacts microbial growth; for
instance, bacteria tend to thrive in neutral to slightly alkaline pH conditions. Consequently,
the pH of water-based coating materials assumes a pivotal role in shaping antimicrobial
efficacy. It is noteworthy that specific bacterial species, such as those belonging to the Pseu-
domonas genus, experience restricted growth and reproduction in alkaline environments.
This limitation is typically observed within the pH range of 8 to 9.5 [10].

In general, products often incorporate biocide agents, such as BIT, MIT, and CMIT,
to combat a wide range of microbes. However, the effectiveness of these biocides in pre-
venting microbial growth is contingent upon their specific chemistry, inherent properties,
and mode of action [1], but the mechanism of action of different biocides is still not fully
characterized [11]. By understanding how biocides interact with bacterial cells, what
changes they cause in the bacteria, and how bacteria might develop resistance at a molecu-
lar level, better and more targeted antimicrobial strategies can be developed. P. oleovorans
P4A isolated from contaminated coating material is a versatile hydrocarbon-degrading
bacterium that is involved in water-based product degradation. It is a Gram-negative
bacterium known for its remarkable ability to degrade and metabolize a wide range of
hydrocarbons, including aliphatic and aromatic compounds in diverse environmental con-
ditions [11,12]. The metabolic versatility of P. oleovorans is a notable feature attributed to its
diverse array of catabolic pathways and enzymes, specifically designed for the degradation
of hydrocarbons [12]. This bacterium has demonstrated remarkable adaptability to various
environmental conditions, particularly those contaminated with hydrophobic compounds
such as oil and related hydrocarbons [13]. Previous studies have highlighted the impres-
sive catabolic capabilities of Pseudomonas ssp., highlighting its proficiency in utilizing a
wide range of hydrocarbons as carbon and energy sources [14]. The bacterium employs
an array of enzymes, including hydroxylases, dioxygenases, and dehydrogenases, which
play roles in the initial steps of hydrocarbon degradation [15]. These enzymes enable the
breaking down of complex hydrocarbon structures into metabolically usable intermediates,
facilitating their incorporation into central metabolic pathways [16]. Plasmid-mediated
resistance genes carried on plasmids can be transferred between Gram-negative bacteria,
facilitating the spread of biocide resistance. Previous studies have explored the resistance
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mechanisms of various Pseudomonas species to biocides [17]. Pseudomonas species, including
P. oleovorans, can exhibit varying degrees of resistance to biocides and this resistance can
be attributed to factors including efflux pumps, mutation, adaptation, and biofilm forma-
tion [18–20]. Pseudomonas species possess an array of efflux pumps that actively pump out
biocides from the cell, reducing efficacy. It can also develop mutations that render these
pumps less susceptible to biocides over time [18]. The type of mutation that can render
microorganisms less susceptible to biocides over time is often referred to as antimicrobial
resistance (AMR) [19]. Antimicrobial resistance occurs when microorganisms, such as
bacteria, undergo genetic changes that enable them to survive exposure to the biocidal
agents that were once effective against them [20,21]. Pseudomonas species are notorious for
their ability to form biofilms, which provide a protective matrix and resist the effects of
biocides [22,23].

Biocides exposure influences the physiology of the organism, and this should be
reflected at the metabolome and proteome level. P. oleovorans is known for its capacity
to metabolize lipids, known for their role in many biological systems. Lipids represent a
diverse group of organic molecules that are an important energy source, maintaining the
cell structure and cell membrane integrity, as well as being involved in the cellular signaling
pathways [24]. The relationship between lipid metabolism and biocide exposure is complex.
Lipids play a crucial role in various cellular functions, including maintaining cell structure,
serving as energy storage, and participating in signaling pathways [25]. When microbes
are exposed to various types of biocides, this can lead to alterations in metabolism. This
response is due to the multi-targeted antimicrobial action of biocides, which can affect
the cellular structures and functions of microorganisms [26,27]. These changes are often
indicative of the organism’s response to stress or environmental disturbance [28]. Several
studies have reported alterations in lipid metabolism following exposure to biocides. For
instance, some biocides can disrupt cell membranes by interacting with lipid components,
leading to changes in membrane fluidity and permeability [1,25]. Additionally, biocides
may induce oxidative stress, which can affect lipid peroxidation and impact lipid home-
ostasis [29]. Related to Pseudomonas strains, there is not yet much data on the impact of
biocides on lipid metabolism, or metabolism in general. To understand the metabolic
pathways affected by biocide treatment, a comprehensive metabolomics characterization is
needed, including lipids as well as other metabolites. Changes in metabolite profiles can
also serve as biomarkers for specific metabolic pathways affected by biocide exposure. By
analyzing a broad spectrum of metabolites, we can gain insights into the overall impact
on cellular metabolism and identify potential targets for further investigation. Studying
metabolism in the context of biocide exposure, especially in Pseudomonas strains, is crucial
for understanding the adaptive responses of these organisms to environmental stress.

P. oleovorans possess enzymes and pathways for fatty acid degradation, including fatty
acid β-oxidation, a central process in breaking down fatty acids into acetyl-CoA units,
which can be further catabolized for energy production [30,31].

In this study, we investigated the metabolic effects of three different biocides on
P. oleovorans P4A, a biocide-resistant industrial isolate and 1045 reference strain, to un-
derstand the metabolic mechanism of biocide resistance in these strains. Specifically, this
bacterial strain has been identified in industrial products and it has shown strong resistance
against biocides, and thus it can cause degradation of industrial products. To enable the
development of more efficient biocide preservation agents, it is important to understand the
molecular mechanism underlying the biocide resistance. Thus, comprehensive metabolic
profiling was applied to investigate the effects of exposure to three different mixtures of
biocides commonly used in industry, namely MIT, BIT, and CMIT. These biocides, which
are widely used in industry, have different properties; MIT is stable and effective against
bacteria, BIT is stable up to pH 14 and has low volatility, while CMIT has low solubility
and is effective against fungi. We then compared the metabolic changes triggered by these
biocides at the metabolic pathway level [1].
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The objective of this study was to examine the metabolic effects of biocides (CMIT, MIT,
and BIT) on two strains of P. oleovorans, particularly within the context of industrial water-
based products. The main goal is to gain an understanding of the metabolism of target
microbes that could be later utilized in the development of more efficient and sustainable
preservation strategies. A particular focus was on P. oleovorans strain P4A. We compared
the metabolome and the response to biocide exposure of the P4A strain with P. oleovorans
strain DSM 1045, which was isolated from industrial cutting fluid in the USA in 2009 and
has been reported to be biocide-sensitive [32].

2. Materials and Methods
2.1. Chemicals

CMIT, MIT, and BIT were purchased from Avantor VWR. The purity of the chemicals
used in the study was as follows: CMIT (≥98% purity), MIT (≥98% purity), and BIT
(≥98% purity). Mass spectrometry grade ammonium acetate and reagent grade formic
acid were obtained from Sigma-Aldrich (St. Louis, MO, USA), while all solvents used
were of HPLC or LC–MS grade, sourced from Honeywell (Morris Plains, NJ, USA), Fisher
Scientific (Waltham, MA, USA), or Sigma-Aldrich (St. Louis, MO, USA). Lipid standards
were acquired from Avanti Polar Lipids Inc. (Alabaster, AL, USA).

For quality assurance purposes, we employed standard reference materials: serum
SRM 1950 (for lipidomic and metabolomics) and SRM 1957 (for bile acids), both of which
were obtained from the National Institute of Standards and Technology (NIST) at the US
Department of Commerce (Washington, DC, USA) (NIST, 2023).

