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Abstract: Intrauterine growth-restricted (IUGR) fetuses exhibit systemic inflammation that con-
tributes to programmed deficits in myoblast function and muscle growth. Thus, we sought to
determine if targeting fetal inflammation improves muscle growth outcomes. Heat stress-induced
IUGR fetal lambs were infused with eicosapentaenoic acid (IUGR+EPA; n = 9) or saline (IUGR;
n = 8) for 5 days during late gestation and compared to saline-infused controls (n = 11). Circulating
eicosapentaenoic acid was 42% less (p < 0.05) for IUGR fetuses but was recovered in IUGR+EPA
fetuses. The infusion did not improve placental function or fetal O2 but resolved the 67% greater
(p < 0.05) circulating TNFα observed in IUGR fetuses. This improved myoblast function and muscle
growth, as the 23% reduction (p < 0.05) in the ex vivo differentiation of IUGR myoblasts was resolved
in IUGR+EPA myoblasts. Semitendinosus, longissimus dorsi, and flexor digitorum superficialis muscles
were 24–39% lighter (p < 0.05) for IUGR but not for IUGR+EPA fetuses. Elevated (p < 0.05) IL6R
and reduced (p < 0.05) β2 adrenoceptor content in IUGR muscle indicated enhanced inflammatory
sensitivity and diminished β2 adrenergic sensitivity. Although IL6R remained elevated, β2 adreno-
ceptor deficits were resolved in IUGR+EPA muscle, demonstrating a unique underlying mechanism
for muscle dysregulation. These findings show that fetal inflammation contributes to IUGR muscle
growth deficits and thus may be an effective target for intervention.

Keywords: adaptive fetal programming; developmental origins of health and disease (DOHaD);
low birthweight; maternofetal health; omega-3 polyunsaturated fatty acid (ω-3 PUFA); placental
insufficiency; satellite cells; small for gestational age (SGA)

1. Introduction

Asymmetrical intrauterine growth restriction (IUGR) of the fetus is, in large part, a
product of disproportionally impaired skeletal muscle growth capacity [1,2]. The program-
ming mechanisms that underlie slower fetal muscle growth occur in response to chronic
O2 and nutrient deficits produced by placental insufficiency [3,4]. Although beneficial
to the fetus, stress-induced adaptive programming of muscle results in lifelong deficits
in lean muscle mass and metabolic efficiency after birth [3,4]. This markedly increases
the risk for metabolic health disorders in IUGR-born individuals [5]. The same program-
ming mechanisms cause poor growth efficiency and carcass composition in IUGR-born
livestock [6,7]. Throughout late gestation, IUGR fetuses exhibit systemic inflammation
and hypercatecholaminemia, which are instrumental in facilitating adaptations, includ-
ing altered tissue sensitivity to both of these stress-regulating systems [8–10]. Near term,
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IUGR skeletal muscle exhibits reduced β2 adrenergic responsiveness and enhanced inflam-
matory tone that persists postnatally [11–15]. β2 adrenergic pathways increase nutrient
uptake, protein synthesis, and metabolic rates in skeletal muscle [2,16–20] and thus are
critical to efficient lean muscle growth [12,21–23]. Recent studies have confirmed the role
of β2 adrenergic deficits in poor growth and metabolic function of IUGR muscle [24,25].
Conversely, heightened inflammatory activity disrupts the function of myoblasts (i.e.,
muscle stem cells) [26–30] and, in turn, impairs their ability to facilitate hypertrophic
muscle growth [31–33]. In fact, experimental induction of sustained maternofetal in-
flammation alone produced an IUGR muscle phenotype similar to the one produced
by heat stress-induced placental insufficiency [4,34]. Thus, we hypothesized that target-
ing enhanced inflammatory activity in the IUGR fetus would improve myoblast func-
tion, muscle growth, and body composition. Previous studies have shown that omega-3
polyunsaturated fatty acids (ω-3 PUFAs) have strong anti-inflammatory functions [35–37].
Moreover, studies in humans indicate that endogenous ω-3 PUFA is deficient in IUGR
fetuses and offspring [38–41]. Therefore, we directly infused IUGR fetal lambs with the
anti-inflammatory ω-3 PUFA, eicosapentaenoic acid, for 5 days and assessed the effects on
inflammatory tone, myoblast function, and muscle growth.

2. Materials and Methods
2.1. Animals and Experimental Design

All procedures were reviewed and approved by the University of Nebraska-Lincoln’s
Institutional Animal Care and Use Committee. Experiments were performed at the Uni-
versity of Nebraska-Lincoln, which is accredited by AAALAC International. After a 7-day
acclimation period, Polypay ewes (2 to 4 years of age; 72.7 ± 0.4 kg; 2.5 to 3 body condition
score) were timed-mated to a single Polypay male and heat-stressed to produce placental
insufficiency-induced IUGR fetuses, as previously described [25,42]. Briefly, ewes carrying
singleton or twin pregnancies were housed under ambient conditions of 40 ◦C and 35%
relative humidity (86 temperature–humidity index per [43]) from the 40th to the 95th day of
gestational age (dGA) and were then returned to thermoneutral conditions (25 ◦C, 35% rela-
tive humidity, 70 temperature–humidity index) for the duration of the study. Ewes carrying
control fetuses were housed under static thermoneutral conditions and were pair-fed to the
average daily intake of the heat-stressed ewes. Ewes were housed in adjacent individual
pens with tenderfoot mesh flooring and were given approved environmental enrichment.
Other aspects of standard husbandry practices, individual housing, and nutritional manage-
ment were performed as previously described [4]. At 118 dGAs, partial cesarean surgeries
were performed to place patent indwelling catheters into one fetal femoral artery and both
femoral veins using the previously described hindlimb preparation procedure [4,44]. For
twin pregnancies, only the fetus closest to the abdominal midline (i.e., incision site) was
catheterized. From dGA 120 to 124, IUGR fetuses received daily IV infusions of the ω-3
PUFA eicosapentaenoic acid (0.25 mg/day; Cayman Chemical Co., Ann Arbor, MI, USA)
over a 1 h period (i.e., IUGR+EPA; n = 9; 45% male, 56% twins) or a placebo infusion
of saline carrier only (i.e., IUGR; n = 8; 55% male, 62% twins). Control fetuses (n = 11;
47% male, 63% twins) also received daily saline infusions. Simultaneous maternal venous
(jugular venipuncture) and fetal arterial blood samples were collected 4 h after each daily
infusion was completed to estimate glucose and O2 maternofetal gradients. Animals were
euthanized via IV barbiturate overdose on dGA 125, representative placentomes were
collected, and fetuses were necropsied. Weights were recorded for the whole fetus and the
fetal hindlimb (dissected as previously described [45]), semitendinosus, soleus, longissimus
dorsi, and flexor digitorum superficialis muscles, heart, lungs, liver, kidneys, and brain.

