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Abstract: Cannabichromene (CBC) is a minor cannabinoid within the array of over 120 cannabinoids
identified in the Cannabis sativa plant. While CBC does not comprise a significant portion of whole
plant material, it is available to the public in a purified and highly concentrated form. As minor
cannabinoids become more popular due to their potential therapeutic properties, it becomes crucial to
elucidate their metabolism in humans. Therefore, the goal of this was study to identify the major CBC
phase I-oxidized metabolite generated in vitro following incubation with human liver microsomes.
The novel metabolite structure was identified as 2′-hydroxycannabicitran using gas chromatography–
mass spectrometry and nuclear magnetic resonance spectroscopy. Following the identification, in
silico molecular modeling experiments were conducted and predicted 2′-hydroxycannabicitran to fit
in the orthosteric site of both the CB1 and CB2 receptors. When tested in vitro utilizing a competitive
binding assay, the metabolite did not show significant binding to either the CB1 or CB2 receptors.
Further work necessitates the determination of potential activity of CBC and the here-identified phase
I metabolite in other non-cannabinoid receptors.

Keywords: cannabichromene; 2′-hydroxycannabicitran; cannabicitran; human drug metabolism;
phase I metabolism; human liver microsomes; gas chromatography–mass spectrometry; nuclear
magnetic resonance spectroscopy; molecular docking; CB1 receptor; CB2 receptor; binding

1. Introduction

The best-studied cannabinoids are ∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol
(CBD). ∆9-THC is well known to be a partial agonist of the cannabinoid 2 receptor (CB2R)
and the cannabinoid 1 receptor (CB1R), the latter of which is responsible for its psychotropic
effects [1,2]. The activity of CBD is more complex, and evidence suggests minimal direct
effects on CB1R and CB2R [3,4]. The metabolic pathways of ∆9-THC and CBD have been
identified [5]. ∆9-THC is initially metabolized to 11-hydroxy-∆9-THC, which retains activity
at CB1R; it is not until 11-hydroxy-∆9-THC is further oxidized into the carboxylic acid
metabolite that it loses CB1 activity [6]. Similarly, CBD is principally hydroxylated to
7-hydroxy-CBD, which, in preclinical models of seizures, remains active, though the precise
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mechanism of action is unknown [7]. Further metabolism to the carboxylic acid 7-carboxy-
CBD arrests its activity [7,8]. However, our group has also proven that CBD can be directly
glucuronidated (CBD-gluc) [9], and the activity of CBD-gluc is unknown.

Besides ∆9-THC and CBD, interest in minor phytocannabinoids has intensified, since
many of these are believed to lack the psychoactive properties that are primarily mediated
through CB1R activation; one such minor cannabinoid is cannabichromene (CBC, Figure 1A).
CBC represents a small percentage of whole plant material (0.05–0.3%); however, these are
relatively old metrics obtained from samples collected from 1993–2014 [10–13]. More recently,
as a result of the passage of the Agricultural Improvement Act (aka Farm Bill) in 2018,
the general public in the United States has unrestricted access to highly purified and
concentrated minor cannabinoids, including CBC [14]. In 2023, the United States minor
cannabinoid market size was estimated at 11.5 billion dollars, but is expected to increase to
33.3 billion dollars by 2030 in part due to far-reaching medicinal claims including treatment
for neurological disorders, cancer, inflammation, and pain management [15]. These claims
have been drastically understudied; preliminary reports on CBC activity have shown con-
flicting results. CBC has previously been shown to be a partial agonist of CB2R but not
CB1R [16], while other studies have confirmed partial agonism in CB2R and also shown
partial agonism in CB1R [17]. CBC is generally thought to be non-psychoactive in ani-
mal models [18,19]. In exploring non-CB receptor systems, CBC was shown to interact
with a variety of transient receptor potential (TRP) channels including TRPA1 [20–23],
TRPV1–4, and TRPV8, thereby having implications for pain and inflammation [2,24], and
acute respiratory distress syndrome [25]. Another study showed the anti-inflammatory
effects of CBC through a non-CB receptor mechanism in a model of edema [26]. A po-
tential anti-inflammatory mechanism of action was described through downregulating
the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) path-
ways [27]. CBC has been tested in several model systems of cancer, including urothelial cell
carcinoma [28], human breast carcinoma [29], neuroblastoma [30], and bladder cancer [31]
with varying efficacy. Due to the wide variety of potential therapeutic applications and
potential toxicities, it is important to characterize the pharmacokinetics of CBC and the
potential activity of the resulting metabolites.

Previous studies of CBC metabolism applied various animal models resulting in
differing metabolic profiles [32,33]. Using gas chromatography–mass spectrometry, Harvey
and Brown described hydroxylation in all positions of both aliphatic chains of CBC in
rabbit-derived liver microsomes [33]. In hamster-, gerbil-, and cat-derived liver microsomes,
epoxidation was detected across the alkene on the branched aliphatic chain representing
10, 12, and 42% of the total amount of metabolites generated in each respective animal
model [34]. A recently published study identified four CBC metabolites generated by
human liver microsomes: 1′′-hydroxy-CBC; 8′-hydroxy-CBC; 6′, 7′-epoxy-CBC; and 6′, 7′-
dihydroxy-CBC [35]. However, the authors looked specifically for previously synthesized
metabolites and no attempt was made to detect and identify other potentially novel CBC
metabolites. This contributes to uncertainty as to whether the major metabolites of CBC
were captured.

In continuation of the aforementioned published CBC drug metabolism studies, we
found that incubation of CBC with pooled human liver microsomes (HLMs) resulted in one
major, yet unknown oxidized metabolite (Figure 2). Our aim was to identify the structure
of said major CBC metabolite. We applied an array of analytical techniques including gas
chromatography–tandem mass spectrometry (GC-MS/MS), high-resolution time-of-flight
(TOF) tandem mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy to
elucidate this metabolite’s structure. Once the structure was identified, we employed in
silico molecular modeling and in vitro competitive binding assays to determine the binding
of said major CBC metabolite to CB1R and CB2R. A diagram of the experimental workflow
is available in the Supplementary Materials (Section S1.1).
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Figure 1. Structures and numbering of (A) CBC, (B) cannabicitran (CBT-C), and the main oxidized 
CBC metabolite identified in the present study, (C) 2′-hydroxycannabicitran. In this figure and 
throughout the present manuscript, CBC, CBT-C, and 2′-hydroxycannabicitran are numbered ac-
cording to a terpenoid system of numbering [36,37]. The theoretical exact masses and chemical for-
mulas are shown below each respective structure. 

2. Materials and Methods 
2.1. Enzymes, Reagents, and Chemicals 

HPLC-grade water, methanol, acetonitrile, and 88% certified ACS-grade formic acid 
were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Chloroform-d1 
(CDCl3, 99.8 atom%D, Thermo Fisher Scientific, Waltham, MA, USA), D2O (99.9 atom%D, 
Thermo Fisher Scientific, Waltham, MA, USA), and acetonitrile-d3 (ACN-d3, 99.96 
atom%D, Sigma-Millipore, St. Louis, MO, USA) were used as NMR solvents. Hydrogen 
peroxide solution (30% w/w in water containing stabilizer) was used for synthetic genera-
tion of the major metabolite of CBC (Sigma-Millipore, St. Louis, MO, USA). CBC used in 
incubations with HLMs and NMR was ≥98% pure purchased from Cayman Chemical 
(Ann Arbor, MI, USA), and CBC used in synthesis of 2′-hydroxycannabicitran was >98% 
pure purchased from Open Book Extracts (Roxboro, NC, USA). The internal standard 
CBC-d9 for LC-MS/MS analyses was a certified reference material purchased from Cay-
man Chemical (Ann Arbor, MI, USA). HLMs had been characterized for individual cyto-
chrome P450 activity and concentration by the manufacturer (Xenotech, Kansas City, KS, 
USA); a pool of 50 individuals was used for the kinetic studies (H0620/Lot #1810003), 
while a pool of 200 individuals was used for upscaled incubations and isolation of the 
major oxidized CBC metabolite (H2640/Lot #1910096). Dichloromethane (ACS-grade, 
VWR International, Radnor, PA, USA) was used for metabolite extraction from HLMs. 
The following reagents were purchased from Sigma-Millipore (St. Louis, MO, USA): 
Na+/K+-phosphate buffer, magnesium chloride (MgCl2), ethylenediaminetetraacetic acid 
(EDTA), β-nicotinamide adenine dinucleotide phosphate hydrate (NADP), isocitric acid, 
and isocitric dehydrogenase were used for the HLM NADPH-generating system. Rea-
gents utilized for derivatization prior to GC-MS/MS analysis included ethyl acetate (an-
hydrous 99.8%) and N,O-bis(trimethylsilyl)trifluoroacetamide with 1% chlorotrime-
thylsilane (BSTFA with 1% TMCS analytical standard). Reagents used for competitive 
CB1R and CB2R binding assays included WIN 55,212, CP 55,940, Δ9-THC, CBC, and 

