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Abstract: Intratumoral heterogeneity (ITH) complicates the diagnosis and treatment of glioma, partly
due to the diverse metabolic profiles driven by underlying genomic alterations. While multiparamet-
ric imaging enhances the characterization of ITH by capturing both spatial and functional variations,
it falls short in directly assessing the metabolic activities that underpin these phenotypic differences.
This gap stems from the challenge of integrating easily accessible, colocated pathology and detailed
genomic data with metabolic insights. This study presents a multifaceted approach combining stereo-
tactic biopsy with standard clinical open-craniotomy for sample collection, voxel-wise analysis of MR
images, regression-based GAM, and whole-exome sequencing. This work aims to demonstrate the
potential of machine learning algorithms to predict variations in cellular and molecular tumor charac-
teristics. This retrospective study enrolled ten treatment-naïve patients with radiologically confirmed
glioma. Each patient underwent a multiparametric MR scan (T1W, T1W-CE, T2W, T2W-FLAIR, DWI)
prior to surgery. During standard craniotomy, at least 1 stereotactic biopsy was collected from each
patient, with screenshots of the sample locations saved for spatial registration to pre-surgical MR data.
Whole-exome sequencing was performed on flash-frozen tumor samples, prioritizing the signatures
of five glioma-related genes: IDH1, TP53, EGFR, PIK3CA, and NF1. Regression was implemented
with a GAM using a univariate shape function for each predictor. Standard receiver operating charac-
teristic (ROC) analyses were used to evaluate detection, with AUC (area under curve) calculated for
each gene target and MR contrast combination. Mean AUC for five gene targets and 31 MR contrast
combinations was 0.75 ± 0.11; individual AUCs were as high as 0.96 for both IDH1 and TP53 with
T2W-FLAIR and ADC, and 0.99 for EGFR with T2W and ADC. These results suggest the possibility of
predicting exome-wide mutation events from noninvasive, in vivo imaging by combining stereotactic
localization of glioma samples and a semi-parametric deep learning method. The genomic alterations
identified, particularly in IDH1, TP53, EGFR, PIK3CA, and NF1, are known to play pivotal roles in
metabolic pathways driving glioma heterogeneity. Our methodology, therefore, indirectly sheds light
on the metabolic landscape of glioma through the lens of these critical genomic markers, suggesting
a complex interplay between tumor genomics and metabolism. This approach holds potential for
refining targeted therapy by better addressing the genomic heterogeneity of glioma tumors.

Keywords: multiparametric MRI; intratumoral heterogeneity; machine learning; brain tumor;
stereotactic biopsy
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1. Introduction

Increasing mortality rates associated with brain tumors have highlighted a critical
need for advancements in both diagnostic and therapeutic approaches [1]. The conven-
tional diagnosis procedure involves pre-surgical imaging and one biopsy sample to assess
cellular and molecular properties [2]. This approach enables subsequent optimization
of chemotherapy and radiation treatments based on patient-specific mutation profiles.
However, the nuanced interplay of genomic alterations and metabolic reprogramming
within the tumor microenvironment emerges as a critical consideration. These alterations
not only drive genomic instability, a key factor in tumor heterogeneity [3] but also promote
distinct metabolic phenotypes within clonal cell populations [4]. Such metabolic shifts,
influenced by genetic mutations in key oncogenes and tumor suppressor genes, including
IDH1, TP53, EGFR, PIK3CA, and NF1 [5], significantly contribute to ITH by fostering an
environment conducive to tumor progression and resistance to therapy [6]. Furthermore, a
growing body of both basic and clinical evidence has demonstrated that the somatic and
genomic composition of human brain tumors is not uniform across space and time [7].
This phenomenon, referred to as intratumoral heterogeneity (ITH), can compromise the
accuracy of results obtained from conventional surgical biopsy, potentially rendering sub-
sequent molecular characterizations incorrect. Though genomic instability is the primary
driver of tumor heterogeneity [8], clonal cell subpopulations show plasticity, shifting be-
tween cell states [9]. Their proliferation potential is influenced not only by their genetic
composition but also by epigenetic factors like DNA methylation and changes in histone
structures [10]. ITH can exist as variability in the gene, transcript, or protein levels of
distinct cell subpopulations—macroheterogeneity, Figure 1B—or within the cells belonging
to the same subpopulation—microheterogeneity [8], Figure 1C. The proliferation capacity
of clonal cell subpopulations is modulated not only by their genetic constitution but also
by metabolic changes driven by these genetic alterations [4]. Epigenetic alterations, such
as DNA methylation and histone modifications, amplify this intricacy by modifying gene
expression independently of the changes in the DNA sequence. These epigenetic changes
impact tumor cell metabolism, thereby contributing to heterogeneity on both macroscopic
and microscopic scales [11]. Therefore, not all the present mutations and expression path-
ways in the tumor microenvironment (TME) will be identified in the pathology analysis of
a conventionally collected single biopsy sample. To overcome this limitation, a noninvasive
tool to assess cellular and molecular tissue characteristics across the entire tumor bed and
TME is essential.