2.2. Biocide Exposure

P. oleovorans P4A, a biocide-resistant industrial isolate, and the reference strain P. oleovo-
rans 1045 were streaked out from the −80 ◦C storage freezer onto Luria–Bertani (LB) plates
and incubated at 30 ◦C for 48 h. LB was purchased from Avantor VWR, and the composi-
tion of the LB–Agar Lenox medium was 10.0 g Tryptone, 5.0 g Yeast Extract, 5.0 g Sodium
Chloride, and 15.0 g Agar.

The biocide exposure protocol, outlined in Figure 1, commenced with re-streaking
bacterial cultures onto LB agar and incubating at 30 ◦C for 48 h. After incubation, three
to five colonies were transferred to sixteen tubes containing 5 mL of Brain Heart Infusion
(BHI) broth for each strain. BHI was Purchased from Avantor VWR; the composition of the
media was 7.7 g Brain infusion solids, 9.8 g Beef heart infusion solids, 10.0 g Peptones, 2.0 g
Glucose, 5.0 g Sodium chloride, and 2.5 g Disodium hydrogen phosphate. The tubes were
incubated with shaking at 150 rpm for 24 h at 30 ◦C, the resulting culture was centrifuged
at 6000 rpm and the pellet was adjusted to an optical density (OD) of 1 at 600 nm with fresh
BHI. The spectrophotometer Infinite F50 Microplate Reader, Tecan, used for optical density
(OD) measurements was calibrated daily to maintain accuracy. OD readings were taken
at a wavelength of 600 nm to evaluate bacterial growth. Although the bacteria reached a
stationary phase in the initial growth, they were pelleted and resuspended in fresh BHI up
to OD = 1. Using fresh media will allow the cultures to grow, therefore the exposure was in
an exponential phase and by 24 h would have likely reached a stationary status. To achieve
standardization of bacterial culture to an optical density (OD) of 1 at 600 nm, bacterial
culture was initiated in the Brain Heart Infusion (BHI) broth medium and incubated until
it entered the logarithmic phase of growth. The spectrophotometer was calibrated to zero
absorbance using a blank cuvette filled with the growth medium. A small sample of the
bacterial culture was obtained, and its initial OD at 600 nm was determined using the
spectrophotometer. The OD measurement for the diluted culture was repeated, and further
dilution adjustments were made as needed until the desired OD was achieved. The dilution
factor required to attain an OD of 1 was calculated by dividing the target OD by the initial
OD. Subsequently, the culture was diluted in a new tube with fresh medium, ensuring
comprehensive mixing. To validate the OD measurements, diluted samples were plated on
agar plates, and the colony-forming units were enumerated for accuracy. The final OD of
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the adjusted culture, along with details of any dilution steps undertaken, was recorded to
ensure the reproducibility of experiments.

Metabolites 2024, 14, 326 5 of 24 
 

 

measurements, diluted samples were plated on agar plates, and the colony-forming units 
were enumerated for accuracy. The final OD of the adjusted culture, along with details of 
any dilution steps undertaken, was recorded to ensure the reproducibility of experiments. 

 
Figure 1. Workflow of culture preparation for lipidomic and metabolomic analysis. The 16 inde-
pendent cultures prepared for each Pseudomonas oleovorans P4A and 1045 according to the flowchart 
were divided so that 4 cultures were used for each treatment condition. A 1 mL volume of OD-
adjusted bacterial suspension ensured that equivalent biomass was used for each exposure and con-
trol. 

To investigate the effects of biocide exposure on both strains, we conducted expo-
sures at concentrations below their respective Minimum Inhibitory Concentrations 
(MICs). Our methodological strategy diverges from conventional Minimum Inhibitory 
Concentration (MIC) determinations. Unlike MIC assays that require higher concentra-
tions to evaluate antimicrobial efficacy, our approach focuses on sub-MIC levels. This al-
lows for a more detailed understanding of biocide effects on lipidomic profiles while 
avoiding potential confounding factors associated with supra-MIC exposures [33–35]. 

Four cultures of the P4A strain and four cultures of the 1045 strain served as un-
treated controls, with each set considered as four replicates for their respective strain. Each 
of the twelve remaining tubes for each strain was further split into two fresh tubes, result-
ing in a total of 24 tubes for each strain. Within each set of two tubes derived from the 
same original tube, 1 mL of inoculum from each tube was exposed to CMIT. Specifically, 
one tube was exposed to a concentration of 3 mg/L CMIT, and the other tube was exposed 

Figure 1. Workflow of culture preparation for lipidomic and metabolomic analysis. The 16 indepen-
dent cultures prepared for each Pseudomonas oleovorans P4A and 1045 according to the flowchart were
divided so that 4 cultures were used for each treatment condition. A 1 mL volume of OD-adjusted
bacterial suspension ensured that equivalent biomass was used for each exposure and control.

To investigate the effects of biocide exposure on both strains, we conducted exposures
at concentrations below their respective Minimum Inhibitory Concentrations (MICs). Our
methodological strategy diverges from conventional Minimum Inhibitory Concentration
(MIC) determinations. Unlike MIC assays that require higher concentrations to evaluate
antimicrobial efficacy, our approach focuses on sub-MIC levels. This allows for a more
detailed understanding of biocide effects on lipidomic profiles while avoiding potential
confounding factors associated with supra-MIC exposures [33–35].

Four cultures of the P4A strain and four cultures of the 1045 strain served as untreated
controls, with each set considered as four replicates for their respective strain. Each of the
twelve remaining tubes for each strain was further split into two fresh tubes, resulting in a
total of 24 tubes for each strain. Within each set of two tubes derived from the same original
tube, 1 mL of inoculum from each tube was exposed to CMIT. Specifically, one tube was
exposed to a concentration of 3 mg/L CMIT, and the other tube was exposed to a concen-
tration of 4 mg/L CMIT. This process was replicated four times for each concentration of
CMIT, resulting in a total of eight tubes being exposed to CMIT. To break this down further,
four tubes were exposed to 3 mg/L CMIT, and another set of four tubes was prepared by
exposing 1 mL of inoculum from these four tubes to 4 mg/L CMIT (Figure 1).

This exposure procedure was repeated for MIT, with concentrations of 20 ppm and
25 ppm, and BIT, with concentrations of 100 ppm and 150 ppm. In summary, a total of
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28 samples were prepared for each strain, resulting in 56 samples overall. All samples were
then incubated for 24 h at 150 rpm and 30 ◦C.

Following incubation, samples were harvested by centrifugation at 6000 rpm for
10 min. The supernatant was collected and stored for subsequent analysis. Bacterial
pellets were washed with phosphate-buffered saline (pH 7.4), vortexed, and centrifuged at
6000 rpm for 10 min and frozen at −80 ◦C for future analysis. All samples were maintained
at −80 ◦C until further use.