2.2. Blood Sample Analyses

Blood samples were collected daily from dGA 120 to 124 and analyzed for gas, metabo-
lite, and cellular components, as previously described [24,25]. Briefly, daily fetal arterial
and maternal venous whole blood samples were simultaneously collected into heparinized
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syringes and analyzed with an ABL90 FLEX (Radiometer, Brea, CA, USA) for glucose
concentrations and partial pressures of O2 (pO2). Daily fetal blood samples were also
collected into EDTA syringes and analyzed with a HemaTrue veterinary hematology an-
alyzer (Heska Corp., Loveland, CO, USA) for concentrations of total white blood cells,
granulocytes, monocytes, lymphocytes, platelets, and red blood cells, as well as hematocrit,
hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin con-
centration, mean packed cell volume, and red blood cell distribution width. Blood plasma
was separated from EDTA-treated whole blood by centrifugation (14,000× g, 2 min) and
stored at −80 ◦C. Commercial ELISA kits were used to determine plasma concentrations
of TNFα (Wuhan Biotech, Wuhan, China) and eicosapentaenoic acid (MyBioSource, Inc.,
San Diego, CA, USA) in duplicate, as previously described [25,46]. Coefficients of variance
(inter- and intra-assay) were less than 15% for both ELISAs.

2.3. Tissue Sample Analyses
2.3.1. Histology and Immunohistochemistry

Muscle fiber size and myoblast profiles were determined in fetal semitendinosus mus-
cles using immunohistochemistry, as previously described [24,42]. Sections of the muscle
were fixed in a paraformaldehyde solution (4% in phosphate-buffered saline; PBS; Milli-
poreSigma, St. Louis, MO, USA), embedded in cassettes using OCT compound (Scigen
Scientific, Gardena, CA, USA), and stored frozen at −80 ◦C. Cross-sections (8 µm) were
taken a minimum of 100 µm apart with a CryoStar NX50 cryostat (Richard-Allen Scientific
Co., Kalamazoo, MI, USA) and placed on Fisher Superfrost Plus glass microscope slides.
Mouse monoclonal IgG1 antibody raised against desmin (1:100; DE-U-10; GeneTex, Irvine,
CA, USA) was used to stain muscle fibers in order to determine the average cross-sectional
fiber area. Mouse monoclonal IgG1 antibody raised against pax7 (1:10; PAX7; DSHB,
Iowa City, IA, USA), mouse monoclonal IgG1 antibody raised against myogenin (1:10;
F5D; DSHB), and rabbit recombinant monoclonal IgG antibody raised against prolifer-
ating cell nuclear antigen (PCNA; 1:10; CPTC-PCNA-1; DSHB) were used to estimate
myoblast population dynamics. Immunocomplexes were detected with Alexa Fluor 488,
555, or 594 secondary antibodies (1:1000; Invitrogen; Carlsbad, CA, USA). Sections were
counterstained with the pan nuclei indicator DAPI (Fluoromount-G; Southern Biotech,
Birmingham, AL, USA). Images were visualized on an Olympus IX73 microscope (Shinjuku,
Tokyo, Japan) and were captured digitally with an Olympus DP80 camera. Analyses were
performed on de-identified images using Olympus cellSense Dimension 1.13 software. The
average semitendinosus muscle fiber area was estimated for each fetus from a minimum of
250 desmin+ fibers, as previously described [24,47]. Total myoblasts were estimated from
the percentage of total nuclei (i.e., DAPI+) that were also pax7+. Proliferating myoblasts
were estimated from the percentage of myoblasts (i.e., pax7+) that were also PCNA+. Dif-
ferentiated myoblasts were estimated from the percentage of total nuclei (i.e., DAPI+) that
were also myogenin+. Myoblast profiles were determined from a minimum of 1500 total
nuclei, as previously described [24,47]. The three intact placentomes closest to the uterine
bifurcation (i.e., uteroplacental incision site) were collected at necropsy and prepared for
staining as previously described [48,49], with some modifications. Briefly, placentomes
were halved longitudinally, fixed in 4% paraformaldehyde, and embedded in an OCT
compound. Cross-sections (10 µm) were mounted on Fisher Superfrost Plus glass slides at
−20 ◦C, brought to room temperature, and dried. For lipid staining, placentome sections
were washed with 60% isopropanol, incubated with a working solution of Oil Red O
(MilliporeSigma) for 15 min, and then washed again with 60% isopropanol. Sections were
then rinsed with de-ionized H2O, cover-slipped, and stored at 4 ◦C. Sections were also
stained for collagen using the commercial Gomori’s Trichrome Staining Kit (Richard-Allan
Scientific, San Diego, CA, USA) following the manufacturer’s protocol. Lipid droplets and
collagen were visualized with an Olympus IX73 microscope, and images were captured
with an Olympus DP80 camera. ImageJ software (ImageJ 1.x, National Institutes of Health,
Bethesda, MD, USA) was utilized to quantify lipid droplet populations and collagen+ area.
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Lipid droplet metrics were estimated from an average of 5000 droplets assessed across nine
non-overlapping fields of view. The collagen+ area was estimated from six non-overlapping
fields of view that were 10 mm2 in size.