MRI (magnetic resonance imaging) is the standard presurgical imaging procedure for
brain tumors, serving as a noninvasive, multipurpose diagnosis and treatment planning
tool [12]. The adoption of MRI was initially driven by its superior contrast resolution in
neuroimaging [13]. Now, beyond rendering intricate anatomical and functional insights,
it plays a central role in obtaining detailed molecular and cellular characteristics of brain
tumors [12]. Combining manifold MRI sequences, known as mpMR (multiparametric mag-
netic resonance), enables simultaneous assessment of anatomical, functional, and cellular
information from the tumor in only one imaging session. A standard brain MRI, with and
without contrast, provides morphological and pathophysiological information about the
brain tumor, such as edema and necrosis. Integrating MR-derived tumor characteristics
with genetic data from biopsy sample analyses using machine learning techniques intro-
duces a promising approach to effectively address the ITH. The foundational hypothesis of
this study suggests that, through such integration, a model can be constructed to navigate
the heterogeneity challenge, mapping underlying somatic and genomic aberrations with
MR imaging signatures.
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Figure 1. ITH in a solid brain tumor and MRI-guided stereotactic biopsy overlaid on a T1W MR 
image. (A). A solid brain tumor outlined by a yellow border, comprising four distinct cell subpop-
ulations (in red, blue, green, and purple) with associated inflammation in pink. (B). Macroheteroge-
neity within cell subpopulations, displaying reduced cytoplasm and enlarged nuclei in some cells. 
(C). Microheterogeneity among tumor cells of the same subpopulations. (D). The pituitary tweezer 
is used for stereotactic biopsy. (E). The tumor sample volume is represented as a sphere, centered 
on the biopsied location, including two cell populations (blue and green). (ITH: intratumoral heter-
ogeneity; MRI: magnetic resonance imaging; T1W: T1-weighted; MR: magnetic resonance). 

In a prior retrospective study [14], the potential to predict mutational heterogeneity 
by utilizing a multiparametric MR-based machine learning algorithm in conjunction with 
advanced geometric modeling and random field theory was demonstrated. Notably, this 
initial cohort included a broad spectrum of brain diagnoses, not solely gliomas, and the 
genetic data was sourced from standard clinical pathology techniques, such as H&E stain-
ing and immunohistochemistry, limiting its depth and scope. 

The purpose of this current study was to extend our previous work in a population 
of pure glioma subjects. Data were collected from the routine mpMR imaging acquired as 
a standard of care for each patient. During surgical intervention, at least one stereotactic 
tumor biopsy sample was collected prospectively, with the research team meticulously 
documenting the resection coordinates based on presurgical MR images. Immediately af-
ter collection, these samples were flash-frozen in the surgical suite and prepared for sub-
sequent whole exome sequencing (WES). Subsequently, a semiparametric machine learn-
ing model was built using the MR signals as predictors and genetic data as outcomes. 

In forthcoming sections, we present a detailed methodology offering a potential ave-
nue for understanding the complexities of tumor heterogeneity. 

2. Methods 
2.1. Protocol Approval 

The Indiana University Institutional Review Board (IRB) approved and monitored 
this study in accordance with the requirements outlined in US 20 CFR Part 431 [15]. This 
study presented no more than minimal risk to patients and thus qualified for expedited 
IRB review under categories two and five that specify “Research involving materials (data, 

Figure 1. ITH in a solid brain tumor and MRI-guided stereotactic biopsy overlaid on a T1W MR image.
(A). A solid brain tumor outlined by a yellow border, comprising four distinct cell subpopulations (in
red, blue, green, and purple) with associated inflammation in pink. (B). Macroheterogeneity within
cell subpopulations, displaying reduced cytoplasm and enlarged nuclei in some cells. (C). Micro-
heterogeneity among tumor cells of the same subpopulations. (D). The pituitary tweezer is used
for stereotactic biopsy. (E). The tumor sample volume is represented as a sphere, centered on the
biopsied location, including two cell populations (blue and green). (ITH: intratumoral heterogeneity;
MRI: magnetic resonance imaging; T1W: T1-weighted; MR: magnetic resonance).