2.3. LC–MS Analysis

Sample Preparation and Analysis: The samples were analyzed in randomized order.
The bacterial cell samples were weighed, and phosphate-buffered saline (PBS) was added
to achieve a ratio of 1 mg of bacterial mass to 10 µL of buffer. The resulting samples
were vortexed and then ultrasonicated for 3 min. Two distinct extraction methods were
employed in this study: one for lipidomic analysis and another for the extraction of
polar and semipolar metabolites (Table 1). The samples were analyzed using ultra-high-
performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC–
QTOFMS) equipped with dual ESI ionization. The UHPLC system utilized in this study
was a 1290 Infinity II system from Agilent Technologies, equipped with a multi-sampler,
quaternary solvent manager, and a column thermostat maintained at 50 ◦C. Injection
volumes were set to 1 µL, and separations were performed on an ACQUITY UPLC® BEH
C18 column (2.1 mm × 100 mm, particle size 1.7 µm) by Waters (Milford, MA, USA). The
mass spectrometer, a 6545 QTOF from Agilent Technologies, was coupled to the UHPLC
and operated in positive ion mode. MassHunter B.06.01 software (Agilent Technologies)
was employed for all data acquisition, and quality control measures were consistently
implemented throughout the dataset. Identification of compounds was performed by using
in-house constructed databases (retention times, spectral data) for polar and semipolar
metabolites and lipids, respectively. These spectral databases have been constructed using
authentic standards and, for those lipids, those standards were not available, based on their
mass spectrum and retention behavior.

A. Lipidomic Analysis: for lipidomic analysis, a modified version of the Folch proce-
dure [36] was used to optimize the extraction of the lipids from biological samples [37].
A total of 20 µL of the cell homogenate was extracted with 150 µL of a 2.5 ppm internal
standard solution in CHCl3: MeOH (Chloroform: methanol). The standard solution con-
tained the following compounds: 1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine
(PE(17:0/17:0)), N-heptadecanoyl-D-erythro-sphingosylphosphoryl-choline (SM (d18:1/
17:0)), N-heptadecanoyl-D-erythro-sphingosine (Cer (d18:1/17:0)), 1,2-diheptadecanoyl-
sn-glycero-3-phosphocholine (PC(17:0/17:0)), 1-heptadecanoyl-2-hydroxy-sn-glycero-3-
phosphocholine (LPC(17:0)) and 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine
(PC (16:0/d31/18:1)), were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA),
and, tri-heptadecanoyl-glycerol (TG(17:0/17:0/17:0)) was purchased from Larodan AB
(Solna, Sweden) (Supplementary Table S1). After vortex mixing, the samples were incu-
bated on ice for 30 min and then centrifuged for 5 min at 7800× g. Sixty µL from the lower
layer of each sample was transferred to a glass vial with an insert, and 60 µL of CHCl3:
MeOH (2:1, v/v) was added to each sample. These samples were stored at −80 ◦C until
further analysis.

Calibration curves were generated using standard compounds, including PC(16:0e/
18:1(9Z)), PC(18:0p/18:1(9Z)), LPC(18:0), LPC(18:1), PE(16:0/18:1), PC(18:0p/22:6), DG(18:0/
18:2), LPE(18:1), Cer (d18:0/18:1 (9Z)), PE (16:0/18:1), LPC (16:0), TG (16:0/16:0/16:0), TG
(18:0/18:0/18:0), ChoE (18:0), and ChoE (18:2) (Supplementary Table S2). These standards
were prepared at various concentration levels (100, 500, 1000, 1500, 2000, and 2500 ng/mL
in CHCl3: MeOH, 2:1, v/v), including 1250 ng/mL of each internal standard.
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Table 1. LC–MS conditions for the two methods used in the study.

Conditions Polar/Semipolar Compounds Lipidomics

Injection
volume 10 µL 1 µL

Column

C18 precolumn (Waters Corporation, Wexford, Ireland)
and an inline filter, pore size 0.2 µm (Waters
Corporation, Wexford, Ireland). + ACQUITY UPLC®

BEH C18 column (2.1 mm × 100 mm, particle size
1.7 µm) by Waters (Milford, MA, USA)

C18 precolumn (Waters Corporation, Wexford, Ireland)
and an inline filter, pore size 0.2 µm (Waters
Corporation, Wexford, Ireland). + ACQUITY UPLC®

BEH C18 column (2.1 mm × 100 mm, particle size
1.7 µm) by Waters (Milford, MA, USA)

Mobile phases
A H2O:MeOH (v/v 70:30) with 2 mM
ammonium acetate
B MeOH with containing 2 mM ammonium acetate

A 10 mM ammonium acetate and 0.1% Formic Acid
in H2O
B Acetonitrile:Isopropanol (v/v 1:1) with 0.1% Formic
Acid and 10 mM ammonium acetate

Gradient

• 0–1.5 min: B was increased from 5% to 30%
• 1.5–4.5 min,
• B increased to 70%;
• 4.5–7.5 min,
• B increased to 100% and held for 5.5 min.
• A post-time of 6 min

• 0–2 min, B was increased from 35% to 80%
• 2–7 min, B increased to 100%
• 7–14 min, B was held at 100%.
• A post-time of 7 min

Flow rate 0.4 mL min−1 0.4 mL min−1

MS conditions

Dual ESI ionization source with capillary voltage
4.5 kV, nozzle voltage 1500 V, N2 pressure in the
nebulized was 21 psi and the N2 flow rate and
temperature as sheath gas was 11 L min−1 and 379 ◦C,
respectively. The drying gas flow was set to
10 L min−1 and the temperature to 150 ◦C. m/z range
100–1700 in negative ion mode.

Dual ESI ionization source with capillary voltage
3.64 kV, nozzle voltage 1500 V, N2 pressure in the
nebulized was 21 psi and the N2 flow rate and
temperature as sheath gas was 11 L min−1 and 379 ◦C,
respectively. The drying gas flow was set to
10 L min−1 and temperature to 193 ◦C.
m/z range 100–1700 in positive ion mode

B. Polar, Semipolar Metabolites Analysis: For the analysis of polar metabolites, semipo-
lar metabolites, and bile acids, a combined target–non-target method was employed. The
initial step involved 80 µL of the homogenized cell samples extracted with 180 µL of ace-
tonitrile (ACN) containing internal standards (13C-labeled PFOS, PFOA, PFDA, PFHxS,
and PFUnDA, as well as Valine-d8, Glutamic acid-d5, Succinic acid-d4, Heptadecanoic
acid, Lactic acid-d3, Citric acid-d4, 3-Hydroxybutyric acid-d4, Arginine-d7, Tryptophan-
d5, Glutamine-d5, CA-d4, LCA-d4, UDCA-d4, CDCA-d4, DCA-d4, GCA-d4, GLCA-d4,
GUDCA-d4, and GCDCA-d4), After vortexing and 3 min of ultrasonication, the samples
were centrifuged for 5 min at 7800 rpm. A total of 180 µL was transferred to Vµ-vials, while
40 µL was reserved for pooled samples. The samples were evaporated to dryness and
resuspended into 40 µL of 70% MeOH in water.

The analysis of semipolar metabolites was performed using ultra-high-performance
liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC–QTOFMS)
from the same extract used for target analyses. The UHPLC system, Agilent 1290 Infinity
II, was equipped with a multi-sampler, quaternary solvent manager, and a column ther-
mostat set at 50 ◦C. A C18 column was employed for chromatographic separation, and
the mass spectrometer, a 6545 QTOF from Agilent Technologies, operated in negative ion
mode. Chromatographic conditions and ionization settings were optimized for semipolar
metabolite analysis. MassHunter B.06.01 software was used for data acquisition.

Quality control measures, including extraction blanks, pure standard samples, pooled
samples, and control serum samples, were integrated into the analysis process to ensure
data accuracy and reliability.
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2.4. Data Preprocessing

Mass spectrometry data preprocessing was conducted using MZmine 2.53, an open-
source software package [38]. The following steps were applied:

1. Mass Detection: Mass detection utilized a noise level threshold of 750.
2. ADAP Chromatogram Building: Chromatograms were built with a minimum group

size of 5, a group intensity threshold of 200, a minimum height of 1000, and an m/z
tolerance of 0.007 m/z or 7 ppm.

