Explainable AI to Facilitate Understanding of Neural Network-Based Metabolite Profiling Using NMR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Generation and Neural Network Training
2.2. XAI Implementation and Validation
2.3. XAI in Experimentally Acquired Lipid Spectra
3. Results
3.1. XAI with Simulated Aqueous Spectra
3.2. XAI with Experimental Lipid Spectra
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagana Gowda, G.A.; Raftery, D. Overview of NMR Spectroscopy-Based Metabolomics: Opportunities and Challenges. In NMR-Based Metabolomics; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2019; Chapter 1; pp. 3–14. [Google Scholar] [CrossRef]
- Dumez, J.-N. NMR methods for the analysis of mixtures. Chem. Commun. 2022, 58, 13855–13872. [Google Scholar] [CrossRef] [PubMed]
- Giraudeau, P. Quantitative NMR spectroscopy of complex mixtures. Chem. Commun. 2023, 59, 6627–6642. [Google Scholar] [CrossRef] [PubMed]
- Hatzakis, E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 18, 189–220. [Google Scholar] [CrossRef] [PubMed]
- Barrilero, R.; Gil, M.; Amigó, N.; Dias, C.B.; Wood, L.G.; Garg, M.L.; Ribalta, J.; Heras, M.; Vinaixa, M.; Correig, X. LipSpin: A New Bioinformatics Tool for Quantitative 1H NMR Lipid Profiling. Anal. Chem. 2018, 90, 2031–2040. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.L.; Rout, M.; Mandal, R.; Wishart, D.S. Automated identification and quantification of metabolites in human fecal extracts by nuclear magnetic resonance spectroscopy. Magn. Reson. Chem. 2023, 61, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Hiltunen, Y.; Heiniemi, E.; Alakorpela, M. Lipoprotein-Lipid Quantification by Neural-Network Analysis of 1H-NMR Data from Human Blood Plasma. J. Magn. Reson. Ser. B 1995, 106, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Kern, S.; Liehr, S.; Wander, L.; Bornemann-Pfeiffer, M.; Müller, S.; Maiwald, M.; Kowarik, S. Artificial neural networks for quantitative online NMR spectroscopy. Anal. Bioanal. Chem. 2020, 412, 4447–4459. [Google Scholar] [CrossRef] [PubMed]
- van der Velden, B.H.M.; Kuijf, H.J.; Gilhuijs, K.G.A.; Viergever, M.A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef] [PubMed]
- Letzgus, S.; Wagner, P.; Lederer, J.; Samek, W.; Muller, K.-R.; Montavon, G. Toward Explainable Artificial Intelligence for Regression Models: A methodological perspective. IEEE Signal Process. Mag. 2022, 39, 40–58. [Google Scholar] [CrossRef]
- Xing, J.; Sieber, R. The challenges of integrating explainable artificial intelligence into GeoAI. Trans. GIS 2023, 27, 626–645. [Google Scholar] [CrossRef]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. arXiv 2017, arXiv:1703.01365. [Google Scholar] [CrossRef]
- Amiel, A.; Tremblay-Franco, M.; Gautier, R.; Ducheix, S.; Montagner, A.; Polizzi, A.; Debrauwer, L.; Guillou, H.; Bertrand-Michel, J.; Canlet, C. Proton NMR Enables the Absolute Quantification of Aqueous Metabolites and Lipid Classes in Unique Mouse Liver Samples. Metabolites 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.; Puppa, M.; van der Merwe, M.; Tipirneni-Sajja, A. Rapid and automated lipid profiling by nuclear magnetic resonance spectroscopy using neural networks. NMR Biomed. 2023, 36, e5010. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, C.; Johnson, H.; Sharma, S.; Son, W.; Puppa, M.; Rohani, S.N.; Tipirneni-Sajja, A.; Bloomer, R.J.; van der Merwe, M. Early Time-Restricted Feeding Amends Circadian Clock Function and Improves Metabolic Health in Male and Female Nile Grass Rats. Medicines 2022, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Mamalakis, A.; Barnes, E.A.; Ebert-Uphoff, I. Carefully Choose the Baseline: Lessons Learned from Applying XAI Attribution Methods for Regression Tasks in Geoscience. Artif. Intell. Earth Syst. 2023, 2, e220058. [Google Scholar] [CrossRef]
- Human Metabolome Database: Showing Metabocard for Oleic Acid (HMDB0000207). Available online: https://hmdb.ca/metabolites/HMDB0000207 (accessed on 24 April 2024).
- Ntambi, J.M.; Miyazaki, M. Recent insights into stearoyl-CoA desaturase-1. Curr. Opin. Lipidol. 2003, 14, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Gad, M.Z. Omega-9 fatty acids: Potential roles in inflammation and cancer management. J. Genet. Eng. Biotechnol. 2022, 20, 48. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, H.; Tipirneni-Sajja, A. Explainable AI to Facilitate Understanding of Neural Network-Based Metabolite Profiling Using NMR Spectroscopy. Metabolites 2024, 14, 332. https://doi.org/10.3390/metabo14060332
Johnson H, Tipirneni-Sajja A. Explainable AI to Facilitate Understanding of Neural Network-Based Metabolite Profiling Using NMR Spectroscopy. Metabolites. 2024; 14(6):332. https://doi.org/10.3390/metabo14060332
Chicago/Turabian StyleJohnson, Hayden, and Aaryani Tipirneni-Sajja. 2024. "Explainable AI to Facilitate Understanding of Neural Network-Based Metabolite Profiling Using NMR Spectroscopy" Metabolites 14, no. 6: 332. https://doi.org/10.3390/metabo14060332
APA StyleJohnson, H., & Tipirneni-Sajja, A. (2024). Explainable AI to Facilitate Understanding of Neural Network-Based Metabolite Profiling Using NMR Spectroscopy. Metabolites, 14(6), 332. https://doi.org/10.3390/metabo14060332