In a prior retrospective study [14], the potential to predict mutational heterogeneity
by utilizing a multiparametric MR-based machine learning algorithm in conjunction with
advanced geometric modeling and random field theory was demonstrated. Notably, this
initial cohort included a broad spectrum of brain diagnoses, not solely gliomas, and the
genetic data was sourced from standard clinical pathology techniques, such as H&E staining
and immunohistochemistry, limiting its depth and scope.

The purpose of this current study was to extend our previous work in a population
of pure glioma subjects. Data were collected from the routine mpMR imaging acquired as
a standard of care for each patient. During surgical intervention, at least one stereotactic
tumor biopsy sample was collected prospectively, with the research team meticulously
documenting the resection coordinates based on presurgical MR images. Immediately
after collection, these samples were flash-frozen in the surgical suite and prepared for
subsequent whole exome sequencing (WES). Subsequently, a semiparametric machine
learning model was built using the MR signals as predictors and genetic data as outcomes.

In forthcoming sections, we present a detailed methodology offering a potential
avenue for understanding the complexities of tumor heterogeneity.

2. Methods
2.1. Protocol Approval

The Indiana University Institutional Review Board (IRB) approved and monitored
this study in accordance with the requirements outlined in US 20 CFR Part 431 [15]. This
study presented no more than minimal risk to patients and thus qualified for expedited
IRB review under categories two and five that specify “Research involving materials (data,
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documents, records, or specimens) that have been collected, or will be collected solely for
non-research purposes (such as medical treatment or diagnosis). (NOTE: Some research
in this category may be exempt from the HHS regulations for the protection of human
subjects. 45 CFR 46.101(b)(4)”) [16].

Given that the data collected included protected health information (PHI), appropriate
measures were taken to protect subject privacy and confidentiality, including anonymizing
all image and clinical data, storing data in secure and redundant institutional storage,
and appropriately controlling and restricting access to data. All procedures, methods,
and experiments performed in this study were carried out in accordance with relevant
guidelines and regulations, including the Declaration of Helsinki and the HIPAA Privacy
Rule. This study was not listed on CinicalTrials.gov, and no part of the dataset presented
here has been used or published in the past.

2.2. Study Population

Ten patients (mean age, 47.0 ± 17.7 years; age range, 25–71 years; seven males and
three females) with radiologically diagnosed primary glioma grade II to IV according to the
current WHO criteria [17] (5 WHO grade IV, 5 WHO grade II) were included in this study.
One patient had a recurring diffuse astrocytoma grade II; all other enrolled subjects were
treatment naïve. All subjects enrolled were scheduled for surgical resection of their brain
tumor. Each patient had a tumor of sufficient size to guarantee the acquisition of at least one
biopsy sample during the surgical procedure. As a part of their standard of care, all patients
underwent a clinical multiparametric MR scan within 27.9 ± 34.0 days prior to surgery.
Table 1 presents details of the patient cohort. Figure S1 in the Supplementary Materials
displays a raincloud plot of the distribution of age, gender, pathological diagnosis, and
the range of days between MRI session and surgery, ensuring clear comprehension of the
demographic characteristics of the cohort.

Table 1. Patient demographics and cohort.

Total patients 10 Radiologic diagnosis 10 WHO grade II-IV glioma

Male 7 Pathologic diagnosis 5 glioblastoma, 2 oligodendroglioma
(grade II), 3 astrocytoma (grade II)

Age (mean ± STDV) 47.0 ± 17.7 years ∆SX−IMG (mean ± STDV) 27.9 ± 34.0 days
Age range 25–71 years RSX−IMG 0–96 days
Oncologic status 10 primary Number of samples (mean ± STDV) 1.8 ± 0.4

∆SX−IMG : The average days between MRI session and surgery for all patients. RSX−IMG : The range of days
between MRI session and surgery for all patients. (STDV: standard deviation; WHO: world health organization).

2.3. Biopsy Sampling and Analysis

Biopsy specimens, with a median size of 4.8 cm3, were acquired by the clinical neuro-
surgeon (ACG) before initiating complete tumor resection. With the patient under general
anesthesia and their head stabilized in a three-point head holder, a craniotomy was per-
formed, guided by a frameless stereotactic system. Upon tumor exposure, ACG selected
the biopsy location based on areas highlighted by fluorescein fluorescence [18]. Prior to
sample collection, the neurosurgeon positioned the pituitary forceps on the target site
(Figure 1D). Concurrently, research staff in the operating room captured a screenshot from
the stereotactic software (Medtronic Synergy Cranial v2.2.7), ensuring accurate recording of
resection coordinates on the presurgical MR images. This method is the least disruptive to
the patient’s surgery but is known to be highly operator-dependent. Misregistration errors
between the tumor tissue locations in the presurgical MR and the placement of the forceps
by the surgeon have been shown in previous studies to result in errors of 2.4 ± 1.7 mm [19].