3. Chromatogram Deconvolution: Deconvolution applied a 70% chromatographic thresh-
old, 0.05 min minimum RT range, 5% minimum relative height, 1200 minimum ab-
solute height, a minimum peak top/edge ratio of 1.2, and a peak duration range
of 0.08–5.0.

4. Isotopic Peak Grouper: Isotopic peaks were grouped with an m/z tolerance of
5.0 ppm and an RT tolerance of 0.05 min, and the most intense isotope was selected as
the representative.

5. Join Aligner: Data alignment used a m/z tolerance of 0.008 or 8 ppm and a weight
of 2, RT tolerance of 0.15 min and a weight of 1, without requiring charge state or
identification, and without comparing isotope patterns.

6. Peak List Row Filter: Rows in the peak list were filtered, requiring a minimum
presence in 10% of the samples.

7. Gap Filling: Gap filling was conducted using the same RT and m/z range with an
m/z tolerance of 0.009 m/z or 11.0 ppm.

8. Identification: Compounds were identified using in-house database searches with an
m/z tolerance of 0.009 m/z or 10.0 ppm and a retention time tolerance of 0.2 min.

Quality Control: Quality control samples included aliquots of each sample, along
with the NIST SRM1950 reference plasma sample and an in-house pooled serum sample.
Relative standard deviations (% RSDs) for peak areas were computed, averaging 12.1% for
lipidomic and 12.0% for polar metabolites.

2.5. Statistical Analysis

In the metabolomic data analysis, we employed the MetaboAnalyst 5.0 software [34].
Only lipids and metabolites detected in more than 70% of the samples were retained
for analysis, ensuring a robust dataset. To prepare the metabolomics data for statistical
analyses, a two-step preprocessing approach was applied. Firstly, the data underwent
a logarithmic transformation, followed by auto-scaling. This transformation aimed to
normalize the data and improve its suitability for subsequent statistical analyses.

Principal Component Analysis (PCA) was employed as an unsupervised method to
extract underlying patterns for exploratory data analysis, and univariate analysis methods
were employed. In the case of two-group data, such as Fold Change (FC) analysis, t-tests,
and volcano plots (a combination of these two methods) were utilized. Significance was
established when the p-value fell below the threshold of 0.05, and the false discovery rate
was below 0.1.

For multi-group data analysis, one-way analysis of variance (ANOVA) was conducted,
followed by post-hoc analyses using Tukey’s the honest significant differences (HSD) test.
These analyses were performed to generate a comprehensive list of potentially significant
compounds that could differentiate between the conditions under investigation. Signifi-
cance was established when the p-value fell below 0.05.

Hierarchical clustering, combined with heatmap analysis, was used to provide a
visual representation of a data table, with colored cells denoting concentration values.
Rows usually represent samples, while columns represent features or compounds. This
approach facilitates the identification of samples or features with notably high or low
values, streamlining data analysis and pattern recognition processes.

We conducted pathway analysis using Metaboanalyst 5.0 [35] integrating pathway
enrichment analysis and pathway topology analysis. This approach supports functional
analysis of untargeted metabolomics data generated from high-resolution mass spectrom-
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etry. The pathway analysis was performed with the data of the polar and semipolar
metabolites, as the pathway analysis for lipidomics data is not sufficiently robust due to
the lack of exact structures of the lipids (fatty acid composition, including the position of
the double bonds, cis/trans configuration). However, our polar/semipolar panel includes
a large number of lipids, except for neutral lipids (CE, DG, TG), which are not covered
either by sample preparation or the negative ion mode. The input data for the pathway
analysis comprised complete LC–HRMS data, i.e., both identified and unknown metabo-
lites, obtained in negative ionization mode, First, we performed statistical analyses using
t-test between control and BIT-exposed strains, resulting in fold change, p values, and FDR
values. The whole input peak list, with peak names given as their numeric mass (m/z)
values for putative annotation, and the statistical results were used for the pathway analy-
sis. We applied the Mummichog algorithm using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (KEGG) Pathway associated with Pseudomonas putida KT2440
to determine the relative significance of the identified pathways [38]. The mass tolerance
for the pathway analysis was set at 7 ppm, and we also used the advanced option to select
representative adducts by removing isotopic adducts, as these have been already removed
in our data preprocessing step. This methodology facilitated the functional analysis of
untargeted metabolomics data obtained from high-resolution mass spectrometry, enabling
a comprehensive understanding of the metabolic pathways involved. For the main path-
ways identified as significant, we checked the metabolites that had been identified by the
pathway analysis tool and performed additional MS/MS analyses for these compounds.

3. Results

We exposed the two Pseudomonas oleovorans strains to sub-minimum inhibitory con-
centrations (MICs) of biocides, including 4 mg/L CMIT, 25 mg/L MIT, and 150 mg/L BIT.
The biocide concentrations selected for the experiment were sub-MIC to ensure maximum
exposure while obtaining sufficient biomass for the study. These concentrations were to
affect various cellular processes without inhibiting growth. Two different concentrations
were used to assess the metabolic changes due to biocide exposure, aiming to identify a
concentration that yielded more significant effects. However, analysis revealed no sub-
stantial differences in metabolites between the two concentrations for all biocides tested.
Consequently, samples were exposed to a higher concentration for further investigation. We
applied different growth times for the two strains as the growth of P4A was considerably
slower and reached the stationary phases after 35 h in comparison to the 1045, which
reached the stationary phase after 18 h.

This choice aimed to permit bacterial growth while triggering potential survival mech-
anisms in the biocide-exposed environment. These mechanisms may include alterations in
lipid composition and metabolite profiles, representing an adaptive response to sub-MIC
biocide exposure. The changes in various lipids and metabolites facilitate the bacteria’s
effective adaptation and thriving under the selective pressure of biocide exposure.

3.1. Lipid and Metabolite Profiles in Untreated P. oleovorans P4A and P. oleovorans 1045

In our analysis of P. oleovorans P4A, isolated from contaminated coating material,
and 1045 reference strain, we investigated the lipid and metabolite profiles. We detected
a total of 606 lipids and 1637 metabolites in both samples. Among these, 22 lipids and
40 metabolites were identified, while the remaining lipids and metabolites remained un-
known. The principal component analysis (PCA) of the lipid profiles from the two groups
of bacteria, showed notable differences (Figure 2A). To further investigate these differences,
we constructed a Volcano plot (Figure 2B), showing the differences in the lipids between
the strains. Detailed information on these compounds can be found in the Supplementary
Material (Table S3).
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Figure 2. (A). PCA plot for lipids in P4A vs. 1045 nontreated strains. (B). Volcano Plot displaying the
variations in lipids between the two strains (p < 0.05). (C). Selected compounds showing significant
differences between the treatments 619 (mz = 849.5992), 1751 (mz = 826.6340), 1202 (mz = 339.3725),
and 433 (mz = 846.6372) (p < 0.05).

At a nominal p-value, 66 compounds showed significant differences (p < 0.05); however,
after applying a false discovery rate (FDR) correction with an FDR threshold of <0.1, only
one unidentified lipid, unknown 619, exhibited a statistically significant difference between
the two strains.