Figure 1. Structures and numbering of (A) CBC, (B) cannabicitran (CBT-C), and the main oxidized
CBC metabolite identified in the present study, (C) 2′-hydroxycannabicitran. In this figure and
throughout the present manuscript, CBC, CBT-C, and 2′-hydroxycannabicitran are numbered accord-
ing to a terpenoid system of numbering [36,37]. The theoretical exact masses and chemical formulas
are shown below each respective structure.
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Figure 2. Upscaled metabolite generation following CBC incubation with HLMs analyzed via LC-
MS/MS. The figure shows overlaid extracted ion chromatograms recorded on a Sciex API4000 
MS/MS system (Supplementary Materials Section S1.2). The blue tracer represents CBC ([M+H]+, 
m/z = 315.5, primary peak retention time at 17.9 min), the red tracer represents +16 Da from CBC 
([M+H]+, m/z = 331.5, indicating addition of one oxygen, primary peak retention time at 14.9 min), 
and the dark green tracer represents +32 Da from CBC ([M+H]+, m/z = 347.5 indicating addition of 
two oxygens, primary peak retention time at 8.8 min). The neon green peak at 21.0 min was present 
in the background controls and is not considered a metabolite. Additional extracted ion 

Figure 2. Upscaled metabolite generation following CBC incubation with HLMs analyzed via LC-
MS/MS. The figure shows overlaid extracted ion chromatograms recorded on a Sciex API4000 MS/MS
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system (Supplementary Materials Section S1.2). The blue tracer represents CBC ([M+H]+, m/z = 315.5,
primary peak retention time at 17.9 min), the red tracer represents +16 Da from CBC ([M+H]+,
m/z = 331.5, indicating addition of one oxygen, primary peak retention time at 14.9 min), and the
dark green tracer represents +32 Da from CBC ([M+H]+, m/z = 347.5 indicating addition of two
oxygens, primary peak retention time at 8.8 min). The neon green peak at 21.0 min was present in
the background controls and is not considered a metabolite. Additional extracted ion chromatogram
tracers and analytical details are available in the Supplementary Materials (Section S1.2). As shown,
HLMs generated one major metabolite, which we later identified to be 2′-hydroxycannabicitran. Based
on this result, we decided to focus here on said major metabolite, its structural identification, and its
potential interaction with the CB1 and CB2 receptors. No attempt was made during the present study
to structurally identify any of the other minor metabolites.

2. Materials and Methods
2.1. Enzymes, Reagents, and Chemicals

HPLC-grade water, methanol, acetonitrile, and 88% certified ACS-grade formic acid
were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Chloroform-d1 (CDCl3,
99.8 atom%D, Thermo Fisher Scientific, Waltham, MA, USA), D2O (99.9 atom%D, Thermo
Fisher Scientific, Waltham, MA, USA), and acetonitrile-d3 (ACN-d3, 99.96 atom%D, Sigma-
Millipore, St. Louis, MO, USA) were used as NMR solvents. Hydrogen peroxide solution
(30% w/w in water containing stabilizer) was used for synthetic generation of the ma-
jor metabolite of CBC (Sigma-Millipore, St. Louis, MO, USA). CBC used in incubations
with HLMs and NMR was ≥98% pure purchased from Cayman Chemical (Ann Arbor,
MI, USA), and CBC used in synthesis of 2′-hydroxycannabicitran was >98% pure pur-
chased from Open Book Extracts (Roxboro, NC, USA). The internal standard CBC-d9 for
LC-MS/MS analyses was a certified reference material purchased from Cayman Chem-
ical (Ann Arbor, MI, USA). HLMs had been characterized for individual cytochrome
P450 activity and concentration by the manufacturer (Xenotech, Kansas City, KS, USA);
a pool of 50 individuals was used for the kinetic studies (H0620/Lot #1810003), while
a pool of 200 individuals was used for upscaled incubations and isolation of the major
oxidized CBC metabolite (H2640/Lot #1910096). Dichloromethane (ACS-grade, VWR
International, Radnor, PA, USA) was used for metabolite extraction from HLMs. The
following reagents were purchased from Sigma-Millipore (St. Louis, MO, USA): Na+/K+-
phosphate buffer, magnesium chloride (MgCl2), ethylenediaminetetraacetic acid (EDTA),
β-nicotinamide adenine dinucleotide phosphate hydrate (NADP), isocitric acid, and isoc-
itric dehydrogenase were used for the HLM NADPH-generating system. Reagents utilized
for derivatization prior to GC-MS/MS analysis included ethyl acetate (anhydrous 99.8%)
and N,O-bis(trimethylsilyl)trifluoroacetamide with 1% chlorotrimethylsilane (BSTFA with
1% TMCS analytical standard). Reagents used for competitive CB1R and CB2R binding
assays included WIN 55,212, CP 55,940, ∆9-THC, CBC, and cannabicitran (CBT-C), all
purchased from Cayman Chemical (Ann Arbor, MI, USA). The radioactive ligand [3H]CP
55,940 was purchased from PerkinElmer (Waltham, MA, USA). Buffer components and
polyethylenimine were purchased from Sigma-Millipore (St. Louis, MO, USA).

2.2. Generation of CBC Metabolites with Pooled Human Liver Microsomes

To maximize the yield of CBC metabolites, parameters including incubation time, HLM
protein concentration, and CBC concentration were optimized, and representative extracted
ion chromatograms are available in the Supplementary Materials (Section S1.2). The
parameters resulting in the highest yield of metabolites were determined to be 0.5 mg/mL
HLM, 50 µg/mL CBC, and a 40 min incubation time. Prior to adding the drug, the
NADPH-generating system was incubated on a shaker set to 150 rpm at a temperature
of 37 ± 2 ◦C for 10 min (C24 Incubator Shaker, New Brunswick Scientific, Edison, NJ,
USA). Concentrations of buffer constituents were Na+/K+-phosphate buffer (0.1 M, pH
7.4), containing MgCl2 (3.0 mM), EDTA (1.0 mM), NADP (1.0 mM), isocitric acid (5.0 mM),
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and isocitric dehydrogenase (1 Unit/mL). The final volume of the reaction was 100 mL.
After 40 min, the reaction was quenched with a 1:1 volume of ice-cold acetonitrile and the
slurry was transferred to 50 mL conical tubes and centrifuged at 685× g, at 4 ◦C for 10 min.
Following protein precipitation and centrifugation, the supernatants were combined into
a 1 L separatory glass funnel and extracted using dichloromethane. The higher-density
organic phase was retained and dried under a flow of nitrogen at room temperature. Once
dry, the sample was reconstituted in 1.5 mL of pure acetonitrile, transferred into an amber
glass HPLC vial and immediately isolated using semi-preparative high-performance liquid
chromatography–diode array detection (HPLC-DAD). The resulting fractions were stored
at −80 ◦C until further analysis.