Following collection, each biopsy sample was immediately flash-frozen in the op-
erating room using liquid nitrogen to preserve genetic integrity. Subsequently, genomic
DNA extraction was performed from each sample, yielding a minimum of 500 ng of DNA,
utilizing the QIAamp DNA Micro Kit (QIAGEN, Germantown, MD, USA). The purity
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of the extracted DNA was assessed using a NanoDrop Microvolume Spectrophotometer
(Thermo Fisher Scientific, Houston, TX, USA), while its concentration was quantified using
Qubit. The purified DNA underwent whole-exome sequencing (WES) targeting a depth
of 100× by the Center for Applied Genomics (CAG) at CHOP. For sequencing, the Core
Exome Capture Kit (TWIST Bioscience, South San Francisco, CA, USA) was employed. Each
quality-controlled library was sequenced on an Illumina NovaSeq6000 (V1.5) platform, em-
ploying paired-end mode with a read length of 2 × 150 base pairs, achieving an approximate
coverage depth of 60× per sample. The acquired data were subsequently demultiplexed
using the Illumina DRAGEN Bio-IT Platform (v3.6.3). Alignment of the generated FASTQ
files against the Homo sapiens (GRCh37.75) reference was carried out using the DRAGEN
pipeline [20], incorporating the Smith-Waterman Alignment Scoring algorithm. Germline
variant calling for single-nucleotide variants (SNVs) and insertion/deletion variations were
performed, followed by somatic variant calling using a tumor-only protocol within the
DRAGEN pipeline, excluding any germline variants. Variant Call Format (VCF) files [21]
were then filtered to focus on variants within a predetermined list of eight genes associated
with glioma, as detailed in our previous work [5]. Further analysis revealed a significant
imbalance in three gene targets—PTEN, PIK3R1, and RB1—with only one positive patient
identified for each, as outlined in Table S1 in the Supplementary Materials. The entire
process, from DNA extraction to variant filtering, is schematically represented in Figure 2.

2.4. MR Data Collection and Analysis

The multiparametric MRI sessions conducted as part of standard care prior to each
patient’s biopsy were identified. These sessions typically included at least five common clin-
ical MR contrasts: T1-weighted (T1W), T1-weighted with contrast enhancement (T1W-CE),
T2-weighted (T2W), fluid-attenuated inversion recovery (FLAIR) [20,21], and diffusion-
weighted imaging (DWI) to produce apparent diffusion coefficient (ADC) maps, providing
both anatomical and functional information. These five MR datasets were downloaded
from local imaging centers for each patient. Due to clinical protocol variations, two patients
were imaged using the T2W-CE sequence in place of T2W.

All scans were conducted using a head−neck coil. Imaging for seven patients was
performed using a 1.5 T MRI scanner, with scans conducted on five patients using Siemens
machines (Siemens Healthineers, Erlangen, Germany) and two patients using GE machines
(GE HealthCare, Chicago, IL, USA). Additionally, two patients underwent imaging with a
3.0 T Siemens, and the session for one patient was split between a 1.5 T Siemens scanner
and a 3.0 T Toshiba scanner over two consecutive days. Detailed information regarding the
types of scanners used and the MR contrast acquired from each subject is provided in Table
S2 in the Supplementary Materials.

Quantitative image signals of T1W, T2W (or T2W-CE), T2W-FLAIR, and ADC maps were
directly extracted from clinical images. All imaging data were then co-registered to the
T1W-CE frame-of-reference with a voxel size of 1 mm3. This spatial co-registration process
was conducted for each patient using the FMRIB Linear Image Registration Tool (FLIRT) [22,
23]. A 12-degree-of-freedom (DOF) cross-correlation objective function was employed
for T1W and T2W-FLAIR registration [23], while a 12-DOF mutual information objective
function for T2W and DWI (only B0) registration [24]. The ADC map for each patient was
then aligned with their T1W-CE frame-of-reference using the affine transformation matrix
estimated for the DWI B0 images.

Utilizing an automated white matter extraction tool [25–27], all images from the five
contrasts were normalized to the mean signal of an uninvolved Normal Appearing White
Matter (NAWM) region on the T1W-CE image. The volume of tissue noted in the pathology
report was used to draw an equal volume sphere on the T1W-CE image, centered on the
location where the stereotactic biopsy was marked on three-plane, neuro-navigation MR
plans during surgery. This method ensured that the feature matrix and subsequent machine
learning model were exclusively limited to the image voxels associated with the resected
tissue, as shown in Figure 1E.
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Figure 2. Schematic representation of the biopsy analysis pipeline with whole-exome sequencing
(WES) and subsequent bioinformatic analysis. Time estimates for each step are indicated along the
vertical axis.