The polar metabolite profiles in the two bacterial groups also showed a distinct differ-
ence between the two Pseudomonas strains (Figure 3). Volcano Plot shows the variations in
polar metabolites between P. oleovorans P4A and P. oleovorans 1045 (p < 0.05) (Figure 3B).
Supplementary Material (Table S4) provides comprehensive details of these compounds. At
a nominal p-value level, we found 70 compounds showing significant differences (p < 0.05),
all of which were unidentified. However, after applying the false discovery rate (FDR)
correction at a threshold of <0.1, none of the polar metabolites exhibited statistically signifi-
cant differences.
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Figure 3. (A). PCA plot of polar metabolites in P4A and 1045 nontreated strains. (B). Volcano Plot
illustrating the differences in polar metabolite profiles between P. oleovorans P4A and P. oleovorans
1045 strains, with a significance threshold of p < 0.05. (C). Selected Polar Metabolites, showing
the significance (p < 0.05) of unknown compounds 579 (mz = 842.5731), 642 (mz = 703.4649), 1011
(mz = 730.4988), and 1511 (mz = 677.4415).

3.2. Lipid and Metabolite Profiles in Biocide-Treated P. oleovorans 1045 Reference Strains

First, we investigated the effects of biocide treatments on the metabolic profiles of
the biocide-sensitive reference strain, P. oleovorans 1045, looking at both lipids and po-
lar/semipolar metabolite profiles. The PCA of the lipid profiles in the bacterial groups
subjected to biocide treatments compared to the untreated control (Figure 4A) revealed
some similarities in the lipidomic profiles between the CMIT and MIT-exposed P. oleovorans
1045, contrasting with the BIT-exposed and untreated control groups. The BIT-exposure
group exhibited a clear separation from the unexposed group in the PCA, as well as from
the CMIT and MIT-exposed groups.

As presented by the heatmap (Figure 4B), ANOVA analysis (p < 0.05) showed signif-
icant differences at a nominal p-value level for 452 lipids out of a total of 606 across the
P. oleovorans 1045 groups (control, CMIT-exposed, MIT-exposed, and BIT-exposed groups).
Notably, distinctive patterns of lipids in the group exposed to BIT were observed com-
pared to the other treatments. Interestingly, BIT induces opposite changes in the lipidome
compared to the effects of the other two treatments. Highlighted in Figure 4C are four
lipids that exhibited significant differences. Detailed information about these compounds
is provided in Supplementary Table S5.
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in the polar metabolites, as demonstrated in a heatmap featuring 1000 metabolites selected 
based on ANOVA analysis (p < 0.05) (Figure 5B). This demonstrates that the BIT-exposed 
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Figure 4. (A). PCA plots of Lipid Profiles in nontreated control and treated 1045 groups, highlighting
the distinctions in lipidomic profiles between the different treatment groups and the non-treated
group. (B). A Heatmap featuring 452 significantly altered lipids (ANOVA, p < 0.05) with samples
organized based on exposure vs. untreated control groups of 1045. (C). Selected Lipids (p < 0.05):
L-Carnitine, PC (16:0/16:0), PC (32:1) and PE (34:2).

The impact of biocide treatments on polar metabolic profiles (Figure 5A), also pre-
sented a clear separation between the different treatment groups. Again, the BIT-exposed
group was clearly separated from the other groups in the PCA (Figure 5A). Similar to the
lipidomic profiles, the separation can be explained by the opposite effect of the treatments
in the polar metabolites, as demonstrated in a heatmap featuring 1000 metabolites selected
based on ANOVA analysis (p < 0.05) (Figure 5B). This demonstrates that the BIT-exposed
group displayed a markedly different polar metabolite pattern compared to the other
groups. At a nominal p-value, the analysis revealed significant differences in 1161 out of a
total of 1637 polar metabolites across the P. oleovorans 1045 groups, including the unexposed,
CMIT-exposed, MIT-exposed, and BIT-exposed groups. Figure 5C highlights four known
lipids that exhibited significant differences; detailed information about these compounds
can be found in Supplementary Table S6.
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(p < 0.05) (Figure 6B). As can be seen, the BIT-exposed group shows clearly different lipid 
patterns than the other groups. Overall, 15 lipids out of a total of 606 exhibited significant 
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Figure 5. (A). PCA Plots of polar metabolite profiles in nontreated control and treated 1045 groups,
showing the separation between the different treatment groups and the non-treated group. (B). A
heatmap displaying significantly altered metabolites (ANOVA, p < 0.05) with samples organized based
on exposure vs. nontreated groups of 1045. (C). Selected four metabolites (p < 0.05): tetradecenoic acid,
5-hydroxyindole-3-acetic acid, LPE (16:0), and hexadecenoic acid, showing statistically significant
differences between the treatments.

3.3. Lipids and Metabolites Profiles of Biocide-Treated P. oleovorans P4A Strain

The PCA analysis of lipid profiles showed that the BIT-exposed group was mainly
separated from the untreated control group, as well as groups exposed to MIT and CMIT
(Figure 6A).

To further investigate these differences, we generated a heatmap based on ANOVA
(p < 0.05) (Figure 6B). As can be seen, the BIT-exposed group shows clearly different
lipid patterns than the other groups. Overall, 15 lipids out of a total of 606 exhibited
significant differences in P. oleovorans P4A across the treatment groups. Figure 6C shows
four unidentified lipids that demonstrate significant differences. Detailed information
about these compounds is available in Supplementary Table S7. The majority of these
unknown compounds have a low retention time and small mz, indicating that they are
small and polar compounds.
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A heatmap constructed based on ANOVA, displaying 1000 metabolites with the most 
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Figure 6. (A). PCA plots of lipid profiles in nontreated control and treated P4A groups, showing the
differences in lipid profiles between the untreated control group and those exposed to MIT, BIT, and
CMIT. (B). A Heatmap displaying 15 significantly altered lipids (ANOVA, p < 0.05) with samples orga-
nized based on exposure vs. untreated control groups of P. oleovorans P4A. (C). Selected four unknown
lipid components (p < 0.05): 1390 (mms = 660.2531), 1691 (mz = 922.6007), 1387 (mz = 638.2711), and
1190 (mz = 313.3585). These unknown lipids exhibited statistically significant differences.

The metabolic profiles across all P4A groups are shown in the PCA (Figure 7A). In
the PCA plot, the untreated control group, as well as the CMIT and MIT groups, are
clustered together, indicating similarities in their metabolic profiles while the BIT-exposed
group is clearly separated, suggesting a stronger metabolic response to the treatment when
compared to the other groups.

A heatmap constructed based on ANOVA, displaying 1000 metabolites with the most
distinct patterns, (p < 0.05), further illustrates a more pronounced response to BIT exposure
in comparison to other groups. We identified 332 unknown polar metabolites showing
significant differences out of a total of 1637 metabolite components. Examples of the most
significantly changed metabolites are presented in Figure 7C, while detailed information
can be found in Supplementary Table S8.
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to limitations of lipidomic pathway mapping for lipids. The Mummichog Pathway Anal-
ysis Plot revealed significant enrichment in multiple metabolic pathways, namely in va-
line, leucine, isoleucine degradation, and valine, leucine, and isoleucine biosynthesis, ar-
achidonic acid metabolism, Aminoacyl–tRNA biosynthesis, peptidoglycan biosynthesis, 
butanoate metabolism, pantothenate and CoA biosynthesis, ubiquinone and another ter-
penoid-quinone biosynthesis, and porphyrin and chlorophyll metabolism (Figure 8A,B, 
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olites identified by the pathway analysis to be significant and could confirm several addi-
tional metabolites, in addition to those that we had in our target list.  