The HPLC components for the semi-preparative isolation of the major CBC metabolite
were as follows: G1322A degasser, G1312A binary pump, G1329B 1260 ALS, G1315B DAD,
G1364B fraction collector (all Agilent Technologies, Santa Clara, CA, USA), and an external
column compartment ThermaSphere (Phenomenex, Torrance, CA, USA). The HPLC-DAD
system was controlled, and data were processed using ChemStation software revision
04.03.087 (Agilent Technologies, Santa Clara, CA, USA). The semi-preparative columns
were four Eclipse XDB-C8, 5 µm, 9.4 × 250 mm, connected in series (Agilent Technologies,
Santa Clara, CA, USA). The flow rate was 3.5 mL/min, and the mobile phases were HPLC-
grade water (mobile phase A) and HPLC-grade acetonitrile (mobile phase B). The elution
gradient for isolating CBC metabolites was 0.0 min, 40% B; 22.0 min, 52% B; 48.0 min,
75% B; 50.0 min, 96% B; 54.0 min, 99% B; 69.0 min, 99% B; 70.0 min, 40% B; and 84.0 min,
40% B. The injection volume was 100 µL. UV absorbance was monitored at 210 nm and
231 nm. Fractions were collected based on a UV signal. Additional details are available in
the Supplementary Materials (Section S1.3). Fractions were dried under nitrogen flow at
room temperature and reconstituted in 1.5 mL of pure acetonitrile, which was aliquoted
into 3 vials. Isolated metabolites and controls were analyzed utilizing both LC-MS/MS and
GC-MS/MS as described below. Samples were stored in a −80 ◦C freezer until analysis.

2.3. Derivatization of CBC Metabolite and GC-MS/MS Analysis

Samples were derivatized and analyzed using GC-MS/MS based on the previous
literature [32,33]. Briefly, 100 µL of sample was dried under nitrogen flow, and derivatized
with 50 µL of ethyl acetate and 50 µL of BSTFA 1% TMCS. The vial was heated at 70 ◦C
(Isotemp Hot Plate Stirrer, Thermo Fisher Scientific, Waltham, MA, USA, 150 rpm) for
60 min [38]. Samples were cooled, transferred to autosampler vials and immediately
analyzed via GC-MS/MS.

The system consisted of an AOC-6000 autosampler, a GC-2010 Plus, and a GCMS-
TQ8050 (all Shimadzu Corporation, Kyoto, Japan). The column was a DB-5MS, 30 m,
0.25 mm × 0.25 µm (Agilent Technologies, Santa Clara, CA, USA). The column temperature
gradient was 50.0 ◦C ramped to 230.0 ◦C at 25 ◦C/min, 230.0 ◦C ramped to 258.0 ◦C at
5 ◦C/min, and 285.0 ◦C ramped to 300.0 ◦C at 10.0 ◦C/min. The total program runtime
was 25.7 min. The injection temperature was 265.0 ◦C. The carrier gas was helium with
a constant flow rate of 1.3 mL/min. A 1 µL sample was injected in split mode with a
split ratio of 1:5. Further GC parameters are available in the Supplementary Materials
(Section S1.5).

The mass spectrometer was operated with an electron impact ionization source at
70 eV. Spectra were acquired in scan mode from m/z = 50.00 to 650.00 with a scan speed of
2500 ms, a start time of 3.0 min, and an end time of 25.7 min. The ion source temperature
was 250 ◦C and the interface temperature was 280 ◦C with a solvent cut time of 2 min.
The GC-MS/MS system was controlled, and data were processed using GCMSsolution
software (version 4.5, Shimadzu Corporation, Kyoto, Japan).

2.4. Chemical Synthesis of the Major Metabolite of CBC

Following HLM incubation, metabolite isolation, and preliminary structural identi-
fication hypothesizing an epoxide, the major CBC metabolite was produced by chemical
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synthesis. For this, 0.048 mmol CBC was incubated with 12.89 mmol hydrogen peroxide at
60 ◦C, then placed at −20 ◦C until cool. Isolation of generated products was immediately
performed via semi-preparative HPLC-DAD.

The synthetically generated major oxidized CBC metabolite was isolated based on
retention time using the same semi-preparative HPLC-DAD system described above in-
cluding equipment, mobile phases, columns, flow rate, injection volume, and UV detection.
The elution gradient was 0.0 min, 80% B; 10.0 min, 80% B; 30.0 min, 99% B; 34.0 min 99%
B; 34.1 min, 80% B; and 46.0 min, 80% B. Representative chromatograms of the collected
fractions are available in the Supplementary Materials (Section S1.4).

2.5. Identification of the Major Metabolite Structure via NMR Analysis

The purity of the isolated major metabolite was confirmed via HPLC-UV-MS/TOF
(Supplementary Materials Section S3.1). The sample was dried under nitrogen flow and
reconstituted in 750 µL of acetonitrile-d3 or chloroform-d1 as appropriate and transferred
to a 5 mm NMR tube rated for a frequency of 600 MHz (Norell, Morganton, NC, USA).

NMR spectroscopy was performed using a Bruker Avance Neo spectrometer operat-
ing at 600 MHz 1H equipped with a Bruker TCI 1H&19F/13C/15N 5 mm helium cooled
cryoprobe (Bruker, Billerica, MA, USA). All NMR experiments were performed at 25 °C
using the Bruker pulse sequences provided in TopSpin version 4.3.2. Chemical shifts were
referenced to the residual solvent peak: acetonitrile at 1.94 ppm in 1H and at 118.26 ppm
in the 13C dimension and chloroform-d1 at 7.26 ppm in the 1H dimension. Experiments
included 1H, 13C, 13C Distortionless Enhancement by Polarization Transfer (DEPT-135),
1H-13C Heteronuclear Single Quantum Coherence (HSQC), 1H-13C Heteronuclear Mul-
tiple Bond Correlation (HMBC) experiments, 1H-1H gradient selected Double Quantum
Filtered-Homonuclear Correlation Spectroscopy (DQF-COSY), and Nuclear Overhauser
Effect Spectroscopy (NOESY). NMR data were transferred and processed utilizing Top-
Spin. Further experimental parameters are available in the Supplementary Materials
(Sections S3.2 and S3.3).

2.6. Molecular Docking

The Schrödinger Suite (release 2023-3, Schrödinger, New York, NY, USA) was used
for all ligand and protein preparation, and the Glide Module for all docking calcula-
tions [39–41]. Using LigPrep, the following compounds were prepared at physiological
pH: (−)-∆9-THC, (+)-CBC, (−)-CBC, (R)-2′-hydroxy-(+)-cannabicitran, (S)-2′-hydroxy-(−)-
cannabicitran, (+)-CBT-C, and (−)-CBT-C (structures are available in the Supplementary
Materials Section S4.1). CB1R and CB2R were imported from Protein Data Bank (PDB code:
5XR8) and (PDB code: 5ZTY), respectively [42,43]. These protein structures were prepared
by removing all water molecules and co-crystallized ligands, and then minimized with
OPLS4 force fields and the VSGB solvation model [44]. CB1R and CB2R were scanned
and mapped to confirm their binding site. Computational grids were then formed around
the mapped binding sites to have the test compounds docked into. This docking was
completed with Standard-Precision (SP) and Extra-Precision (XP) glide models for compari-
son. Top-ranked ligand–protein conformations were produced with corresponding scoring
function values.