2.3.2. Protein Immunoblots

Total protein isolated from snap-frozen semitendinosus was used to determine the
content of β2 adrenoceptor and interleukin-6 receptor (IL6R), as previously
described [24,25]. Briefly, muscle samples were homogenized by sonication in lower
salt extraction buffer containing 20 mM TRIS, 80 mM NaCl, 2.7 mM KCl, 1 mM MgCl2,
1 mM EDTA, 0.1% SDS, 1% Triton-X 100, 10% glycerol, 2.5% protease, and 2.5% phos-
phatase inhibitor, and total protein was isolated by 5 min centrifugation at 14,000× g.
Supernatant protein concentrations were determined using Piece BCA Assay (Thermo
Fisher, Waltham, MA, USA), and 50-µg aliquots were mixed with 4x Laemmli buffer
(Bio-Rad Laboratories, Hercules, CA, USA). Samples were heated for 5 min at 95 ◦C,
cooled to room temperature, separated via SDS-PAGE, and then transferred to Bio-
Rad poly-vinylidene fluoride low-fluorescent membranes. These membranes were
incubated in Bio-Rad EveryBlot Blocking Buffer, washed with TBS-T, and incubated
with rabbit anti-serum raised against β2 adrenoceptor (1:1000, Cohesion Biosciences,
London, UK) or against IL6R (1:1000, EPR24322-143; Abcam; Cambridge, MA, USA)
overnight at 4 ◦C. Membranes were then washed with TBS-T, incubated for 1 h with
goat anti-rabbit IR800 IgG secondary anti-serum (LI-COR Biosciences, Lincoln, NE,
USA), imaged with the LI-COR Odyssey Infrared system, and quantified with LI-COR
Image Studio Lite 5.2.

2.4. Ex Vivo Myoblast Function
2.4.1. Primary Myoblast Isolation

Fetal myoblasts were isolated from hindlimb muscle at necropsy as previously de-
scribed [29,50]. Briefly, the muscle was washed with cold PBS + antibiotic-antimycotic
solution (1%; AbAm; Gibco, Grand Island, NY, USA) + gentamicin (0.5%; Gibco), finely
minced, and digested for 1 h at 37 ◦C in PBS + protease type XIV from Streptococcus griseus
(1.25 mg/mL; MilliporeSigma). Digested muscle was serial-centrifuged for 10, 8, and
1 min at 500× g. The supernatant was centrifuged for 5 min at 1500× g to separate iso-
lated myoblasts, which were re-suspended and expanded in complete growth media (i.e.,
Dulbecco’s Modified Eagle’s Media (DMEM; Gibco) + 20% fetal bovine serum (FBS, Atlas
Biologicals, Ft. Collins, CO, USA) + 1% AbAm, + 0.5% gentamicin) on fibronectin-coated
(10 µg/mL; MilliporeSigma) tissue culture plates. Myoblast isolates were cryopreserved in
complete growth media + 10% dimethyl sulfoxide (MilliporeSigma) over liquid nitrogen.
The purity of each myoblast isolate was determined by staining subsamples of cells of pax7.

2.4.2. Myoblast Proliferation

Myoblasts (4000 cells/well) were grown for 72 h in complete growth media on 6-well
fibronectin-coated plates and then incubated for 24 h in complete growth media + 0 or
5 mU/mL insulin (Humulin R; Lilly, Indianapolis, IN, USA). For the final 2 h, myoblasts
were pulse-labeled with 10 nM EdU (Thermo Fisher, Waltham, MA, USA). After brief cool-
ing, myoblasts were lifted with Accutase and fixed in suspension with 4% paraformalde-
hyde. Proliferation rates were estimated from EdU+ myoblasts, which were identified with
the ClickIT EdU Alexa Fluor 555 Cell Proliferation Assay (Life Technologies, Carlsbad, CA,
USA), as previously described [29]. Percentages of EdU+ myoblasts were determined using
flow cytometry with an ORFLO zEPI (Ketchum, ID, USA).

2.4.3. Myoblast Differentiation

Myoblasts (20,000 cells/well) were differentiated by 96 h incubation in differ-
entiation media (DMEM + 2% FBS + 1% AbAm + 0.5% gentamicin) containing 0 or
5 mU/mL insulin. After cooling on ice for 2 min, cells were lifted from plates and fixed
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in 4% paraformaldehyde. Myoblasts were then stained in suspension for myogenin
(1:50; F5B; BD Pharmingen, Franklin Lakes, NJ, USA) and secondary affinity-purified
anti-mouse IgG PE-Conjugate antibody (1:250; Cell Signaling Technology, Danvers,
MA, USA), as previously described [29]. Percentages of myogenin+ cells were deter-
mined with flow cytometry.

2.5. Statistical Analysis

Histology, immunoblot, and biometric data were analyzed with ANOVA using the
mixed procedure of SAS 9.4 (SAS Institute, Cary, NC, USA) to determine the fixed effects of
the experimental group (control, IUGR, IUGR+EPA), sex (male, female), and birth number
(singleton, twin). Fetus was used as a random effect. Interactions among these main effects
were not included due to limited power. Mean separation for the experimental group
effect was performed via the Fisher LSD test. Components of daily fetal blood samples and
maternofetal blood gradients were analyzed via the mixed procedure of SAS with repeated
measures for the fixed effects of the experimental group, fetal age, and the interaction, as
well as sex and birth number. The fetus was the individual experimental unit. Significant
differences were indicated by p-values of less than 0.05 and tendencies by p-values of less
than 0.10. Data are presented as means ± standard errors of the mean.