Figure 7. (A). PCA Plots of polar metabolite profiles in untreated control and treated P4A groups.
(B). A heatmap displaying significantly altered metabolites (ANOVA, p < 0.05). (C). Selected un-
known polar metabolite components (p < 0.05): 574 (mz = 642.3264), 1300 (mz = 551.26232), 719
(mz = 669.2799), and 1049 (mz = 539.3528). These unknown polar metabolites exhibited statistically
significant differences.

3.4. Metabolic Pathway Analysis of BIT-Exposed P. oleovorans Strains

We conducted metabolic pathway analysis to assess the impact of BIT treatment
on the 1045 reference strain in comparison to the P4A strain, relative to their untreated
control groups. In this analysis, we utilized the data of polar and semipolar metabolites
due to limitations of lipidomic pathway mapping for lipids. The Mummichog Pathway
Analysis Plot revealed significant enrichment in multiple metabolic pathways, namely in
valine, leucine, isoleucine degradation, and valine, leucine, and isoleucine biosynthesis,
arachidonic acid metabolism, Aminoacyl–tRNA biosynthesis, peptidoglycan biosynthe-
sis, butanoate metabolism, pantothenate and CoA biosynthesis, ubiquinone and another
terpenoid-quinone biosynthesis, and porphyrin and chlorophyll metabolism (Figure 8A,B,
Tables 2 and 3, Supplementary Table S9). We further checked the identity of those metabo-
lites identified by the pathway analysis to be significant and could confirm several addi-
tional metabolites, in addition to those that we had in our target list.

These findings indicate that the BIT treatment had clear effects on these metabolic
pathways in the 1045 strain, suggesting that biocide treatment induces changes in amino
acid and fatty acid metabolism. The results of the pathway analysis are presented in
Tables 1 and 2. We also tested the pathway analysis for the lipidomics data; however, this
approach proved to be not feasible, probably due to the challenges in mapping lipids into
specific pathways when the exact fatty acid composition is not known. Several of the
putatively identified lipids that showed response to the BIT were oxidized phospholipids,
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and several of them contained arachidonic acid in their structure. Due to a lack of reference
spectra, full identification was not possible.
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Table 2. KEGG pathways were identified as the output of the mummichog analysis in this analysis of
1045 strain untreated control samples vs. 1045 strain 150 ppm BIT-exposed sample.

Pathway Analysis for 1045 Pathway Total Hits. Total Hits. Sig P. Fisher P. EASE P. Gamma

Valine, leucine, and isoleucine degradation 31 5 5 0.0239 0.1531 0.0052
Valine, leucine, and isoleucine biosynthesis 22 4 4 0.0512 0.2724 0.0071

Arachidonic acid metabolism 4 4 4 0.0512 0.2724 0.0071
beta-Alanine metabolism 13 3 3 0.1088 0.4613 0.0121

Peptidoglycan biosynthesis 17 3 3 0.1088 0.4613 0.0121
Butanoate metabolism 22 3 3 0.1088 0.4613 0.0121

Pantothenate and CoA biosynthesis 20 3 3 0.1088 0.4613 0.0121
Ubiquinone and other terpenoid-quinone biosynthesis 9 4 3 0.2816 0.6503 0.0220

Porphyrin and chlorophyll metabolism 56 11 6 0.4463 0.6711 0.0237

Table 3. KEGG pathway was identified as the output of the mummichog analysis in this analysis of
P4A strain untreated control samples vs. P4A 150 ppm Bit-exposed sample groups.

Pathway Analysis for P4A Pathway Total Hits. Total Hits. Sig P. Fisher P. EASE P. Gamma

Arachidonic acid metabolism 4 4 4 0.1341 0.4786 0.0158
Tyrosine metabolism 25 9 7 0.2417 0.4876 0.0162

Aminobenzoate degradation 11 3 3 0.2230 0.6527 0.0261
Folate biosynthesis 34 7 5 0.4371 0.7191 0.0323

Ubiquinone and other terpenoid-quinone biosynthesis 9 4 3 0.4898 0.8267 0.0485
Aminoacyl–tRNA biosynthesis 21 6 4 0.5632 0.8289 0.0489

Porphyrin and chlorophyll metabolism 56 11 6 0.7807 0.9118 0.0738
Valine, leucine, and isoleucine degradation 31 5 3 0.7004 0.9184 0.0769

Biotin metabolism 6 2 2 0.3693 0.8436 0.0521
Peptidoglycan biosynthesis 17 3 2 0.6619 0.9391 0.0885

Butanoate metabolism 22 3 2 0.6619 0.9391 0.0885
Pantothenate and CoA biosynthesis 20 3 2 0.6619 0.9391 0.0885

Valine, leucine, and isoleucine biosynthesis 22 4 2 0.8340 0.9765 0.1271
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BIT treatment, and a large number of oxidized phospholipids, several of them having
arachidonic acid in their structure, were found. However, due to the lack of reference
standards and experimental reference spectrum, we could not verify the identifications.

The outcomes of our KEGG metabolomic pathway analysis on the P4A strain ex-
posed to 150 ppm of BIT are presented in Figure 8B and Table 2. The analysis revealed
notable effects on specific metabolic pathways, including arachidonic acid metabolism,
tyrosine metabolism, aminobenzoate degradation, folate biosynthesis, ubiquinone and
other terpenoid-quinone biosynthesis, and Aminoacyl–tRNA biosynthesis due to the BIT
treatment. Additionally, dysregulation of arachidonic acid metabolism was observed,
mirroring the changes observed in the 1045 strain, although the difference did not reach
statistical significance.

4. Discussion

In this study, our initial focus was on investigating potential disparities in the metabolic
profiles of two Pseudomonas oleovorans strains. Subsequently, we investigated how exposure
to biocides, using similar conditions that industry applies in their microbiological tests,
impacts the metabolome of these strains, with a specific emphasis on lipid, polar, and
semipolar metabolites. Lipids play a crucial role in cell structure and signaling, while polar
and semipolar metabolites serve as key intermediates in various metabolic pathways. By
focusing on these metabolite classes, we aimed to gain specific insights into the adaptive
responses of Pseudomonas strains to biocide exposure. While our metabolic coverage does
include all main molecular lipids and key metabolic pathways, there are some limitations
in the coverage of metabolites, which are either present at very low concentrations or which
would require specific sample extraction methods due to, e.g., instability.

The present study demonstrated a significant influence of three biocides on the
metabolic profiles of an industrial biocide-resistant strain of P. oleovorans P4A and a biocide-
sensitive reference strain P. oleovorans 1045. The biocide concentrations were sub-MIC
to prevent the inhibition of bacterial growth but permitted the analysis of the effects of
the biocides on the microbes. While the conditions chosen were similar to those used
by coating companies in their microbiological tests, they do not fully mimic the real-life
conditions related to possible fluctuations in temperature, substrate and nutrient expo-
sure, pH variations, and the presence of other microorganisms that can influence bacterial
metabolism. The two strains had similar overall lipidomic and metabolic profiles, with
none of the differences reaching statistical significance. This suggests that the reference
strain (1045) could be used as a model when investigating the impact of various treatments
on the metabolic level.