2.7. Competitive Binding Assays

Radioligand binding to cannabinoid receptors (CB1R and CB2R) was conducted as
previously described [45]. Human embryonic kidney 293 (HEK) cells were transfected
using lipofectamine 2000 (Invitrogen, Waltham, MA, USA) using CB1R or CB2R cDNA in
pcDNA3.1+ plasmid (cDNA Resource Center, Bloomsburg, PA, USA), and stable cell
lines were established. HEK-CB1 and HEK-CB2 cells were grown in DMEM supple-
mented with 10% fetal bovine serum (HyClone Laboratories, Logan, UT, USA), 1% peni-
cillin/streptomycin (final concentration 100 units/mL or 100 µg/mL, respectively), and
300 µg/mL G418. Cells were grown to confluency on 15 cm dishes. Cells from 2 plates
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were scraped into approximately 7 mL calcium- and magnesium-free phosphate-buffered
saline (CMF-PBS) containing 1:3000 protease inhibitor cocktail III (PI) (EMD Millipore,
Burlington, MA, USA) and centrifuged at 11,000× g at 4 ◦C for 10 min. The supernatant
was removed, and the cell pellet was resuspended in 2 mL of hypotonic buffer (5 mM Tris,
2 mM EDTA + PI) using a polytron. The homogenate was centrifuged at 35,000× g for
20 min, resuspended in TME buffer (20 mM Tris, 5 mM MgCl2, 1 mM EDTA, pH 7.4 at
4 ◦C) with PI using a polytron, and an additional 5 mL of hypotonic buffer was added. The
homogenate was centrifuged a second time at 35,000× g for 20 min, the supernatant was
removed, and the final membrane pellet was covered with 2 mL TME buffer and stored at
−80 ◦C until needed.

The binding assay was performed in duplicate in a 96-well plate using TME sup-
plemented with 5 mg bovine serum albumin (BSA)/mL, pH 7.4 at 30 ◦C. Total binding
and nonspecific binding was determined in duplicate for each concentration of radioli-
gand. The reaction mixture included test compounds ∆9-THC, WIN 55,212 or CP 55,940,
membrane preparation (40–50 mg protein), [3H]CP 55,940, and TME+BSA buffer in a final
volume of 0.5 mL. The concentration of [3H]CP 55,940 was 1.4 nM. After incubation at
30 ◦C for 60 min, the reaction was terminated by filtration with TME + 1 mg BSA/mL
over Filtermat A filters (Revvity, Boston, MA, USA) presoaked in 0.2% polyethylenimine.
An additional wash was added to the normal harvesting program to reduce nonspecific
binding. The filters were dried at room temperature, spotted with scintillation cocktail,
and remaining radioactivity was determined utilizing a microBetaplate 1405 scintillation
counter (PerkinElmer, Waltham, MA, USA).

Full characterization of compounds included the generation of sigmoidal curves for
the determination of IC50 values and Hill coefficients for the displacement of [3H]CP 55,940
using a nonlinear curve-fitting algorithm (GraphPad PRISM, version 10.1.1, GraphPad Soft-
ware, Boston, MA, USA). Ki values were calculated using the Cheng–Prusoff transformation
(Equation (1)):

Ki =
IC50

1 + L/Kd
(1)

where L is the radioligand concentration and Kd is the binding affinity of the radioli-
gand, as determined by saturation binding analysis. For [3H]CP 55,940, the Kd value
is 1.54 ± 0.28 nM and 1.18 ± 0.16 nM, and the density of receptors is 990 ± 120 and
8100 ± 1100 fmol/mg protein for CB1 and CB2 receptors, respectively. If applicable, out-
liers were removed based on the results of the Grubbs’ test.

2.8. Data Analysis

Chemical structures were drawn using ChemDraw (version 19.0, PerkinElmer, Waltham,
MA, USA). Please refer to the subsections above for specific software used for controlling
instruments, to interpret spectra and data at various points in this study.

3. Results
3.1. Metabolism of CBC by Human Liver Microsomes

Once incubation parameters yielding the most metabolites were determined
(Supplemental Materials S1.2), the reaction was scaled up to generate sufficient metabolites
to obtain a comprehensive overview of the pattern of CBC metabolites generated by ox-
idative metabolism (+16 Da and +32 Da). A representative extracted ion chromatogram
after incubation of CBC with HLM using the optimized conditions is shown in Figure 2.
The majority of metabolites generated showed a +16 Da mass shift compared to CBC,
which corresponds to hydroxylation or epoxidation. Among those, HLMs generated one
major CBC metabolite. Said metabolite was isolated by semi-preparative HPLC-DAD
for further structural elucidation. Harvey and Brown previously successfully employed
GC-MS to identify the structures of several CBC metabolites [32,33]. Therefore, samples
were derivatized and analyzed using GC-MS/MS with the goal to detect fragments that
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provided additional information aiding in the structural identification of the major oxidized
CBC metabolite.

3.2. Identification of the Structure of the Major CBC Metabolite Generated by Human Liver
Microsomes Using GC-MS/MS

In GC-MS/MS, a fundamental fragment of CBC is the formation of the chromenyl ion,
previously described by Harvey and Brown (please see Supplemental Materials S1.5) [32,33].
This ion was limited in its diagnostic capabilities as it could only inform which half of
the CBC molecule the modification may be on (Figure 3D). CBC eluted with a retention
time of 13.20 min (Figure 3A). The fragmentation pattern of CBC closely matched that of
previous reports (Figure 3B) [32,33]. The major fragment was the chromenyl ion without
any additional substitutions with a m/z = 303.3 (Figure 3D(i)). A fragment with m/z = 371.2
is the product of demethylation of the M+· ion. Other fragments corresponding with the
previous literature include m/z = 304.3, 305.3, and 246.1.

The major metabolite of CBC (Figure 1C) eluted at 13.57 min (Figure 3A). This peak
coeluted with a peak in a control sample; however, the fragmentation was consider-
ably different and is available in the Supplementary Materials (Section S1.5). The ma-
jor fragment was m/z = 319.1 (Figure 3C). The mass difference of +16 Da to the core
chromenyl ion was indicative of an addition of oxygen that was protected from derivati-
zation (Figure 3D(iii)). Other fragments seen were supportive of this hypothesis such as
the M+· ion with m/z = 402.3 and the demethylation product of m/z = 387.3. Based on
these ions, we hypothesized an epoxide at the benzylic carbon on the 2H-pyran ring of
CBC. From the upscaled incubation with HLMs, the isolated fraction corresponding to this
peak was both derivatized and run on GC-MS/MS and LC-MS/MS systems to confirm the
retention time and peak assignment (Figure 2). Similar to LC-MS/TOF, the GC-MS/MS
method could not offer any absolute confirmatory structural information due to the lack of
sufficiently unique MS/MS fragment ions. Therefore, we employed NMR spectroscopy to
completely identify the structure of the major metabolite with necessary certainty.

To provide sufficient material for NMR analysis (>1 mg), based on our hypothesis of
an epoxidation on the 2H-pyran ring of CBC, we sought to generate the major metabolite
using synthesis via incubation with hydrogen peroxide. As expected, several products were
created during this synthesis, which could be chromatographically separated and isolated
via semi-preparative HPLC-DAD (Supplementary Materials Section S1.4). Moreover, a com-
prehensive comparison of the synthetically and biologically generated metabolite is shown
in the Supplemental Materials Sections S1.5 and S2.1. Briefly, the synthetically generated
metabolite matched the chromatographic retention time, MS/MS fragmentation patterns
including high-resolution mass of the fragments, and relative fragment intensities when
analyzed on both GC-MS/MS and HPLC-MS/TOF. Multiple batches of the synthetically
generated major metabolite were required to provide sufficient quantity and purity for
NMR analysis. Purity was established by HPLC-UV-MS/TOF, whereby the MS was run in
the scan mode (Supplementary Materials Section S3.1).
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Figure 3. (A) Staggered overlay of GC-MS/MS total ion chromatogram (TIC, black tracer) of CBC
incubated with HLMs, extracted ion chromatogram of the fragment m/z = 303.2 ((i), green tracer),
extracted ion chromatogram of the fragment m/z = 391.2 ((ii), red tracer), and extracted ion chro-
matogram of the fragment m/z = 319.1 ((iii), blue tracer). Extracted fragments were selected based
upon expected major fragments of metabolites following the formation of the chromenyl ion. In-
tensities of the extracted fragments were multiplied by a factor of 10 for ease of visibility. Major
fragments are shown due to the considerable fragmentation of the molecular ion following ionization,
as expected from previous reports [32,33]. Mass spectra of CBC and the major oxidized metabolite
2′-hydroxycannabicitran are shown in (B,C), respectively. Proposed structures for possible chromenyl
ions are shown in (D(i–iii)). Importantly, these structures are representative possibilities and an
identical modification elsewhere on the molecule resulting in the same chemical formula would
be correct.
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3.3. Structural Identification of 2′-Hydroxycannabicitran via NMR