3. Results
3.1. Placental Function Indicators
3.1.1. Histology

Representative micrographs of collagen and lipid staining are shown in Figure 1A. The
percentage of collagen+ placentome area did not differ between the experimental groups
(Figure 1B). Average lipid droplet size was greater (p < 0.05) for placentomes from IUGR and
IUGR+EPA pregnancies than from controls (Figure 1C). Lipid droplet density was greater
(p < 0.05) for placentomes from IUGR and IUGR+EPA pregnancies than from controls
(Figure 1D). No differences in placentome collagen or lipid droplet size were observed
between males and females or between singletons and twins. Lipid droplet density was
lower (p < 0.05) for placentomes from twin pregnancies than from singletons.

Metabolites 2024, 14, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 1. Lipid accumulation and fibrotic area in placentomes from IUGR fetal lambs administered 
daily with eicosapentaenoic acid. Representative images for Trichrome (top row, scale bar = 400 µm) 
and Oil Red O (bottom row, scale bar = 50 µm) staining are shown in frame (A). Staining was per-
formed in control (n = 11), IUGR (n = 8), and IUGR+EPA fetuses (n = 9). Data are presented for rela-
tive collagen area (B), average lipid droplet size (C), and lipid droplet density (D). Effects of the 
experimental group were evaluated and are noted where significant (p < 0.05). a,b Means with differ-
ent superscripts differ (p < 0.05). 

3.1.2. Blood Glucose and O2 
Experimental group x dGA interactions were observed (p < 0.05) for fetal blood pO2 

and maternofetal pO2 gradient but not for any other gradient variables. Maternal and fetal 
blood glucose concentrations did not differ between experimental groups (Figures 2A and 
2B, respectively), but the maternofetal glucose gradient was greater (p < 0.05) for IUGR 
and IUGR+EPA pregnancies than for controls (Figure 2C). Maternal blood pO2 did not 
differ between groups (Figure 2D). Fetal blood pO2 was lower (p < 0.05) for IUGR and 
IUGR+EPA fetuses than for controls on all days except dGA 124, where it did not differ 
between groups (Figure 2E). Fetal blood pO2 was also intermediate for IUGR+EPA fetuses 
(i.e., between controls and IUGR fetuses) on dGA 122. Maternofetal pO2 gradient was 
lower (p < 0.05) for IUGR pregnancies than for controls on all days and was lower (p < 0.05) 
for IUGR+EPA pregnancies than controls for dGAs 121 and 122 but not dGAs 120, 123, or 
124 (Figure 2F). No parameters differed between males and females, but maternofetal glu-
cose gradients were greater (p < 0.05), and fetal pO2 was lower (p < 0.05) for twins than 
singletons. 

Figure 1. Lipid accumulation and fibrotic area in placentomes from IUGR fetal lambs administered daily
with eicosapentaenoic acid. Representative images for Trichrome (top row, scale bar = 400 µm) and Oil
Red O (bottom row, scale bar = 50 µm) staining are shown in frame (A). Staining was performed in control
(n = 11), IUGR (n = 8), and IUGR+EPA fetuses (n = 9). Data are presented for relative collagen area
(B), average lipid droplet size (C), and lipid droplet density (D). Effects of the experimental group were
evaluated and are noted where significant (p < 0.05). a,b Means with different superscripts differ (p < 0.05).
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3.1.2. Blood Glucose and O2

Experimental group × dGA interactions were observed (p < 0.05) for fetal blood
pO2 and maternofetal pO2 gradient but not for any other gradient variables. Mater-
nal and fetal blood glucose concentrations did not differ between experimental groups
(Figures 2A and 2B, respectively), but the maternofetal glucose gradient was greater
(p < 0.05) for IUGR and IUGR+EPA pregnancies than for controls (Figure 2C). Mater-
nal blood pO2 did not differ between groups (Figure 2D). Fetal blood pO2 was lower
(p < 0.05) for IUGR and IUGR+EPA fetuses than for controls on all days except dGA 124,
where it did not differ between groups (Figure 2E). Fetal blood pO2 was also intermediate
for IUGR+EPA fetuses (i.e., between controls and IUGR fetuses) on dGA 122. Maternofetal
pO2 gradient was lower (p < 0.05) for IUGR pregnancies than for controls on all days
and was lower (p < 0.05) for IUGR+EPA pregnancies than controls for dGAs 121 and 122
but not dGAs 120, 123, or 124 (Figure 2F). No parameters differed between males and
females, but maternofetal glucose gradients were greater (p < 0.05), and fetal pO2 was lower
(p < 0.05) for twins than singletons.
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Figure 2. Placental insufficiency indicators in IUGR fetal lambs administered daily with eicosapen-
taenoic acid. Daily whole blood samples were collected from control (n = 11), IUGR (n = 8), and
IUGR+EPA fetuses (n = 9) simultaneously with maternal blood samples. On the top row, data are
presented for maternal glucose (A), fetal glucose (B), and maternofetal glucose gradients (C). On the
bottom row, data are presented for maternal pO2 (D), fetal pO2 (E), and maternofetal pO2 gradient
(F), Effects of the experimental group (GRP), day of gestation, and group x day interaction (G*D)
were evaluated and are noted where significant (p < 0.05). a–c Means with different superscripts differ
(p < 0.05).