Our findings demonstrated that biocides used in the study had different effects on
bacteria metabolism. This aligns with previous research indicating that different biocidal
agents operate through distinct mechanisms of action, resulting in varying capacities
to hinder or eradicate microbial communities. These mechanisms include, but are not
limited to, the degradation of cellular membranes, disruption of intracellular proteins, and
the inactivation of specific enzymatic pathways within the microorganism [1]. Similar
metabolic changes have been reported in other Pseudomonas strains after exposure to
antibiotics. Particularly, changes in phospholipids are a specific feature of stress response in
Pseudomonas, which adapts to environmental stress by converting cis unsaturated membrane
fatty acids to their trans configuration, rapidly altering phospholipids [39]. Pseudomonas also
uses vesiculation to defend against chemical stress, increasing its surface hydrophobicity
and enhancing biofilm formation. P. aeruginosa, a well-studied strain, shows metabolic
changes in response to antibiotics like Polymyxin B, which alters lipid profiles, including
decreases in free fatty acids and time- and dose-dependent changes in phospholipids [40].
In antibiotic-resistant strains, enhanced fatty acid biosynthesis is a key feature of CIP-
resistant P. aeruginosa [39,41].

Overall, the metabolic changes observed after biocide treatment were more pro-
nounced in the 1045 strain than in the P4A strain (1613 lipids and metabolites showing
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significant changes in the 1045 strain, 347 in the P4A strain), with both lipids and more
polar metabolites showing differences.

At the level of individual metabolites, several changes related to adaptive and/or stress
responses, such as oxidative stress were observed. The critical involvement of L-carnitine
in lipid metabolism and its significance as a fatty acid transporter are well-documented in
the literature. L-carnitine plays a central role in facilitating the transport of fatty acids, thus
contributing to energy production in aerobic organisms [42,43]. This process is particularly
important during periods of heightened metabolic demands or stress conditions, ensuring
the balance of lipid oxidation within cells. In the context of P. oleovorans, exposure to
biocides may induce a stress response that perturbs normal metabolic pathways, including
those regulated by L-carnitine. Biocides are known to disrupt bacterial cellular processes
and induce stress, potentially leading to alterations in metabolic pathways [44]. The
observed decrease in L-carnitine levels in P. oleovorans post-biocide exposure suggests
interference with lipid metabolism, which could adversely affect energy production and
bacterial survival. The findings align with previous studies highlighting the impact of
biocides on microbial metabolism. Biocides can disrupt cellular homeostasis and metabolic
pathways, including those associated with lipid metabolism [45].

It is also involved in the elimination of cellular metabolic byproducts. L-carnitine is in-
volved in regulating stress responses, energy metabolism, and protein folding, irrespective
of whether bacteria inhabit aerobic or anaerobic environments [46]. An important function
of L-carnitine is its ability to mitigate osmotic stress in bacteria by acting as an osmolyte,
thus helping maintain cellular fluid levels and preventing cellular damage [47].

The significant alteration we observed on several phospholipids could imply modi-
fication of bacterial membranes, which can impact the structural attributes, morphology,
and content of cell membranes [48]. Phosphatidylcholine (PC) lipids are associated with
bacterial survival and adaptation to stress environments [49]. P. oleovorans 1045 subjected
to CMIT and MIT exposure exhibited elevated concentrations of PCs, while exposure
to BIT displayed a notable reduction in PC levels. P. oleovorans traditionally incorporate
phospholipids other than phosphatidylcholine (PC) into their membrane structure as an
adaptive mechanism to fine-tune their membrane composition in order to meet specific
environmental and metabolic demands [49]. The capacity of Pseudomonas species to assimi-
late PC into their membranes could confer advantages regarding heightened toxicity, since
PC-rich membranes may enhance stability and fluidity, potentially providing a compet-
itive edge to these bacteria [49]. The presence of PC in bacterial membranes is rare and
considered a distinctive feature among bacteria. Alterations in PC levels may also have
consequences on membrane permeability, potentially affecting the processes of biocide
uptake and efflux [50]. Thus, alteration in PC concentrations is related to cellular mem-
brane characteristics, and the fundamental mechanisms underlying biocide resistance. The
changes observed in phosphatidylethanolamines (PEs), such as PE (34:2), after biocide
treatment can also be linked with changes in bacterial membranes. The PE (34:2) levels
in P. oleovorans 1045 exposed to BIT resulted in a reduction, whereas exposure to CMIT
and MIT induced increased levels of this lipid. PE (34:2) is a component found within the
bacterial cell membrane, contributing to its structural integrity, selective permeability, and
protein anchoring capabilities. The responsive nature of PE (34:2) to biocidal exposure sug-
gests its involvement in the bacterium’s adaptive mechanisms in the face of environmental
stressors [51]. PEs function as a discerning permeability barrier in Pseudomonas species
and selectively facilitate the entrance of vital nutrients and metabolites into the cell while
impeding the passage of deleterious substances [52]. PE (34:2) potentially contributes to
the controlled translocation of molecules across the membrane and serves as an anchor for
membrane proteins associated with nutrient transport, signal transduction, and enzymatic
catalysis [53].

We also show dysregulation of a monounsaturated free fatty acid, namely, tetrade-
canoyl acid, which showed elevated concentrations in P. oleovorans P4A exposed to CMIT
and MIT, while reduced levels in BIT exposure. Tetradecenoic acid influences membrane
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fluidity and functionality [28]. Previous studies have suggested that the presence and
metabolic utilization of tetradecenoic acid are contingent upon growth conditions and
adaptive responses [54]. The composition of free fatty acids within bacterial membranes
can vary significantly, influenced by the growth medium, temperature, and other environ-
mental parameters [55].

Other metabolites than those belonging to lipids also showed differences. 5-Hydroxyindole-
3-acetic acid (5-HIAA) was downregulated in the P4A strain exposed to CMIT and MIT,
whereas significantly higher concentrations were detected after BIT exposure. The biosyn-
thesis of 5-HIAA in Pseudomonas species primarily occurs through the conversion of tryp-
tophan to indole-3-acetic acid (IAA), facilitated by the enzyme tryptophan decarboxylase
(TrpDC) [56]. While the precise functions of 5-HIAA in Pseudomonas are not fully under-
stood, evidence exists that it is involved in responses to environmental stresses, such as
oxidative stress, and exposure to toxic compounds. It is plausible that 5-HIAA functions as
a signaling molecule in stress adaptation mechanisms [57].

On the metabolic pathway level, several key metabolic pathways showed dysreg-
ulation after treatment with BIT. It should be noted that, while the metabolic pathway
analysis methodology links metabolites to biological pathways, the functional outcomes
are limited by the pathway libraries and the analytical method [58]. Among the path-
ways identified after BIT exposure, two pathways significantly altered in both P. oleovorans
strains were arachidonic acid metabolism and ubiquinone and other terpenoid-quinone
biosynthesis. Arachidonic acid (AA) is a polyunsaturated fatty acid primarily found in
eukaryotic cell membranes and serves as a precursor for bioactive lipid mediators, includ-
ing prostaglandins and leukotrienes, which regulate inflammatory and immune responses.
While AA did not show any significant differences between the treatments, several oxylip-
ins, such as 9,10-diHOME, showed significantly increased levels especially in the P4A
strain (FC = 4.5, p = 0.001). In addition, the lipidomics data showed that several putatively
identified AA fatty acyl containing oxidized phospholipids were significantly altered after
BIT treatment. In Pseudomonas species, the AA metabolism involves transport systems
for its uptake from the environment and enzymatic processes, such as β-oxidation, to
break it down into acyl-CoA molecules [59]. While there is currently a limited amount of
information on the role of AA in Pseudomonas oleovorans, there are some studies on Pseu-
domonas aeruginosa, which shares genetic similarities with P. oleovorans. Specific enzymes
(such as CYP168A1) that act as fatty acid hydroxylases and metabolize arachidonic acid
into oxylipins have been identified in Pseudomonas aeruginosa. The activity of this enzyme
is inhibited by the antifungal agent ketoconazole [58]. This inhibition response could be
linked to the changes in the arachidonic acid pathways observed in our study. It could
be also linked with alteration in phospholipid fatty acids composition, which has been
reported in the response to different environmental cues for Pseudomonas putida [60], as well
as specific enzymes involved in the oxidative stress response among different strains of
P. putida [61]. Of the other pathways affected, the ubiquinone and other terpenoid-quinone
biosynthesis pathways could also potentially be associated with a stress response to the
biocide treatment. Ubiquinone, a critical terpenoid quinone in P. oleovorans, acts as an
electron carrier in cellular respiration and serves in antioxidant defence and apoptosis [62].
Its biosynthesis from chorismite involves several enzymatic steps, similar to the pathway
for menaquinone, essential for the bacterium’s survival [63].