First, we analyzed CBC to establish a baseline for determining the metabolite structure.
Several NMR experiments were conducted with CBC in ACN-d3 including 1H-NMR, 13C-
NMR, HSQC, HMBC, and DQF-COSY (for more details, please see the Supplementary
Materials Section S3.2). The NMR peak assignments of CBC in ACN-d3 needed to be
established as the isolated major CBC metabolite proved not to be stable in CDCl3, but
inACN-d3 (vide infra). A summary of assigned proton and carbon chemical shifts is shown
in Table 1. As a reference, CBC was analyzed in CDCl3 as well as ACN-d3 to allow for a
direct comparison to the previous literature [46]. The corresponding spectra are available
in the Supplementary Materials (Section S3.2). Briefly, our 1H-NMR spectrum collected
in CDCl3 matched that of a previously published report with respect to multiplicity and
chemical shift [46]. Our assignments of CBC in ACN-d3 were similar to measurements
made in CDCl3 with some differences corresponding to the chemical shift of the protons.
The only significant discrepancy was the chemical shift of the hydroxyl proton, which was
4.561 ppm in CDCl3 and 6.814 ppm in ACN-d3.

Table 1. 1H and 13C peak assignments for CBC in ACN-d3 with detailed HMBC correlations listed.
Chemical shifts were aligned to the residual solvent peak of acetonitrile.

1H Chemical Shift
(δ ppm)

1H Multiplicity J (Hz) Assignment Integration
13C Chemical
Shift (δ ppm)

HMBC Correlations

6.814 s OH 1H - 5, 6

6.580 dd (0.6, 10.1) 1′ 1H 116.919 1, 5, 6, 2′, 3′, 4′, 9′

6.176 s 4 1H 107.543 1, 2, 5, 6, 1′, 1′′

6.130 m 2 1H 107.962 1, 4, 5, 6, 1′, 1′′

5.520 d (10.0) 2′ 1H 126.980 1, 6, 3′, 4′, 9′

5.104 tq (1.4, 7.3) 6′ 1H 124.150 4′, 5′, 8′, 10′

2.424 dd (7.0, 7.8) 1′′ 2H 35.443 2, 3, 4, 2′′

2.068 q (8.0) 5′ 2H 22.381 3′, 4′, 6′, 7′

1.641 s 8′
5H

24.787 6′, 7′, 10′

1.625 m 4′ 40.543 2′, 3′, 4′, 9′

1.555 s 10′
5H

16.658 6′, 7′, 8′

1.544 m 2′′ 30.620 3, 1′′, 3′′, 4′′

1.329 m 4′′

7H
22.232 3′′, 5′′

1.319 s 9′ 25.452 1′, 2′, 3′, 4′

1.278 m 3′′ 31.205 1′′, 2′′, 4′′, 5′′

0.887 t (7.0) 5′′ 3H 13.340 3′′, 4′′

- 1 - 153.947

- 3 - 144.776

- 5 - 152.295

- 6 - 106.905

- 3′ - 77.815

- 7′ - 131.386

We synthesized 2.23 mg/mL of 100% pure compound that was identical to the major
metabolite of CBC generated by human HLM. Quantity was determined by HPLC-UV-
MS/TOF and an NMR-based calibration curve (Supplementary Materials Section S3.1).

We observed metabolite reactivity with CDCl3 (Supplementary Materials Section S3.1);
therefore, ACN-d3 was selected as the NMR solvent. Based on the interpretation of the NMR
peak assignments of the purified major oxidized metabolite (Table 2), the structure was
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identified as 2′-hydroxycannabicitran. Several experiments were conducted to confirm the
given assignments such as HSQC, HMBC, DEPT-135, DQF-COSY, and NOESY experiments
(Supplemental Materials S3.3). The major metabolite displayed complex coupling patterns
in the 1H spectrum (Figure 4) and differed greatly compared to CBC (please compare to
Table 1), indicating limited structural similarity.

Table 2. 1H and 13C peak assignments for the purified major oxidized CBC metabolite (2′-
hydroxycannabicitran) in ACN-d3 with detailed HMBC correlations listed. 1H* refers to a peak
that integrated on the 1H spectra for two protons, but upon the results of the DEPT-135 experiment
was rectified to represent one proton. Chemical shifts were aligned to the residual solvent peak
of acetonitrile.

1H Chemical
Shift (δ ppm)

1H Multiplicity
J (Hz)

Assignment Integration
13C Chemical
Shift (δ ppm)

13C
Multiplicity

HMBC
Correlations

6.266 s 4 1H 109.261 CH 2, 5, 6, 1′′

6.228 s 2 1H 110.699 CH 1, 4, 6, 1′′

3.749 dd (1.9, 5.8) 2′ 1H 71.161 CH 6, 1′, 3′, 6′

3.060 d (6.1) OH 1H - - 1′, 2′, 3′

2.719 t (2.3) 1′ 1H* 37.036 CH 1, 5, 6, 2′, 3′, 5′, 6′, 7′

2.485 dd (7.4) 1′′ 2H 36.583 CH2 2, 3, 4, 2′′

2.258 ddd (2.8, 5.3,
11.5) 6′ 1H 48.335 CH 6, 1′, 2′, 8′b

1.690 ddd (0.9, 6.1,
15.4) 4′b 1H 37.398 CH2 2′, 3′, 5′, 6′, 7′

1.554 m 2′′ 2H 31.918 CH2 3, 1′′, 3′′, 4′′

1.478 s 8′b
4H

29.767 CH3 1, 6′, 7′, 8′a
1.455 td (7.1, 15.3) 4′a 37.398 CH2 5′, 9′

1.321 m 4′′

7H
23.166 CH2 3′′, 5′′

1.315 s 9′ 24.796 CH3 5, 2′, 3′, 4′, 5′

1.270 m 3′′ 32.144 CH2 1′′, 2′′, 4′′, 5′′

1.152 dt (5.9, 12.8) 5′b 1H 22.418 CH2 1′, 3′, 6′

0.948 s 8′a 3H 23.936 CH3 2′, 5′, 6′, 7′, 8′b

0.880 t (7.1) 5′′ 3H 14.300 CH3 3′′, 4′′

0.373 tdd (6.2, 11.9,
13.4) 5′a 1H 22.418 CH2 4′, 6′, 7′

- 3′ - 78.238 C

- 7′ - 84.205 C

- 6 - 113.632 C

- 3 - 143.421 C

- 5 - 156.996 C

- 1 - 158.480 C

Evidence for the complex ring structure of 2′-hydroxycannabicitran came from the
observation of multiple new short- and long-range correlations. In particular, the proton
at position 2, while previously only seeing correlations within the ring at position 1, now
showed correlations to multiple spin systems including three-bond J-couplings in the
DQF-COSY to H-2′ and H-6′. When analyzing C-6′, HMBC correlations in CBC showed the
terminal methyl groups as well as adjacent CH2 groups. H-6′ of the metabolite retained a
long-range correlation to one of the terminal methyl groups, but no longer had correlations
to the previous chain. Instead, it showed a correlation reaching to the aromatic ring (C-6).
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It also displayed a correlation to C-1′ and C-2′, a correlation that would be too great of
a bond distance to establish an HMBC correlation assuming identical bond arrangement
to CBC. Another correlation was the cross-peak between C-7′ and H-1′. Similarly, the
methyl protons labeled 8′b showed a long-range correlation in the HMBC to the preexisting
ring C-1. All these interactions were evidence of the formation of a new heterocyclic ring.
NMR spectra from 2′-hydroxycannabicitran are available in the Supplementary Materials
(Section S3.3).