3.2. Fetal Hematology
3.2.1. Circulating Leukocytes

Experimental group × dGA interactions were observed (p < 0.05) for circulating total
white blood cells, granulocytes, and granulocyte-to-lymphocyte ratios but not for any other
leukocyte parameters. Circulating white blood cell concentrations did not differ between
groups on dGA 120, 121, and 122, were greater (p < 0.05) for IUGR but not for IUGR+EPA
fetuses than for controls on dGA 123 and were greater (p < 0.05) for IUGR and IUGR+EPA
fetuses than for controls on dGA 124 (Figure 3A). Circulating lymphocyte concentrations
did not differ between groups for any day (Figure 3B). Circulating monocyte concentrations
were greater (p < 0.05) for IUGR but not for IUGR+EPA fetuses than for controls, regard-
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less of day (Figure 3C). Circulating granulocyte concentrations did not differ between
groups on any day except dGA 124, where they were greater (p < 0.05) for IUGR and
IUGR+EPA fetuses than for controls (Figure 3D). Granulocyte-to-lymphocyte ratios were
lower (p < 0.05) for IUGR+EPA but not IUGR fetuses than for controls on dGA 120, did not
differ between groups on dGAs 121, 122, and 123, and were greater (p < 0.05) for IUGR and
IUGR+EPA fetuses than for controls on dGA 124 (Figure 3E). Lymphocyte-to-monocyte
ratios tended to be lower (p < 0.10) for IUGR but not for IUGR+EPA fetuses than for controls
(Figure 3F). No differences in leukocyte concentrations were observed between males and
females or between singletons and twins.
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Figure 3. Circulating leukocytes in IUGR fetal lambs administered daily with eicosapentaenoic
acid. Complete blood counts were performed on daily whole blood samples collected from control
(n = 11), IUGR (n = 8), and IUGR+EPA fetuses (n = 9). Data are presented for circulating concentrations
of total white blood cells (A), lymphocytes (B), monocytes (C), and granulocytes (D), as well as
granulocyte-to-lymphocyte (E) and lymphocyte-to-monocyte ratios (F). Effects of the experimental
group (GRP), day of gestation, and group x day interaction (G*D) were evaluated and are noted
where significant (p < 0.05). a,b Means with different superscripts differ (p < 0.05). x,y Means with
different superscripts tend to differ (p < 0.10).

3.2.2. Hematological Parameters

No experimental group × dGA interactions were observed for any hematological
parameters, which are presented in Supplemental Figure S1. Fetal hematocrit, red blood cell
distribution width, hemoglobin, mean corpuscular hemoglobin concentration, red blood
cell concentrations, and mean packed volume did not differ between experimental groups.
Mean corpuscular volume was lower (p < 0.05) for IUGR fetuses and greater (p < 0.05) for
IUGR+EPA fetuses than for controls, regardless of day. Circulating platelet concentrations
were greater (p < 0.05) for IUGR and IUGR+EPA fetuses than for controls, regardless of
day. No differences in hematology parameters were observed between males and females,
but mean corpuscular volume was greater (p < 0.05) and mean corpuscular hemoglobin
concentrations were smaller (p < 0.05) for twins than for singletons.

3.3. Circulating Eicosapentaenoic Acid and TNFα

No experimental group × dGA interactions were observed for circulating eicosapen-
taenoic acid or TNFα. Circulating eicosapentaenoic acid concentrations were smaller
(p < 0.05) for IUGR but not for IUGR+EPA fetuses than for controls, regardless of day
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(Figure 4A). Conversely, circulating TNFα concentrations were greater (p < 0.05) for IUGR
but not for IUGR+EPA fetuses than for controls, regardless of day (Figure 4B). No differ-
ences in eicosapentaenoic acid or TNFα were observed between singletons and twins, but
circulating TNFα was lower (p < 0.05) for male fetuses than for female fetuses.
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Figure 4. Systemic inflammation in IUGR fetal lambs administered daily with eicosapentaenoic
acid. Plasma was isolated from daily blood samples collected from control (n = 11), IUGR
(n = 8), and IUGR+EPA fetuses (n = 9). Data are presented for fetal plasma eicosapentaenoic acid
(A) and TNFα (B) concentrations. Effects of the experimental group (GRP), day of gestation, and
group × day interaction were evaluated and are noted where significant (p < 0.05). a,b Means with
different superscripts differ (p < 0.05).

3.4. Fetal Biometrics

At necropsy, body weights were lighter (p < 0.05) for IUGR but not IUGR+EPA fetuses
than for controls (Table 1). Fetal hindlimb weights were lower (p < 0.05) for IUGR fetuses
than for controls and IUGR+EPA fetuses. Semitendinosus, longissimus dorsi, and flexor digito-
rum superficialis muscles were lighter (p < 0.05) for IUGR but not for IUGR+EPA fetuses than
for controls. Soleus muscles tended to be lighter (p < 0.10) for IUGR fetuses than for controls
and tended to be intermediate for IUGR+EPA fetuses. Hearts and lungs were lighter
(p < 0.05) for IUGR and IUGR+EPA fetuses than for controls. Liver weights did not differ
between groups. Kidneys and brains were lighter (p < 0.05) for IUGR but not IUGR+EPA fe-
tuses than for controls. Heart/bodyweight, lungs/bodyweight, liver/bodyweight, and kid-
neys/bodyweight did not differ between groups. Brain/bodyweight was greater (p < 0.05)
for IUGR fetuses than for controls or IUGR+EPA fetuses. Fetal soleus and flexor digitorum
superficialis muscles were heavier (p < 0.05) and lung/bodyweight and brain/bodyweight
were lower (p < 0.05) for males than for females. No differences in biometrics were observed
between singletons and twins.

Table 1. Body, muscle, and organ masses from heat stress-induced IUGR fetal lambs after 5-day
intravenous administration of the ω-3 PUFA eicosapentaenoic acid (EPA).