2.5. Statistical Analysis

To investigate the predictive power of MRI imaging signatures for the mutational
status of glioma genomic targets, a generalized additive model (GAM) was developed for
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regression analysis [28]. GAM, a semi-parametric ensemble machine learning technique,
was chosen over less flexible models like generalized linear models (GLMs) better to
capture nonlinear and complex relationships [29]. In order to prioritize interpretability,
more complex models, such as neural networks, were not chosen. This approach allows for
insights into local predictor contributions and ensures transparent results.

Figure 3 displays the flowchart of the data analysis process, beginning with the
creation of the feature matrix and ending with testing the model’s performance. In Step
1, a sample feature matrix is formulated comprising mpMR signatures as independent
variables and binary class indicators representing the mutation status of target genes as
dependent variables for each subject. The data corresponding to each voxel makes up
a row of this matrix. Each row of these matrices represents the data corresponding to a
voxel. Depending on the volume of the biopsy sample, each subject’s matrices included
MR signatures acquired from an average of 10,725 to up to 31,463 voxels per contrast.
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To analyze the impact of combined MR contrasts as predictors alongside each contrast
separately, we prepared a total of 31 feature matrices categorized into five groups based on
the number of contrasts: single, double, triple, quadruple, and quintuple (or all contrasts).
Step 2 in Figure 3 provides an architectural visualization of gradient boosting in GAM as
a sequential ensemble, using an example of triple contrast (T1W, T2W-FLAIR, and ADC)
for predicting EGFR mutation status. The general form of a GAM can be expressed with a
univariate shape function [30]:

y = f1(x1) + f2(x2) + . . . + fn(xn) + c (1)

Here, y is the response variable, fn(xn) is the univariate shape function (a boosted tree
for a linear term for the predictor xn), and c is the intercept. The response variable y follows
a normal distribution with a mean µ and standard deviation σ. This model was fitted to
the dataset using the “fitrgam” function available in the Statistics and Machine Learning
Toolbox of MATLAB R2022a (MathWorks, Natick, MA, USA) [31]. This function fits a GAM
using a gradient boosting algorithm, which incorporates weak learners, typically presented
by decision stumps. At each step, the ensemble fits a new learner to the difference between
the observed response and the aggregated prediction of all learners grown previously,
aiming to minimize mean-squared error (Step 2 in Figure 3). Deviance, D, is a generalization
of the residual sum of squares, is used to measure the goodness of model fit, and is
calculated as [32]:

D = −2
(
logL − logLs

)
(2)

where L and Ls are the likelihoods of the fitted and saturated model, respectively. During its
iterations, GAM identifies a learning rate (η) to reduce the deviance (D) for every observed
response (yi).

We conducted a total of 1550 machine learning experiments, encompassing 31 distinct
combinations of five MR contrasts, evaluated against five gene targets for all 10 patients
(31 × 5 × 10). For each iteration, the training feature matrix was constructed using both
imaging and genetic data from nine patients, reserving the tenth for the test feature matrix.
This leave-one-patient-out methodology [33] ensured that every patient, across all 10
individuals, was singularly used as the test subject once, guaranteeing no overlap between
training and testing data in any iteration.

For the last step (Step 3 in Figure 3), to test the performance of this model, standard
receiver operating characteristic (ROC) analyses were applied to every combination for
each genetic target. For each iteration, the true positive rate (TPR), false positive rate (FPR)
values and accuracy (ACC) at FPR of 0.2 were calculated using the following equations:

TPR =
True Positives (TP)

False Negatives (FN) + True Positives (TP)
(3)

FPR =
False Positives (FP)

True Negatives (TN) + False Positives (FP)
(4)

ACC =
TP + TN

TP + TN + FP + FN
(5)

To enhance the robustness of the ROC, a maximum threshold of 0.05 was employed, and
the standard error of the mean (SEM) was calculated for each threshold using Equation (6):

SEM =

√
∑N

i (xi − x)2

N(N − 1)
(6)
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where N is the number of iterations, xi is the ith measurement and x is the mean value of
the dataset. The area under the curve (AUC) of each ROC was measured using Equation
(7):

AUC ≈ 1
2 ∑n−1

i=1 (FPRi+1 − FPRi).(TPRi + TPRi+1) (7)

where n is the number of thresholds and F/TPRi and F/TPRi+1 are the rates at adjacent
thresholds. The SEM was calculated for AUC scores over all the iterations for each unique
contrast combination per mutational target. Standard one-way ANOVA (analysis of vari-
ance) was performed for AUC comparison using the “anova1” function available in the
Statistics and Machine Learning Toolbox of MATLAB R2022a (MathWorks, Natick, MA,
USA) [31].