Another key differentiator between CBC and 2′-hydroxycannabicitran was the chemi-
cal shift in the proton corresponding to the hydroxylation. CBC has a hydroxylation on
C-1 and the proton had a 1H chemical shift of 6.814 ppm as a result of its proximity to
the aromatic ring. 2′-Hydroxycannabicitran no longer displayed said hydroxyl hydrogen
adjacent to the aromatic ring. However, it did contain a hydroxyl proton, as evidenced by
long-range correlations (C-3′, C-2′, and C-1′) observed in the HMBC experiment originating
from a 1H that was not directly bonded to 13C as evidenced in the HSQC. Additionally,
multiple J-coupling correlations to other protons in the ring structure of the metabolite
were observed in DQF-COSY experiments. In the major metabolite, the 1H chemical shift
corresponding to the hydroxyl proton, was a doublet at 3.060 ppm. In the NOESY experi-
ment, this proton exhibited the effects of chemical exchange with residual water, and NOE
cross-peaks were the opposite sign to pure NOE cross-peaks between other protons in
the metabolite.
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Figure 4. 1H NMR of 2′-hydroxycannabicitran. Solvent peaks and impurities are labeled accordingly.
There was poor resolution between H-8′b and H-4′a as well as H-4′′, H-9′, and H-3′′; therefore, all
subsets were integrated as a group.

The tetracyclic ring system was further verified by protons on C-4′ and C-5′ being
split in the 1H spectra, with protons on C-5′ appearing as multiplets at 1.152 ppm (H-5′b)
and 0.373 ppm (H-5′a). Long range coupling on HMBC displayed differing correlations
with the exception of a correlation to both protons at the C-6′ position representing a
two-bond correlation. This feature has been described previously in a study analyzing
extracted cannabicitran (CBT-C, Figure 1B) [47]. Due to the high structural similarity
between the major metabolite of CBC and CBT-C, we analyzed the 1H- and HSQC NMR
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spectra of CBT-C in ACN-d3 and compared the results to 2′-hydroxycannabicitran, where
the primary difference is the presence of a hydroxylation at the 2′ position (Supplementary
Materials Section S3.4). Taken together, these results showed that the major metabolite
of CBC generated by HLMs using the incubation conditions described above was 2′-
hydroxycannabicitran.

3.4. Molecular Docking Prediction of CB1 and CB2 Receptor Binding

After structural identification, the next step was to determine if the metabolite binds
to CB1 and CB2 receptors and to compare its binding to that of CBC. Simulations were
performed comparing the binding of ∆9-THC, CBC, 2′-hydroxycannabicitran, and CBT-C
to both CB1R and CB2R. Importantly, since natural and synthetic CBC exists as a racemic
mixture of enantiomers [23,37,48–50], we considered the stereospecificity of the ligands
to the orthosteric site and modeled (−)-∆9-THC, (+)-CBC, (−)-CBC, (R)-2′-hydroxy-(+)-
cannabicitran, (S)-2′-hydroxy-(−)-cannabicitran, (+)-CBT-C, and (−)-CBT-C (structures are
available in the Supplementary Materials Section S4.1). We utilized both Standard-Precision
(SP) and Extra-Precision (XP) glide models to rank all ligands according to their docking
scores. The SP model attempts to minimize false negatives by being a more forgiving
function that identifies ligands with a reasonable disposition to bind. Contrastingly, the
XP model attempts to minimize false positives by being a strict function exacting penalties
when violations of established physical chemistry principles are predicted [39]. The SP
model rankings and highlighted residue interactions for CB1R and CB2R are shown in
Tables 3 and 4, respectively. XP model rankings and figures of all ligands in the active site
of CB1R and CB2R are available in the Supplementary Materials (Sections S4.2 and S4.3,
respectively).

Table 3. CB1R (PDB code: 5XR8) SP precision model ligands ranked. Distances were measured based
on the closest atom-to-atom distance between a given residue and the ligand.

Computer
Ranking Ligand Docking Score

Highlighted
Residue-Ligand

Interactions

Distance of
Interaction (Å)

Type of
Interaction

1 (+)-CBC −10.600

Ser505-OH 1.69 H-bond
Phe170-AR 3.70 π–π stacking
Phe170-P 3.70 π–π stacking

Phe268-AR 3.78 π–π stacking
Phe268-P 3.78 π-π stacking

2 (−)-∆9-THC −10.569
Ser505-OH 1.84 H-bond
Phe268-AR 3.75 π–π stacking
Phe170-AR 3.84 π–π stacking

3 (−)-CBC −9.668

Ser505-OH 1.81 H-bond
Phe174-AR 3.33 π–π stacking
Phe268-P 3.46 π–π stacking

Phe268-AR 3.62 π–π stacking
Phe170-AR 3.70 π–π stacking
Phe170-P 3.70 π–π stacking

4 (R)-2′-OH-(+)-cannabicitran −9.254 Ile267-OH 2.49 H-bond

5 (+)-CBT-C −8.345 Phe170-AR 3.38 π–π stacking

6 (−)-CBT-C −7.967
Phe170-AR 3.55 π–π stacking
Phe268-AR 3.55 π–π stacking

7 (S)-2′-OH-(−)-cannabicitran −6.796 Phe170-AR 3.23 π–π stacking

Abbreviation AR indicates aromatic ring and P indicates a pyran-type ring interaction.
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Table 4. CB2R (PDB code: 5ZTY) SP precision model ligands ranked. Distances were measured based
on the closest atom-to-atom distance between a given residue and the ligand.

Computer
Ranking Ligand Docking Score

Highlighted
Residue-Ligand

Interactions

Distance of
Interaction (Å)

Type of
Interaction

1 (+)-CBC −8.545
Phe87-P 3.81 π–π stacking

Phe183-P 3.99 π–π stacking

2 (+)-CBT-C −8.472 - - -

3 (−)-∆9-THC −8.312
Phe87-AR 3.68 π–π stacking

Phe183-AR 3.99 π–π stacking

4 (S)-2′-OH-(−)-cannabicitran −8.042 - - -

5 (−)-CBT-C −7.949 Phe183-AR 3.28 π–π stacking

6 (−)-CBC −7.892
Phe87-P 3.57 π–π stacking

Phe87-AR 3.57 π–π stacking
Phe183-P 4.17 π–π stacking

7 (R)-2′-OH-(+)-cannabicitran −7.810
Ser90-OH 2.67 H-bond

Phe183-AR 3.63 π–π stacking
Phe87-AR 3.91 π–π stacking

Abbreviation AR indicates aromatic ring and P indicates a pyran-type ring interaction.

Interestingly, (+)-CBC was ranked the highest with a docking score of −10.600 at CB1R
(Table 3). The aromatic ring and pyran-type ring each formed π–π stacking with Phe170
and Phe268. In this simulation, a hydrogen bond was formed between the hydrogen of
the phenolic hydroxyl moiety and the oxygen of Ser505, providing further stability of
CBC in the orthosteric site of CB1R. (−)-∆9-THC displayed similar binding to the CB1R,
specifically π–π interactions between the aromatic ring and Phe170 and Phe268, which
corresponds to the previous literature [42]. The hydroxyl group on (−)-∆9-THC had a
hydrogen bond to Ser505 with a slightly longer predicted distance of 1.84 Å compared to
the analogous interaction with (+)-CBC, which measured at 1.69 Å. This slight increase
in hydrogen bond distance and additional π–π stacking justifies (+)-CBC having a higher
docking ranking than (−)-∆9-THC. (−)-CBC was the third-ranking ligand and showed
similar interactions to (+)-CBC with the exception of one additional π–π interaction between
the aromatic ring and Phe174. This residue has been previously described as interacting
with (−)-∆9-THC [51]. The major metabolite of CBC, (R)-2′-hydroxy-(+)-cannabicitran,
and (S)-2′-hydroxy-(−)-cannabicitran did not show particularly strong docking to CB1R.
(R)-2′-hydroxy-(+)-cannabicitran predicted a hydrogen bond from the added hydroxylation
to the δ-carboxylic acid of Ile267. (S)-2′-hydroxy-(−)-cannabicitran was the lowest ranked
of the ligands examined, only showing a single π–π interaction from the aromatic ring to
Phe170. Both stereoisomers of CBT-C displayed low binding affinity with π–π interactions.