Group Experimental Group

Control IUGR IUGR+EPA p-Value

n 11 8 9
Absolute Mass, g

Whole Fetus 3004 ± 130 a 2334 ± 170 b 2650 ± 194 ab 0.01
Hindlimb 298 ± 14 a 222 ± 13 b 262 ± 21 a <0.01
Semitendinosus 6.03 ± 0.44 a 4.61 ± 0.29 b 4.92 ± 0.49 ab 0.03
Soleus 1.03 ± 0.13 x 0.63 ± 0.11 y 0.89 ± 0.15 z 0.09
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Table 1. Cont.

Group Experimental Group

Control IUGR IUGR+EPA p-Value
Longissimus dorsi 60.5 ± 3.3 a 45.6 ± 3.8 b 50.7 ± 3.8 ab 0.01
Flexor Digitorum Superficialis 5.58 ± 0.38 a 3.94 ± 0.46 b 4.58 ± 0.56 ab 0.03
Heart 26.4 ± 1.2 a 22.1 ± 1.4 b 22.0 ± 1.4 b 0.04
Lungs 102.3 ± 4.5 a 78.4 ± 5.4 b 89.9 ± 5.9 b 0.01
Liver 114.7 ± 8.5 99.2 ± 10.2 95.2 ± 9.1 NS
Kidneys 21.1 ± 1.4 a 16.1 ± 1.2 b 18.3 ± 2.5 ab 0.05
Brain 44.6 ± 1.2 a 40.0 ± 1.3 b 41.3 ± 1.7 ab 0.05

Mass/Fetal Mass, g/kg
Heart 8.8 ± 0.5 9.8 ± 0.6 8.5 ± 0.6 NS
Lungs 33.9 ± 1.2 34.6 ± 1.4 33.6 ± 1.3 NS
Liver 39.1 ± 3.5 46.6 ± 4.1 34.2 ± 3.8 NS
Kidneys 6.8 ± 0.5 7.0 ± 0.9 6.9 ± 0.6 NS
Brain 14.7 ± 0.7 a 16.8 ± 1.1 b 14.4 ± 0.8 a 0.04

a,b Means with different superscripts differ (p < 0.05). IUGR, intrauterine growth restriction; NS, not significant.
x,y,z Means with different superscripts tend to differ (p < 0.10).

3.5. Muscle GROWTH and Regulation
3.5.1. Receptor Content

β2 adrenoceptor protein content was lower (p < 0.05) for semitendinosus muscles from
IUGR fetuses than from IUGR+EPA fetuses and controls (Figure 5A). Total IL6R protein
content was higher (p < 0.05) for semitendinosus muscles from IUGR and IUGR+EPA fetuses
than from controls (Figure 5B). The protein content of the IL6R isoform in the larger band
was also greater (p < 0.05) for semitendinosus muscles IUGR and IUGR+EPA fetuses than
from controls, but the protein content of the IL6R isoform in the smaller band did not differ
between groups. The protein content of the larger isoform, smaller isoform, and total IL6R
was higher (p < 0.05) in semitendinosus muscle from males than from females. No differences
in receptors were observed between singletons and twins.
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Figure 5. Skeletal muscle hormone receptor content for IUGR fetal lambs administered daily with
eicosapentaenoic acid. Total protein was isolated from semitendinosus muscle samples collected
from control (n = 11), IUGR (n = 8), and IUGR+EPA fetuses (n = 9). Data are presented for protein
immunoblot analysis of muscle β2 adrenoceptor (A) and IL-6 receptor (B) content. Effects of the
experimental group (GRP) were evaluated and are noted where significant (p < 0.05). a,b Means with
different superscripts differ (p < 0.05).
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3.5.2. Myoblast Profiles and Fiber Size

Representative micrographs for immunohistological staining of semitendinosus mus-
cles are presented in Supplemental Figure S2. The percentage of pax7+ nuclei (i.e., total
myoblasts) in cross-sections of the fetal semitendinosus muscle did not differ between ex-
perimental groups (Figure 6A). Likewise, the percentage of pax7+/PCNA+ nuclei (i.e.,
proliferating myoblasts) in cross-sections of the fetal semitendinosus muscle did not differ
between groups (Figure 6B). However, the percentage of myogenin+ nuclei (i.e., differ-
entiated myoblasts) was smaller (p < 0.05) for semitendinosus muscles from IUGR fetuses
than from controls and was intermediate for IUGR+EPA fetuses (Figure 6C). The average
cross-sectional area of semitendinosus muscle fibers was smaller (p < 0.05) for IUGR fetuses
than for controls or IUGR+EPA fetuses (Figure 6D). No differences in myoblast profiles
were observed between males and females, but myogenin+ nuclei were fewer (p < 0.05)
and fiber size was larger (p < 0.05) for twins than for singletons.
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Figure 6. Myoblast profiles in skeletal muscle from IUGR fetal lambs administered daily with
eicosapentaenoic acid. Immunohistochemistry was performed on fixed semitendinosus muscle cross-
sectional samples collected from control (n = 11), IUGR (n = 8), and IUGR+EPA fetuses (n = 9). Data
are presented for total myoblasts (A), proliferating myoblasts (B), differentiated myoblasts (C), and
average cross-sectional muscle fiber area (D). Effects of the experimental group (GRP) were evaluated
and are noted where significant (p < 0.05). a–c Means with different superscripts differ (p < 0.05).
Representative staining images are included in the Supplemental Materials.

