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Abstract: Bladder cancer usually has been diagnosed in elderly patients as it stays asymptomatic until
it presents. Current detection methods for bladder cancer cannot be considered as an adequate screen-
ing strategy due to their high invasiveness and low sensitivity. However, there remains uncertainty
about targets with high sensitivity and specificity for non-invasive bladder cancer examination. Our
study aims to investigate the actionable non-invasive screening biomarkers in bladder cancer. Here,
we employed scRNA-seq to explore the crucial biological processes for bladder cancer development.
We then utilized bidirectional Mendelian randomization (MR) analysis to explore the bidirectional
causal relationship between ATP-associated metabolites in urine and bladder cancer. Lastly, we used
a BBN-induced mouse model of bladder cancer to validate the crucial gene identified by scRNA-seq
and MR analysis. We found that (1) the ATP metabolism process plays a critical role in bladder cancer
development; (2) there is a bidirectional and negative causal relationship between fructose-to-sucrose
ratio in urine and the risk of bladder cancer; and (3) the higher expression of TPI1, a critical gene in
the fructose metabolism pathway, was validated in BBN-induced bladder tumors. Our results reveal
that fructose-to-sucrose ratio can serve as a potential target of urinalysis in bladder cancer.

Keywords: ATP-associated metabolites; bladder cancer; urinalysis; Mendelian randomization study

1. Introduction

Bladder cancer is a highly heterogeneous disease with distinct pathology and molecu-
lar phenotypes [1–3]. Bladder cancer can be classified into two major types, non-muscle-
invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), based on
tumor stage. Although most patients (70%) are initially diagnosed as NMIBC with a
good prognosis, frequent recurrence and relapse progression largely limit our ability to
completely cure NMIBC [4]. The patients with NMIBC need frequent evaluation with
aggressive methods to diagnose relapse tumors [5]. The strict follow-up impairs their
quality of life and increases their financial burdens. Patients with MIBC also typically
accumulate the high costs produced by cystectomy and chemotherapy [4,5]. If bladder
cancer can be detected with non-invasive techniques at an early or even pre-malignancy
stage, overall survival and life quality of patients will be largely improved.

Currently, invasive cystoscopy is the major method for screening for bladder cancer [6],
and this may cause urethral injury, urinary tract infection, and hematuria [7]. Clinicians
also apply a non-invasive method (urine cytology) to detect cancer cells in urine, but it
has a low sensitivity [8]. The advances in multi-omics have enabled the analysis of liquid
biopsies through urinary metabolites, urinary free DNA, and urinary proteins [9]. Although
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genomics and proteomics have helped subtype many cancers and found many biomarkers,
these biomarkers lacked good sensitivity and specificity because of considerable hetero-
geneity in tumor phenotypes and patient outcomes, even within the same genomic subtype,
owing to unique cellular processes and metabolic profiles [10].

Emerging evidence has shown the changes in a class of urinary metabolites of patients
with bladder cancer compared with healthy controls. However, some studies regarding
changes in some metabolites are conflicting in patients with bladder cancer, as they have
been described as both reduced [11,12] and increased [13]. These discrepancies might be
owing to different measurement methods. Shao et al. [14] further emphasized the variability
of putative biomarkers which are influenced by serval unmeasured confounders. Although
researchers made efforts in statistics and methods to address them [15,16], these biases still
persist and pose challenges to reliable designation of potentially effective and actionable
screening targets.

Mendelian randomization (MR) estimates the potential causality between the expo-
sure and the outcome based on associations between single-nucleotide polymorphisms
(SNPs) and instrumental variables (IVs) [17]. Since genotypes are random during gamete
formation, the involvement of the IV model largely resolves problems of confounding in
observational studies, particularly the bias effects of unmeasured confounders on causal
inference [18]. Therefore, MR enables effective identification of urinary biomarkers for
screening of bladder cancer.

Here, we employed scRNA-seq and MR analysis to investigate potential urinary
targets for non-invasive screening of bladder cancer, and further validated our approach in
the N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced tumors of bladder cancer.