Overall, there were fewer interactions between the ligands and the active site of
the CB2R (Table 4). Again, (+)-CBC was ranked the highest, showing π–π interactions
through the pyran-type ring to Phe87 and Phe183. Interestingly, (+)-CBT-C had the second
highest docking score, though no registered interactions. (+)-CBT-C docked deeper in
the orthosteric pocket of CB2R compared to (−)-∆9-THC, which may contribute to its
docking score through potential van der Waals forces between the tetracyclic ring system
and pi groups of the abundant aromatic residues in the orthosteric site. (−)-∆9-THC
also interacted with the same phenylalanine residues as (+)-CBC, but instead through
the aromatic ring, and sat with the tricyclic ring system towards the N-terminus and
alkyl chain residing towards the middle of the receptor. (S)-2′-hydroxy-(−)-cannabicitran
was ranked fourth in the SP precision model with no noted interactions. (R)-2′-hydroxy-
(+)-cannabicitran docked nearly in a mirrored image when compared to the enantiomer,
which may indicate selectivity for one isomer over the other. In the XP model the (S)-2′-
hydroxy-(−)-cannabicitran was ranked first without highlighted interactions, where the
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(R)-2′-hydroxy-(+)-cannabicitran was not ranked. (−)-∆9-THC was ranked second of two
ligands ranked in the XP model displaying a singular π–π interaction between the aromatic
ring and Phe183 (Supplementary Materials Section S4.3).

3.5. In Vitro Interactions at the CB1 and CB2 Receptors

As the docking simulations indicated that the major metabolite of CBC has the po-
tential to interact with CB1 and CB2 receptors, we used a highly purified and structurally
confirmed metabolite to study its interactions with CB1R and CB2R in vitro. The dis-
placement of [3H]CP 55,940 by CBC, 2′-hydroxycannabicitran, CBT-C, ∆9-THC, CP 55,940,
and WIN 55,212 from human recombinant CB1R (Figure 5A) and CB2R (Figure 5B) were
examined. The resulting Ki and Hill slope values are displayed in Table 5. In align-
ment with the previous literature, CBC was shown to bind at CB2R with moderate affin-
ity (Ki 301 ± 72 nM) [16,17]. CBC displayed weak binding affinity to CB1R with a Ki of
3500 ± 1200 nM. 2′-Hydroxycannabicitran did not retain CBC’s binding affinity at either
cannabinoid receptor. CBT-C was able to displace [3H]CP 55,940 from CB2R at high concen-
trations corresponding to a Ki of 4200 ± 410 nM. ∆9-THC was used as a positive control for
both receptor assays. CP 55,940 and WIN 55,212 were included as more selective positive
controls for CB1 and CB2 assays, respectively. Positive controls were included in the assays
for comparison purposes and displayed high affinity to CB1R and CB2R where applicable,
resembling previously reported values [1,30,45,52].
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Table 5. Calculated Ki values (nM) and Hill slopes determined from competitive inhibition binding
assays at CB1R and CB2R. Data shown are the means ± S.E.M. of four to ten experiments.

CB1R CB2R
Ligand Ki (nM) Hill Slope Ki (nM) Hill Slope

CBC 3500 ± 1200 −0.27 ± 0.51 301 ± 72 −1.32 ± 0.36

2′-hydroxycannabicitran >10,000 - >10,000 -

CBT-C >10,000 - 4200 ± 410 −1.15 ± 0.14

∆9-THC 13.2 ± 1.9 −0.73 ± 0.09 22.6 ± 5.0 −0.96 ± 0.16

CP 55,940 1.77 ± 0.32 −0.87 ± 0.18 - -

WIN 55,212 - - 3.9 ± 1.6 −1.07 ± 0.13

4. Discussion

The metabolic pathways of ∆9-THC and CBD have been well established, and both
exhibit phase I oxidative metabolism of hydroxylation at the allylic methyl group on the
cyclohexene moiety. These metabolites remain biologically active [6,7]. Both then undergo
further oxidation and potential phase II conjugation to be eliminated [6,9]. Interestingly,
we did not observe any carboxylic acid metabolites for CBC (Supplemental Materials
Section S1.2), which seems to be in contrast to ∆9-THC metabolism and, to a lesser extent,
CBD metabolism.

Previous research conducted in the early 1990s utilized liver microsomes isolated from
mouse, rat, guinea pig, rabbit, hamster, gerbil, and cat to determine the metabolic profiles
of CBC [32,34]. Harvey and Brown identified various modifications to CBC including
eight hydroxylations, one epoxidation, and one dihydroxylation between all species [34].
Of note, the metabolic profile across different species was highly variable in terms of
relative abundance of the described metabolites. In their later studies, Harvey and Brown
identified structures of eight additional dihydroxylated metabolites in rabbits, adding to
the complexity of CBC metabolism in the investigated model organisms [33]. This group
did not make an attempt to identify human metabolites of CBC. Based on these initial
reports, we sought to utilize comparative and complementary methods to Harvey and
Brown and objectively analyze CBC metabolites generated by HLMs.

The first study to characterize the human hepatic biotransformation of CBC was
conducted by Havlasek et al. Of note, monoglucuronides represented nearly 50% of all
CBC metabolites produced, followed by hydroxylation with 31% [53]. There are several
critical caveats to their work. First, the authors reported the use of CBC that contained
an impurity described as a structural isomer; therefore, caution must be taken when
interpreting the data, particularly when many cannabinoids have identical molecular
formulas, such as CBC, CBT-C, ∆9-THC, and CBD. Second, the authors’ analytical method
confounds chemical species with identical m/z, such as hydroxylations and epoxidations.
While the study was the first to describe human metabolites of CBC, it did not localize the
exact oxidation or conjugation positions.

Recently, Roy et al. identified four CBC metabolites stemming from incubation with
human liver microsomes [35]. They indicated two principal metabolites, 8′-hydroxy-CBC
and 6′, 7′-epoxy-CBC, and two lesser metabolites, 1′′-hydroxy-CBC and 6′, 7′-dihydroxy-
CBC. Incubation parameters, extraction solvent, and analytical methods differed between
their study and the methods reported here, which may have contributed to different identi-
fied metabolites. Therefore, we recapitulated the incubation and extraction methodologies
of Roy et al. and analyzed the data using our analytical methods and observed identical
primary oxidized metabolite profiles between what Roy et al. described and using the
methods in the present study (Supplementary Materials Section S2.1). We utilized our
verified synthetic standard of 2′-hydroxycannabicitran for comparison to the mixture of
CBC incubated with HLMs and confirmed via retention time and MS fragmentation pat-
terns that 2′-hydroxycannabicitran represented the major metabolite using both Roy et al.’s
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and our incubation and extraction protocols. We were able to confirm the presence of 6′,
7′-epoxy-CBC via a unique α-cleavage fragment (exact mass 71.04914 Da) and supporting
fragments (Supplemental Materials Section S2.1). Based on these recapitulation experi-
ments comparing both procedures and workflows, we determined that, most likely, Roy
et al. seem to have selected for minor CBC metabolites based on UV signal wherein the
double-bond of the 2H-pyran ring remains intact and connected to the aromatic ring. Thus,
the major metabolite 2′-hydroxycannabicitran would have been overlooked, despite having
been formed with Roy et al.’s incubation and extraction methods (Supplemental Materials
Section S2.1). Hence, the results of the present study complement those of Roy et al. [35].