3.5.3. Ex Vivo Myoblast Function

Pax7+ staining indicated that the average purity of primary fetal myoblast isolates
was 92.4%. Proliferation rates during the 2 h EdU pulse were lower (p < 0.05) for myoblasts
isolated from IUGR and IUGR+EPA fetuses than from controls, regardless of media insulin
concentration (Figure 7A). Differentiation rates (i.e., myogenin+ nuclei after ex vivo dif-
ferentiation) were lower (p < 0.05) for myoblasts isolated from IUGR fetuses than those
isolated from controls or IUGR+EPA fetuses (Figure 7B). No differences were observed in
ex vivo myoblast function between males and females or between singletons and twins.
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Figure 7. Ex vivo myoblast function for IUGR fetal lambs administered daily with eicosapen-
taenoic acid. Primary myoblasts were isolated from the hindlimb muscles of control (n = 11), IUGR
(n = 8), and IUGR+EPA fetuses (n = 9) and studied in culture. Data are presented for proliferation
rates (A) during a 2 h EdU pulse and for differentiation rates (B) following a 4-day induction of
differentiation. Effects of the experimental group (GRP), incubation media, and group × media
interaction were evaluated and are noted where significant (p < 0.05). a,b Means with different
superscripts differ (p < 0.05).

4. Discussion

In this study, we found that targeting systemic inflammation in IUGR fetal sheep with
a daily infusion of the ω-3 polyunsaturated fatty acid eicosapentaenoic acid recovered
myoblast differentiation capacity and improved muscle hypertrophy. These improvements
occurred despite no meaningful amelioration of placental insufficiency or the associated
fetal hypoxemia. Stress conditions during pregnancy can increase lipid accumulation,
inflammation, and fibrosis in placental tissues [51–53], which in turn diminishes placental
function [54,55]. Maternal hyperthermia in the present study resulted in larger and more
abundant lipid droplets within placentome tissues. Although the fibrotic area was not in-
creased at this stage of pregnancy, the placental transfer of O2 to the fetus was nevertheless
diminished by about 37%. Physiological hypoxia stimulates strong inflammatory responses
from leukocytes [56–58]. This was characterized in our IUGR fetuses by persistently greater
numbers of cytokine-producing monocytes in the bloodstream and an almost 70% ele-
vation in circulating TNFα concentrations. Fetal hypoxemia is resolved by birth, and
circulating monocyte numbers consequently return to normal in IUGR offspring [24]. How-
ever, we recently found that blood cytokine concentrations remained elevated well after
birth [24,25], which is consistent with the programming of a more inflammatory phenotype
in IUGR monocytes [59]. In the present study, systemic inflammation in IUGR fetuses
also coincided with a 42% reduction in circulating concentrations of the anti-inflammatory
ω-3 PUFA eicosapentaenoic acid, which was presumably a product of stress-impaired
∆5 and ∆6 desaturase activity, as previously observed [60–63]. The loss of endogenous
eicosapentaenoic acid may also help to explain enhanced inflammatory sensitivity in IUGR
muscle, illustrated by greater IL6R protein content in this study and by greater TNFR1 and
other canonical pathway components in previous studies [29,34,64]. As fetal infusion of
eicosapentaenoic acid brought circulating concentrations back to normal, monocyte and
TNFα concentrations returned to normal in kind. In contrast, concentrations of other white
blood cells remained elevated, indicating that the anti-inflammatory effects were primarily
directed at monocytes. Cell culture studies show that ω-3 PUFA moderates monocytic
activity by inhibiting canonical NFκB, p38 MAPK, and TLR4 pathways [65–67], which in
turn reduce cytokine production and secretion [68]. Similar outcomes were reported when
ω-3 PUFA was used to treat chronic inflammatory conditions in humans, as monocytic
populations and activity were suppressed with little or no effect on other leukocytes [69–71].

Disrupting systemic inflammation in IUGR fetuses improved indicators of body com-
position and muscle growth. Hallmark asymmetry of the IUGR fetus arises from the
preferential sparing of vital brain and heart growth at the expense of muscle and adipose
accretion [72,73]. These programmed patterns of disproportional tissue growth persist in
IUGR-born offspring [13,72,74]. Although reduced fat deposition is resolved postnatally,
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reduced muscle mass remains a lifelong deficiency [24,75,76]. In our IUGR fetuses, asym-
metric body composition was clearly associated with the disproportionate restriction of
muscle growth. To illustrate, IUGR fetal body weights were reduced by 21%, but individual
muscle weights were reduced by 24% to 39%. Moreover, fetal hindlimbs, which are up
to two-thirds skeletal muscle [45], were 26% lighter than normal. By comparison, IUGR
fetal brain and heart weights were reduced by only 10% and 16%, respectively. Greater
brain-to-bodyweight ratios in IUGR fetuses were perhaps the most indicative of hallmark
brain sparing. Not surprisingly, the resolution of asymmetric body composition follow-
ing eicosapentaenoic acid infusion was associated with an approximate 50% recovery in
weights for individual muscles and hindlimbs. Clinical studies have shown that long-term
ω-3 PUFA supplementation can increase muscle mass in healthy individuals without in-
creasing adiposity [77,78] and can slow or even prevent muscle atrophy under pathological
conditions [79,80]. Similarly, ω-3 PUFA supplementation to meat animals increased carcass
weight, lean muscle yield, and size of individual meat cuts without increasing carcass
fat [81,82]. Supplementing ω-3 PUFA-rich fish oil also preserved muscle growth rates in
lambs during prolonged heat stress by circumventing systemic inflammation [83,84].

Improved muscle growth in eicosapentaenoic acid-infused IUGR fetuses was facil-
itated by the recovery of myoblast function. Because of their role in muscle fiber hyper-
trophy, the intrinsic functional impairment of IUGR myoblasts is rate-limiting for muscle
growth [29,50]. Ex vivo assessments in the present study revealed a modest deficit in
the proliferative capacity of IUGR fetal myoblasts that was not apparent when myoblast
populations of the semitendinosus muscle were profiled by staining. However, the differenti-
ation capacity of IUGR myoblasts was substantially impaired, as illustrated by 23% fewer
myogenin-positive cells following ex vivo induction and 51% fewer myogenin-positive
nuclei in the IUGR semitendinosus. Previous cell culture experiments have demonstrated
that TNFα and other inflammatory mediators are particularly strong inhibitors of myoblast
differentiation and fusion [85–90]. This suppressive effect occurs largely via canonical
pathways, as the inhibition of individual membrane receptors and downstream second
messengers like TRAF6 and NFκB diminished much of the inhibitory effect [28,90–92]. A
recent study from our lab found that IUGR fetal myoblasts develop enhanced sensitiv-
ity to inflammatory cytokines [29], which is also evident in their muscle tissues [34,64].
Additional studies demonstrated that fetal inflammation alone is sufficient to suppress
hypertrophic muscle growth before and after birth [4,34]. Consequently, targeting sys-
temic fetal inflammation in the present study markedly improved myoblast differentiation
capacity, which in turn contributed to the recovery of muscle fiber size.

