Making a decision tree Using the random forest for prediction
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Supplementary Figure S1. A simplified explanation of the random forest model applied to protein-level data for the classification of participants into responders (R) and non-responders (NR).
Our model was trained on baseline plasma protein levels alongside known response outcomes in one data set, and then tested on another data set. (A) To illustrate the concept, first a decision tree
is made. In this example decisions are made based on a threshold for protein levels for “Protein 2”. The horizontal line indicates the cut-off value where we decide that if a person has a protein level
above this cut-off the person is a responder, but if it is below the cut-off, the person is non-responder. (B) The decision trees can me more intricate, so in this example decisions are made based on
thresholds for two proteins; “Protein 1” and “Protein 2”. (C) In reality, a decision tree is usually very complex and includes several proteins. (D) Research has shown that instead of using only one
large decision tree, it is usually better to make many smaller decision trees. Meaning that many decision trees are made from a random subset of proteins. Since the proteins are chosen at
random, and we construct many decision tress, this technique is called “random forest”. (E) When the random forest is constructed from a data set, the model can be used to make predictions on
other data sets. Here, the random forest model processes the protein levels from a new participant with an unknown response outcome. Each decision tree independently classifies the

participant as either a responder or non-responder. The outcomes from all decision trees are aggregated, and the classification receiving the majority of votes is assigned as the final predicted
response for the participant.
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Supplementary Figure S2. Muscle mRNA levels associated with oxidative phosphorylation between
non-responders (black) and responders (white) pre-training. *p<0.05. RPKM = Reads per kilobase per
million mapped reads,
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Supplementary Figure S3. Variable importance (VIP) for the proteins used by the Al
(random forest) algorithm. VIP refers to a measure that indicates how much each protein
contributes to the prediction accuracy of the model. Random forest, being an ensemble
learning method that operates by constructing a multitude of decision trees at training
time and outputting the class that is the mode of the classes of the individual trees, relies
on the contribution of each protein to improve its prediction.
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Supplementary Figure S4. Vulcano plots of baseline serum
protein levels and associations with change scores in glucose
infusion rate (A), VO2max (B), chest press strength (C), pull
down strength (D) and leg press strength (E).



# Genes
in
Overlap
(k)
HALLMARK_IL6_JAK_STAT3_SIGNALING [87] Genes up-regulated by IL6 13

[GenelD=3569] via STAT3
[GenelD=6774], e.g.,
during acute phase
response.

Gene Set Name [# Genes (K)] Description k/K p-value ] FDRg-value

5.33 ¢’15 2.66 13

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSI Genes defining epithelial- 15
NSITION [200] mesenchymal transition, as

in wound healing, fibrosis

and metastasis.

1.33 e’12 3.33 ¢l

HALLMARK_COAGULATION [138] Genes encoding 9
components of blood
coagulation system; also
up-regulated in platelets.

HALLMARK_IL2_STAT5_SIGNALING [199] Genes up-regulated by 10
STATS in response to IL2
stimulation.

1.48 e/ 2.47 e

3.43 ¢’ 2.99 6

HALLMARK_COMPLEMENT [200] Genes encoding 10
components of the
complement system, which
is part of the innate
immune system.

HALLMARK_MYOGENESIS [200] Genes involved in 10
development of skeletal
muscle (myogenesis).

HALLMARK_APOPTOSIS [161] Genes mediating 9
programmed cell death
(apoptosis) by activation of
caspases.

3.59 e’/ 2.99 e

3.59 e’/ 2.99 e®

5.48 e’/ 3.92 ¢

HALLMARK_ALLOGRAFT_REJECTION [200] Genes up-regulated during 9
transplant rejection.

3.31e® 1.51e5

HALLMARK_HYPOXIA [200] Genes up-regulated in 9
response to low oxygen
levels (hypoxia).

3.31¢® 1.51 e

HALLMARK_INFLAMMATORY_RESPONSE [200] Genes defining 9
inflammatory response.

3.31¢e° 1.51e5

Supplementary Figure S5. All pathways associated with serum proteins showing an impaired response to
12 weeks of exercise in non-responders.