We focused on the major primary oxidized metabolite of CBC due to its predomi-
nance in the overlaid extracted ion chromatograms (Figure 2) and total ion chromatogram
(Figure 3A). Using the incubation conditions described above, HLMs metabolized CBC to
several metabolites with +16 Da and +32 Da, indicating the addition of one or two oxygens,
respectively. Among them was said major metabolite with +16 Da that clearly stood out.
We have made no attempt yet to structurally identify any of the other metabolites with
+16 Da and +32 Da other than those already described by Roy et al. [35] (vide supra).
Structural identification of the major CBC metabolite offered several challenges. Previous
studies utilizing HLMs to assess oxidative metabolism generally identified metabolites by
comparing the MS fragmentation patterns of the parent drug with those of the metabolites,
thereby often relying on a combination of ion trap (MSn) and high-resolution mass spec-
trometry [54,55]. However, this strategy was unsuccessful with the major CBC metabolite
identified in the present study. Fragments of said major CBC metabolite and CBC were
similar or showed a loss of water (−18 Da), which made it impossible to determine the
exact location of the metabolic modification. A unique α-cleavage fragment enabled by
the addition of an oxygen molecule was not present in the fragmentation pattern of the
major oxidative metabolite, which may be the reason that the exact position of modification
could not be detected using LC-MS/TOF and MSn (linear Sciex 6500 QTRAP). Therefore,
for the identification of the major metabolite of CBC, we employed a combination of GC-
MS/MS and ultimately NMR spectroscopy. For the NMR experiments, initially, CBC and
its metabolite were dissolved in CDCl3 in alignment with the previous cannabinoid liter-
ature [46,56]. However, it was observed that CDCl3 reacted with the metabolite yielding
halogenation of the metabolite, as confirmed by high-resolution TOF analysis. This analysis
showed a characteristic chlorine isotopic pattern of two peaks representing 35Cl and 37Cl
with a relative intensity of 3:1 with high mass accuracy (Supplementary Materials Sec-
tion S3.1). This reactivity provided further evidence for an epoxide intermediate between
CBC and 2′-hydroxycannabicitran, leading to our hypothesis that CBC was epoxidized
by cytochrome P450 enzymes present in the HLMs. Based on our results, we hypothesize
that the initially produced epoxide is labile due to the presence of a nucleophilic double-
bond, which in a follow up reaction can attack which results in the opening of the epoxide
and, subsequently, forms two new, more stable six-membered ring structures present in
2′-hydroxycannabicitran.

For further confirmation of the metabolite structure, we referred to the detailed analy-
sis of CBT-C in CDCl3 conducted by Wood et al. [47]. This group performed both theoretical
calculations and determined experimental values for 1H and 13C assignments of CBT-C
extracted from hemp extract. The authors note and explain the unique separation of the
protons on C-5′ by quantum mechanical modeling leading to the conclusion the low chemi-
cal shift (reported 0.61 ppm, in CDCl3) was attributed to shielding stemming from vertical
proximity to the phenyl moiety [47]. In the present study, the CBC material used with the
incubation of HLMs did not contain any detectable levels of CBT-C, and therefore we are
confident that the resulting metabolites were generated from CBC and not residual CBT-C.
The verified structure of our newly identified major metabolite of CBC shares significant
homology with CBT-C with the exception of a hydroxylation at the 2′ position as shown by
our NMR analyses, thereby providing further confidence in our structure assignment.
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Overall, in HLMs, we postulate CBC was initially epoxidized and rearranged into
2′-hydroxycannabicitran. The kinetics and potential biological activity of this hypoth-
esized reaction is entirely unknown. However, a similar reaction has been observed
in cannabigerol (CBG) [34,57]. Importantly, epoxidized CBG metabolites after cyclic re-
arrangement have been shown to be bioactive, showing anti-inflammatory activity in
microglia cells [58]. Roy et al. investigated the potential for anti-inflammatory activity
of their aforementioned CBC metabolites and determined 6′, 7′-dihydroxy-CBC to favor
an anti-inflammatory phenotype by a reduction in nitric oxide production in microglia
following lipopolysaccharide challenge to induce an inflammatory response. Contrastingly,
8′-hydroxy-CBC was pro-inflammatory by the same metric [35].

To date, no studies have been published that explore the potential biological activity
of CBC metabolites to CB1R and CB2R; therefore, in a first step, we employed in silico
molecular docking. The binding pocket of CB1R is known to be rather plastic [59], thus
explaining large ligand tolerance of the explored cannabinoids in the orthosteric site.
Between the two receptors, (+)-CBC was ranked the highest in docking scores. No other
stereospecific patterns were discernable between the remaining ligands tested. There were
fewer overall predicted interactions of the ligands at the CB2R, but (S)-2′-hydroxy-(−)-
cannabicitran was ranked surprisingly high despite not boasting any noted hydrogen
bonds or π–π stacking. However, in in vitro competitive inhibition binding assays, 2′-
hydroxycannabicitran showed no binding affinity to CB1R or CB2R. The metabolite is
comprised of a rather bulky tetracyclic three-dimensional structure, which may contribute
to steric hindrance in displacing [3H]CP 55,940 from the orthosteric site of CB1R or CB2R. It
is known that ligands of CB1R, such as anandamide and (−)-∆9-THC, access the binding
pocket of the receptor by entering via the plasma membrane and pass through residues
Phe174 and Phe177 by forming π–π interactions [60]. While we did observe some of these
interactions in other ligands tested, the molecular docking experiments do not consider
these more dynamic processes and may explain the discrepancies between the results of
molecular docking and in vitro competitive binding assays observed in the present study.
Novelly, from our in vitro assays, we identified that CBT-C weakly binds to CB2R, but does
not significantly bind to CB1R. A key finding was that 2′-hydroxycannabicitran does not
bind to CB1R or CB2R, so any potential biologic activity would occur at other yet-to-be-
determined receptors. Importantly, the binding assays used in the present study do not
access allosteric modulation and do not capture potential pharmacodynamics relationships
between cannabinoids, metabolites, and receptors.

5. Conclusions

Here, we describe for the first time the structure of the major metabolite of CBC re-
sulting from oxidative metabolism by human liver microsomes and its interaction with
CB1 and CB2 receptors. We determined that said primary oxidized metabolite is 2′-
hydroxycannabicitran and confirmed its structure via NMR spectroscopy. Further research
is needed to establish additional fundamental aspects of CBC metabolism including identifi-
cation of other phase I-oxidized (+16 Da and +32 Da) metabolites, phase II metabolites, and
determination of the clinical pharmacokinetics of CBC and its metabolites. Furthermore,
the activity of CBC and CBC metabolites on targets other than CB1R and CB2R that may
have therapeutic merit, such as the TRP family of receptors, still needs to be assessed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14060329/s1, Supplemental Materials S1.1 Experimental
Design Flowchart, S1.2 Optimization of CBC HLM Incubation Parameters, S1.3 Isolation of Upscaled
CBC Metabolites Generated by HLMs, S1.4 Isolation of Fractions after Incubation of CBC with
Hydrogen Peroxide, S1.5 CBC Major Metabolite Identified via GC-MS/MS, S2.1 Recapitulation and
Comparison to Roy et al., S3.1 Purity of 2′-hydroxycannabicitran, S3.2 Cannabichromene NMR
Experiments, S3.3 2′-hydroxycannabicitran NMR Experiments, S3.4 Cannabicitran and Overlay
NMR Experiments, S4.1 Structures Imported for Molecular Docking, S4.2 Cannabinoid 1 Receptor
Molecular Docking, and S4.3 Cannabinoid 2 Receptor Molecular Docking.
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