Improved IUGR fetal muscle growth with eicosapentaenoic acid was not facilitated by
a resolution in elevated muscle IL6R content, which remained uncorrected following the
infusion regimen. This was somewhat unexpected, as previous literature led us to postulate
that sustained the alleviation of systemic inflammation might circumvent enhanced inflam-
matory pathways. Specifically, canonical IL6R pathways are known to suppress muscle
growth [93,94], and IL6R expression was increased in the hindlimb muscles of fetal rats
following chronic intrauterine inflammation, resulting in a smaller muscle size [95]. Assess-
ments of ω-3 PUFA exposure on IL6R-mediated pathways in skeletal muscle are limited
in the current literature. However, incubation of epithelial cells with ω-3 PUFA or their
bioactive metabolites reduced gene and protein expression for IL6R as well as several down-
stream signaling components [96,97]. Even though skeletal muscle IL6R content remained
elevated following eicosapentaenoic acid infusion in our IUGR fetuses, it is possible that
pathways were disrupted further downstream. For example, the anti-inflammatory effects
of ω-3 PUFA in myoblast cell lines were at least partially facilitated by the upregulation of
PPARγ, which is a disruptor of NFκB activity [98,99]. Thus, a robust assessment of down-
stream changes in addition to cytokine receptors is a warranted component of future IUGR
intervention studies. In an additional unexpected observation, the deficit in skeletal muscle
β2 adrenoceptor content observed in our IUGR fetuses was resolved with eicosapentaenoic
acid infusion. This represents a key potential mechanistic explanation for the programmed
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dysregulation of IUGR muscle growth, as well as a target for its resolution. Under normal
conditions, β2 adrenergic pathways stimulate muscle protein synthesis, myoblast activity,
and hypertrophic growth [100–104]. In IUGR-born offspring, however, skeletal muscle β2
adrenoceptor content and activity are reduced [12,13,24]. The pharmaceutical stimulation
of β2 adrenergic activity in these IUGR-born offspring helped improve muscle growth and
metabolic function but did not correct the β2 adrenoceptor deficit [24]. Regulation by in-
flammatory and β2 adrenergic systems can be antagonistic, and β2 adrenergic stimulation
has been shown to dampen canonical inflammatory signaling pathways in skeletal and
smooth muscle [105–107]. Additionally, administering β2 agonists suppressed elevated cir-
culating cytokines in IUGR-born lambs [25] and heat-stressed livestock [108,109]. Inversely,
experimentally heightened inflammation in rodent models reduced β2 adrenergic tone
in skeletal muscle [110], smooth muscle [111–114], cardiomyocytes [115,116], and alveolar
leukocytes [117]. Moreover, the incubation of primary brain cells with ω-3 PUFA increased
β2 adrenoceptor content and intracellular cAMP concentrations [108,109,118]. Chronic
hypercatecholaminemia and systemic inflammation are both hallmark conditions of the
IUGR fetus [2,64], and we previously presumed that reduced skeletal muscle β2 adreno-
ceptor was solely a product of the former [119,120]. However, our present findings indicate
that systemic inflammation is, in fact, a key contributor to the loss of β2 adrenergic tone.
Therefore, therapeutic intervention with anti-inflammatory bioactive compounds produces
the dual benefit of reducing heightened inflammatory tone and rescuing diminished β2
adrenergic tone, resulting in the improvement of myoblast function and muscle growth in
the IUGR fetus.

5. Conclusions

From this study, we can conclude that systemic fetal inflammation plays a major role in
IUGR muscle growth deficits and, thus, may be an effective target for therapeutic interven-
tion strategies. It is reasonable to assume that placental insufficiency-induced hypoxemia
was the primary driver of heightened inflammation in our IUGR fetuses. However, these
fetuses also exhibited marked reductions in endogenous circulating eicosapentaenoic acid
concentrations. When concentrations of this anti-inflammatory ω-3 PUFA were brought
back to normal with daily fetal infusions, indicators of heightened inflammatory tone
likewise returned to normal despite the persistence of hypoxemia. After receiving eicos-
apentaenoic acid infusions for 5 days, IUGR fetuses exhibited a ~50% recovery in muscle
growth indicators, which was notably associated with improved myoblast differentiation
capacity. Programmed changes identified in IUGR fetal muscle included greater IL6R and
reduced β2 adrenoceptor, both of which help explain poor muscle growth. Targeting sys-
temic inflammation with eicosapentaenoic acid failed to resolve the increase in IL6R, which
would have reflected circumvention of enhanced muscle sensitivity to inflammation. How-
ever, eicosapentaenoic acid unexpectedly recovered the β2 adrenoceptor deficit observed in
the IUGR muscle, which likely played a key role in the more favorable growth phenotype.
Together, these findings demonstrate the potential value of systemic fetal inflammation as a
therapeutic target for improving growth and body composition outcomes in stress-induced
IUGR fetuses.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/metabo14060340/s1, Supplemental Figure S1. Hematology
components for IUGR fetal lambs administered daily with eicosapentaenoic acid. Supplemental
Figure S2. Representative images for myoblast staining in IUGR fetal lambs administered daily with
eicosapentaenoic acid.
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