3. Results

In this work, the ability of individual MR contrasts to predict genomic features in
glioma was assessed by conducting ROC analyses. The observed average ACC values for
FPR of 0.2 ranged between 0.71 and 0.83, indicative of statistical robustness. The AUC
scores for each of the 31 combinations pertaining to each genetic target are detailed in
Figures S2–S6 in the Supplementary Materials. Figure 4 displays the predictor combinations
yielding the highest mean AUC scores within each group for each mutation status with
their SEM (standard error of the mean) bars indicated. This figure highlights the variations
in mean AUC scores upon the inclusion of additional contrasts as predictors. Particularly,
T1W and ADC, with T2W-FLAIR following closely, were the most frequently occurring
MR contrasts within predictor combinations, resulting in higher mean AUC scores for all
five mutations. Figure 5 shows the mean ROC curves of the T1W, ADC, and T2W-FLAIR
combination, resulting from averaging over all 10 iterations, along with the SEM band. For
the gene targets IDH1, TP53, and EGFR, the AUC scores exceeded 0.9, signifying excellent
predictivity. Additionally, the scores for PIK3CA and NF1 registered above 0.7, indicative of
acceptable performance. Figure 6 showcases raincloud plots [34] depicting the distribution
of AUC scores for all five genes using T1W, T2W-FLAIR, and ADC imaging signatures as
predictors. Each raincloud plot represents the AUC scores obtained from 10 iterations of the
predictive modeling process. The central box in each plot signifies the interquartile range
(IQR), with the median indicated by the horizontal line. The upper and lower borders of
the box correspond to the upper (Q3) and lower (Q1) quartiles, respectively. Outliers are
represented as individual points beyond 1.5 times the IQR from the upper (0.75) or lower
(0.25) quartiles.

The outstanding performance of the model in predicting IDH1, TP53, and EGFR,
achieving a TPR (true positive rate) of 1 with minimal FPR (false positive rate), is evident
from the ROC curves shown in Figure 7, corresponding to the same combinations in
Figure 4. Each group of triple and quadruple contrasts included T1W and ADC, while
double contrast groups featured at least one of them. Among the 20 combinations shown in
Figure 7, excluding quintuple contrasts, T1W appeared in 14, ADC in 15, and T2W-FLAIR
in 12. Integrating all MR contrasts together as independent variables (teal line) did not
seem to improve the AUC score in most cases. There was a slight improvement for IDH1
only when compared to using ADC as a predictor by itself. The result of the one-way
ANOVA was nonsignificant when comparing AUC scores from different MR combinations,
as shown by the p-values presented in Table S3 of the Supplementary Materials.
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Figure 4. AUC scores of the MRI contrast combinations with the highest mean AUC scores in each
group for predicting each mutation status. The SEM bars are indicated on top of each predictor.
Navy represents single contrasts, mustard for double contrasts, pink for triple contrasts, smoke for
quadruple contrasts, and teal indicates quintuple contrasts.
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quadruple contrasts, and teal indicates quintuple contrasts. The mean AUC score for each curve is
indicated next to the predictors’ names in the legend for each mutational target.

4. Discussion

In this study, a regression-based GAM was developed and tested utilizing clinical MR
images to predict the mutational status of select glioma genomic targets. All combinations
of T1W, T1W-CE, T2W, T2W-FLAIR, and ADC were encompassed in the model training as
predictors, with the mutation status of IDH1, TP53, EGFR, PIK3CA, and NF1 as outcomes.
The training was conducted over 10 patients using the leave-one-patient-out method. ROC
curve analysis was completed for each of the 31 total combinations, and AUC scores
were calculated and compared through ANOVA. T1W and ADC emerged as the foremost
contrasts, with T2W-FLAIR ranking next in higher mean AUC scores for all five targets,
resulting in AUC scores as high as 0.98, accompanied by robust ACC values. The ANOVA
results were nonsignificant; however, due to the limited dataset, it was not possible to
demonstrate the statistical superiority of any of the different combinations as a function of
the number of contrasts.
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The selected MRI sequences for this study are integral components of the clinical
neuroimaging routine for glioma patients. Their incorporation into the clinical practice
is not arbitrary but rather grounded in a robust body of literature that emphasizes their
clinical relevance. For instance, high-resolution 3D T1W and T2W sequences, along with
T1W-CE, are essential for detecting abnormalities in the blood-brain barrier (BBB) and areas
with increased vascularity [35,36]. The T2W-FLAIR technique enhances the visibility of
lesions in the periventricular and peripheral subcortical regions by suppressing the CSF
signal and reducing the contrast between gray and white matter [37]. This allows for
the differentiation of vasogenic edema from normal brain fluids and aids in identifying
infiltrative microscopic pathology [38]. The apparent diffusion coefficient (ADC) map,
derived from the DWI signal, provides insights into the glioma tumor cellularity [39,40],
and its utility in grading these tumors has been well studied [41–43].