Several pathways that are linked with amino acid metabolism were also dysregulated
by the BIT treatment. Aminoacyl–tRNA biosynthesis, facilitated by Aminoacyl–tRNA
synthetases (aaRSs), ensures accurate protein translation in P. oleovorans. Both strains
showed alterations to the Aminoacyl–tRNA biosynthesis pathway. Disrupted amino acid
metabolism can potentially have implications for the bacteria’s functioning, particularly in
relation to protein synthesis and metabolic activities. In bacteria, when there is a disturbance
in the way amino acids (the building blocks of proteins) are managed, it can be linked to
issues with multiple essential amino acids, specifically valine, leucine, and isoleucine. These
amino acids are crucial for making proteins and carrying out important metabolic functions
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in bacteria [64]. Three metabolites in this pathway were identified/putatively identified, of
those two were downregulated and leucine/isoleucine was upregulated. The degradation
of these amino acids was significant in the 1045 strain, while it was altered, although
not statistically significant (p = 0.07) in the P4A strain. Valine, leucine, and isoleucine
undergo catabolism in a series of enzymatic reactions leading to the production of key
intermediates such as isobutyl-CoAisobutyl-CoA, isovaleryl-CoA, and β-methylcrotonyl-
CoA. These intermediates are converted into acetyl-CoA, which enters the Citric acid cycle
for energy generation. Tyrosine metabolism in P4A after BIT exposure was also altered. The
tyrosine metabolism pathway in P. oleovorans provides amino acids and other molecules
necessary for growth and development. In addition to the main tyrosine metabolism
pathway, Pseudomonas species also have several other enzymes that can metabolize tyrosine.
For example, some Pseudomonas species have enzymes that can convert tyrosine to catechol,
which is a precursor to a variety of siderophores [65].

Several pathways that suggest responses related to bacterial growth and survival were
also observed. Dysregulation was observed in the aminobenzoate degradation pathway,
which in P. oleovorans is an important pathway for the degradation of aromatic compounds
and contributes to the bacterium’s ability to grow in environments that are contaminated
with aromatic compounds [66,67]. This pathway was impacted in the P4A strain by the
BIT treatment is linked with catechol metabolism by cleavage of aminobenzoate and
2-amino-3-ketobutyrate. This pathway is also linked with amino acid metabolism as
P. oleovorans has several enzymes that degrade catechol to further metabolic products such
as glutamate which is a central metabolite in energy production, protein synthesis, and
amino acid metabolism [68,69]. Only one of the three metabolites in this pathway, identified
in pathway analysis could be putatively identified, showing upregulation after exposure.
Vitamin B metabolism, which is vital in the growth and survival of organisms [70], was also
affected in both two strains, with the 1045 strain showing dysregulation of pantothenate
metabolism and the P4A strain in folate metabolism due to BIT treatment. Both pathways
are also connected to multiple amino acid pathways. In both pathways, two metabolites
identified by the pathway analysis were putatively identified, with pantetheine showing
downregulation and its direct derivative pantothenic acid upregulation. Particularly, the
changes in the folate pathway can also be important in the survival of bacteria in diverse
environmental conditions, as folate is central to one-carbon metabolism, facilitating the
assimilation of carbon sources and nitrogen metabolism [51,71]. Folate (vitamin B9) is a
crucial cofactor essential for various cellular processes, and while some bacteria cannot
synthesize folate de novo, P. oleovorans possesses the genetic machinery for de novo folate
biosynthesis [72].

The increased peptidoglycan biosynthesis in P4A may be a mechanism of resistance to
biocides as peptidoglycan may contribute to the protection of the cell from the biocides,
and this may make the cell more resistant. Peptidoglycan biosynthesis was affected in
both P. oleovorans strains after biocide treatment, but the response level was different. This
difference may be because P4A is resistant to biocides, while 1045 is not. Peptidoglycan
is a complex polymer that is essential for the growth and survival of bacteria. It protects
the external environment and maintains the shape of the cell [73]. While we could not
verify the identity of the metabolites identified by the pathway analysis in this pathway,
due to a lack of reference spectra, all four compounds in this pathway showed significant
upregulation (FC 3–10).

The butanoate metabolic pathway, which is linked with both energy metabolism
and amino acid and fatty acid metabolism, and thus, also to growth, was affected in
both strains exposed to BIT exposure but in different levels of response. Of identified
metabolites, 4-aminobutanoate was upregulated in both strains. Butanoate metabolism in
P. oleovorans is the conversion of butanoate, a four-carbon fatty acid, into either energy or
other useful cellular metabolites. Butanoate can be broken down to produce acetyl-CoA,
which is an intermediate in the citric acid cycle and part of the energy production in aerobic
organisms [74]. P. oleovorans can also use butanoate to produce other cellular metabolites,
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such as amino acids, fatty acids, and polyhydroxyalkanoates. Butanoate metabolism is part
of the metabolic versatility of P. oleovorans by allowing the bacteria to grow on a variety of
different carbon sources, including butanoate, other fatty acids, and hydrocarbons.

In summary, our study showed heterogeneous effects of biocides on the metabolic
profiles of the two bacterial strains, with the biocide-sensitive strain (1045) exhibiting
more pronounced alterations compared to the biocide-resistant strain (P4A). The observed
changes indicate alteration in cellular membranes and bacterial metabolism, thereby poten-
tially influencing bacterial growth and survival. Overall, the observed changes in lipids
and other metabolites implied potential adaptive responses to biocides. The main finding
of our study was that the three biocide mixtures triggered different types of metabolic
changes, with BIT showing the strongest metabolic response. This could explain why it
has been successfully applied in long-term preservation while the two other biocides are
used for short-term preservation, with their impact diminishing rapidly. Here, it should
also be noted that the exposure concentration for BIT was higher than for CIT and MIT.
In addition, BIT is clearly more hydrophobic than the other two biocides, and that could
potentially contribute to its strong impact on particularly lipid metabolism. Our study
also demonstrates the possibilities of using metabolomics as a tool for investigating the
biological responses of bacteria after biocide treatment, which could be utilized in the
targeted development of more efficient biocide treatments, with benefits both for industry
and potentially, also for the environment. Future research should prioritize identifying
synergistic biocide combinations against biocide-resistant microorganisms, elucidating
their mechanisms of action, formulating new delivery systems, and assessing their safety
and efficacy.
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