2. Materials and Methods
2.1. Study Design

We initially leveraged single-cell RNA-seq (scRNA-seq) to identify the vital candi-
date biological processes in bladder cancer. Next, we employed two-sample Mendelian
randomization to investigate the correlation between 73 ATP-associated metabolites from
the genome-wide association study (GWAS) datasets and the risk of bladder cancer. After
that, eight ATP-associated metabolites were identified. We reconducted the MR analysis to
further explore the precise relationship between the eight ATP-associated metabolites and
the risk of bladder cancer (negative correlation or positive correlation). We further utilized
metabolism data to validate the above results from urine metabolomics datasets. Subse-
quently, to examine the possibility of reverse causality and mediating effects, we employed
a reverse analysis of the impact of bladder cancer on eight ATP-associated metabolites
using urine metabolomics datasets. Finally, we used a BBN-driven mouse model of bladder
cancer to validate the feasibility of the above analyses. A schematic of the study is shown
as a flowchart in Figure 1.

2.2. Single-Cell RNA-Seq Analysis

We downloaded the series GSE225190 dataset from GEO to obtain single-cell data
from three samples of normal bladder tissue, and downloaded series GSE135337 to obtain
single-cell data from seven samples of bladder cancer tissue.

The Seurat (v.4.3.0) workflow was applied for the analysis and visualization of single-
cell RNA-seq data. Genes expressed in fewer than three cells were not considered, and
cells expressing between 300 and 7000 genes with less than 10% mitochondrial proportion
were retained for further analysis. All datasets were merged using the Seurat “merge”
function, and principal component analysis was performed using 4000 highly variable
genes identified with the “vst” mode.
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2.3. Genetic Variation of Metabolites Related to ATP Metabolism

We obtained the exposures of 73 metabolites related to ATP metabolism from the
EMBL-European Bioinformatics Institute. Further filter for significantly associated single
nucleotide polymorphisms (SNPs (official name)) as instrumental variables not single nu-
cleotide variants (SNVs), all meeting the genome-wide significance threshold (p < 1 × 10−5,
linkage disequilibrium [LD] R2 > 0.001 within a 10,000 kb window). p-values were calcu-
lated by the Chi-square test. The F-statistics was computed to assess weak instrument bias
and remove weak instrumental variables (F statistic > 10). Table S1 presents comprehensive
information on the 73 ATP-associated metabolites.
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2.4. GWAS Data for Outcome

The genome-wide association study (GWAS) datasets for bladder cancer of the Euro-
pean population were obtained from the IEU GWAS database (https://gwas.mrcieu.ac.uk/
(accessed on 5 January 2024)).

2.5. Acquisition of Urine Metabolomics Data

Urine metabolomics data consisting of 66 bladder cancer patients and 89 normal
subjects were obtained from the literature to acquire differential metabolites between
bladder cancer patients and normal cohorts [13]. Differential metabolites were screened
with p-value < 0.05 and absolute logFC > 0. p-values were calculated by t-test and were FDR-
corrected using the Benjamini–Hochberg procedure, and finally, associated metabolites
were retained if they had an FDR below 0.1.

2.6. Immunohistochemistry and Histology

All paraffin-embedded tumor tissues were sectioned with 5 µm thickness. For histol-
ogy, sections were dehydrated in Xylene (Aladdin, Shanghai, China, Cas# X139941) for
5 min thrice, 100% ethanol (Aladdin, Cas# E684328) for 3 min twice, 95% ethanol for 2 min,
70% ethanol for 2 min, and 50% ethanol for 2 min, and then were processed by Hematoxylin
and Eosin (H&E) staining according to the standard protocol. For immunohistochemistry,
the section of paraffin-embedded mouse bladder tissue was incubated in boiled sodium cit-
rate buffer for 5 min in a high-pressure chamber (Biocare Medical, Pacheco, CA, USA). The
tissues were then blocked with 10% goat serum for 30 min at room temperature, rinsed with
PBST three times, and further incubated with the primary antibody (HUABIO, Guangzhou,
China, Cat# HA500283, 1/400) for 60 min at room temperature. DAB (Thermo Scientific,
Waltham, MA, USA, Cat# 34002) was used as the chromogen. Tissues were counterstained
with hematoxylin and mounted with DPX media (Thermo Scientific, USA, Cat# X1525).