As shown in Figures 4 and 7, the mean AUC score for T2W contrast in the single con-
trast group was never the highest for any genetic targets. The T2W signal’s contribution was
better seen when combined with other contrasts. This outcome is somewhat unexpected
since T2W images are routinely used in clinical brain tumor diagnosis [44]. However, their
primary application in such contexts is for qualitative visual assessment, not the signal
quantification that was employed in building this model. One explanation for this outcome
could be the substitution of T2W with Gadolinium-enhanced T2W (T2W-CE) images for two
subjects in the training (Table S2 in the Supplementary Materials). This change was imple-
mented because two patients lacked T2W images in their most recent presurgical imaging
dataset and were instead scanned with T2W-CE sequences. In addition, while Gadolinium-
based contrast agents can diminish the T2W signal, a notable decrease [45] only occurs
when the administered dose is higher than the FDA-approved limit (1 mmol/kg) [46,47],
which was not the case in this study.

Gliomas exhibit a spectrum of genetic alterations that vary depending on their grade
and specific subtype [48], with significant prognostic implications extensively studied [49].
IDH1 mutations, producing the oncometabolite 2-HG that disrupts cell differentiation
and influences tumor behavior, are commonly found in lower-grade gliomas and certain
glioblastomas [50], reflecting their distinct metabolic profile. Alterations in EGFR and
mutations in TP53, which modulate glucose uptake and metabolism and disrupt glycolysis
and oxidative phosphorylation, span various glioma grades [51–53]. This study obtained
excellent AUC scores for IDH1, TP53, and EGFR, aligning with existing literature and
underscoring the interplay between these genetic markers and metabolic pathways in
glioma heterogeneity. Figure 5 presents the ROC curves for these three markers, using
T1W, ADC, and T2W-FLAIR MR contrast combination. The distribution of AUC scores for
each of these ROC curves over all 10 iterations is depicted in Figure 6. Given that the WES
analysis on most of the subjects’ tumor samples yielded no mutations for EGFR, PIK3CA,
and NF1 (Table S2 in the Supplementary Materials), the kernel density distribution is more
concentrated near the median (0). This underscores the potential benefits of a larger number
of biopsy samples to balance the extensive imaging data and enhance the reliability and
robustness of the model’s predictive abilities.

Additionally, mutations in PIK3CA and NF1—associated with alterations in lipid metabolism
and the activation of glycolysis through the RAS signaling pathway, respectively—are frequently
linked to glioblastoma, glioma WHO grade IV [54,55] but rare in lower-grade gliomas
except for NF1 alterations in pediatric optic nerve gliomas [56]. The calculated AUC score
for PIK3CA and NF1 as dependent variables was near 0.7, as shown in Figures 4, 5 and 7.
This comparatively weaker predictive power, consistent with the literature, takes into
account that only half of our cohort had a glioblastoma diagnosis, without data stratification
by glioma grade during model construction, reflecting the nuanced relationship between
genetic alterations, their metabolic consequences, and tumor heterogeneity [48–56].

Another important observation of this study is that the combination of all MR con-
trasts together as predicting variables (teal bar in Figure 4 and teal line in Figure 7) did
not enhance the AUC score compared to most of the combinations of fewer contrasts. Al-
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though assessing the underlying mechanism of this pattern is challenging, it is well-known
that adding independent variables increases model sparseness and may lead to feature
redundancy [57]. With a limited sample size, including five distinct MR contrasts increases
the risk of introducing numerous features, some of which may be redundant or conflicting,
complicating the algorithm’s ability to discern relevant patterns. This comparison should
be revisited with a larger cohort or, at the very least, a greater number of biopsy samples
per subject.

Limitations

While this study yields promising results, it is important to acknowledge several limi-
tations. Firstly, the relatively small cohort of 10 subjects used for model training may limit
the generalizability of findings (Figure S1 in the Supplementary Materials). In addition,
this limitation hinders the ability to demonstrate the effectiveness of the different combi-
nations based on the number of contrasts. At an individual patient level, most datasets
were overpowered, with an average of 10,736 voxels per MR contrast per subject, thus
yielding statistically significant findings. However, we anticipate that these models may
lack generalizability due to the limited number of patients, which does not adequately
represent the large and heterogenous brain tumor population. Therefore, a larger sam-
ple size would likely enhance the robustness and accuracy of the model. Secondly, the
MRI data were obtained as part of the standard clinical routine, leading to variability in
imaging parameters across subjects and imaging facilities and decreased harmonization
(Table S2 in Supplementary Materials). This variability could introduce inconsistencies
in certain MRI sequence parameters, potentially impacting model performance. Thirdly,
the reliance on genomic information obtained from a single stereotactic biopsy sample
per patient may not fully capture intra-tumoral heterogeneity. Additionally, our choice
of the generalized additive model (GAM) was deliberate, as it offered a balance between
flexibility and interpretability. Its semiparametric design allowed for capturing complex
correlations and interactions in the data without imposing strict assumptions on the un-
derlying relationships. However, it is important to acknowledge that the selection of the
machine learning method can significantly impact prediction results, such as leading to
problems like overfitting [58]. While GAM proved effective for our analysis, alternative
methods may uncover different underlying mechanisms. Future studies could explore
and compare alternative machine learning approaches to gain further insights into the
predictive modeling of glioma genomic targets. Lastly, our analysis focused on five main
mutation targets as outcome variables. Future research should explore other potential
genomic markers associated with glioma to provide a more comprehensive assessment of
glioma genetics and elevate the clinical utility of these models.

5. Conclusions

This study contributes to the body of evidence integrating MRI imaging and stereotac-
tic biopsy sampling with advanced statistical modeling to predict glioma genomic targets
accurately. This type of experimental design is challenging to administer but provides
robust and highly controlled data collection on intra-tumoral heterogeneity, the driving
factor in human brain tumor treatment resistance and recurrence. The identified genomic
alterations, notably in IDH1, TP53, EGFR, PIK3CA, and NF1, are recognized for their
significant involvement in metabolic pathways that contribute to glioma heterogeneity.
Consequently, our methodology offers insight into the metabolic dynamics of glioma by
examining these crucial genomic markers, unveiling the intricate interplay between tumor
genomics and metabolism. The regression-based GAM presented here exhibits remarkable
promise in using T1W, ADC, and T2W-FLAIR, especially for key mutations like IDH1,
TP53, and EGFR. However, certain nuances, such as the predictability for markers such as
PIK3CA and NF1, suggest the need for further refinement and larger cohorts for improved
accuracy. An important future direction of this work will involve conducting multisite trials
to ensure sufficient statistical sampling for identifying the optimal contrast combinations.
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This study lays a foundation for future work in noninvasive tumor diagnostics, enhancing
treatment precision while minimizing patient risk. As the medical community gravitates
towards individualized treatment plans, such innovative approaches will be instrumental
in revolutionizing patient care in neuro-oncology.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/metabo14060337/s1, Table S1. Mutation status of 8 glioma targets
for 10 subjects, where “1” denotes mutated and “0” signifies no mutation. The table highlights the
imbalance observed in PTEN, PIK3R1, and RB1, with only one patient exhibiting mutations, depicted
by cells shaded in orange. Table S2. Summary of MR scanner types, MR contrasts, pathological
diagnosis, and WES results per patient. Inconsistencies in MRI contrasts or major MR Scanner (*)
differences highlighted in orange. Table S3. The p-values from one-way ANOVA for all 5 mutational
targets. Rows 1 to 4 display the p-value from ANOVA on AUC scores from different groups of
MR contrasts combinations (single, double, triple, quadruple). The p-values in the final row are
derived from one-way ANOVA for each mutation across all 31 combinations. Figure S1. Raincloud
distribution of cohort demographic characteristics: age, gender, pathological diagnosis based on
WHO, and the number of days between MRI session and surgery (RSX-IMG). Yellow circles: Scattered
data. Blue central box: interquartile range (IQR) denoting Q0.25 and Q0.75 quartiles. Black line:
median. Outliers shown as asterisks (*) beyond 1.5xIQR. Figure S2. AUC scores of different MRI
contrast combinations for predicting IDH1 mutation status with SEM error bars. Figure S3. AUC
scores of different MRI contrast combinations for predicting TP53 mutation status with SEM error
bars. Figure S4. AUC scores of different MRI contrast combinations for predicting EGFR mutation
status with SEM error bars. Figure S5. AUC scores of different MRI contrast combinations for
predicting PIK3CA mutation status with SEM error bars. Figure S6. AUC scores of different MRI
contrast combinations for predicting NF1 mutation status with SEM error bars.
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