2.7. Statistical Analysis

The Mendelian randomization (MR) was conducted using the “TwoSampleMR” pack-
age (version 0.5.7) in R (version 4.2.2). Various MR approaches, including inverse variance
weighted (IVW), weighted median, simple mode, weighted mode, and MR-Egger, were
employed to investigate the potential causal effect of 73 ATP-associated metabolites on
the risk of bladder cancer. The IVW method is the primary method. Only metabolites for
which the OR values from all five methods are either all greater than 1 or all less than 1, and
the p value for the IVW method is less than 0.05, are identified as metabolites associated
with bladder cancer. If OR values are close to 1 in some studies of small sample size, the
effects could be statistically significant when the p value is below 0.05. Therefore, we still
use these data for further analysis. Additionally, if we use MR approaches to investigate the
more complex questions like phenotypes, the OR values should be improved to increase
reliability of results.

Instrumental variables from different analysis platforms, experiments, and popula-
tions may have heterogeneity, thus affecting Mendelian randomization analysis results.
Heterogeneity is assessed by IVW and MR-Egger tests. Cochran Q-derived p < 0.05 in-
dicates the presence of heterogeneity in the study. If the instrument variable affects the
outcome through factors other than the exposure, then the instrument exhibits pleiotropy.
Pleiotropy causes the independence and exclusion restriction assumptions to fail. The MR-
Egger intercept test can detect pleiotropy in the data and assess the robustness of the results.
If p-value < 0.05, it indicates that there is pleiotropy present in the data. The leave-one-out
method was used to conduct a sensitivity analysis, with each SNP being removed in turn
to observe whether the results changed after excluding each SNP to assess sensitivity.

2.8. Carcinogen-Induced Mouse Model of Bladder Cancer

In the experimental group, male C57BL/6J mice (Gempharmatech Co., Ltd., Nanjing,
China) at eight weeks old received 0.05% (w/v) BBN in drinking water. In the control

https://gwas.mrcieu.ac.uk/


Metabolites 2024, 14, 345 5 of 16

group, eight-weeks-old male C57BL/6J mice drank normal water without BBN. After four
months, all bladders from two groups were collected, and then fixed in 10% formalin for
24 h for further H&E staining and immunohistochemistry.

3. Results
3.1. Single-Cell RNA-Seq Reveals the Critical Role of ATP-Associated Metabolism in Bladder
Cancer Development

To explore the effective screening targets in bladder cancer, we integrated the scRNA-
seq data across seven bladder cancer samples and three normal samples, and then detected
seven distinct subpopulations characterized by “SingleR” package and manual annotation:
epithelial population, stromal population, macrophage population, T cell population, en-
dothelial population, B cell population, and mast cell population (Figure 2A). Additionally,
all epithelial cells in the seven bladder cancer samples were considered to be cancer cells
based on inferred copy number variations (CNV) [19]. Therefore, we then re-subtyped
the epithelial population into cancer cells and normal epithelial cells according to types
of samples (Figure 2B), and further investigated differentially expressed genes (DEGs) be-
tween them and functions of DEGs through gene ontology (GO) enrichment (Figure 2C,D).
GO enrichment indicated that the almost top 10 enriched biological pathways (BPs) are
associated with cell metabolism (Figure 2D). From the enriched BPs, we found that ATP is
involved in almost all activity of enriched BPs, and the ATP metabolism process has the
highest enrichment level (Figure 2D). Collectively, ATP metabolism is a limiting process
for cancer development and metabolic preferences of bladder cancer cells compared with
normal cells.

3.2. Two-Sample Mendelian Randomization Analysis of 73 ATP-Associated Metabolites and
Bladder Cancer

Cells adapt ATP metabolism to support bladder tumor initiation and progression [20],
but there remains uncertainty about which metabolites are associated with the risk of bladder
cancer. To dissect ATP-associated metabolites related with the risk of bladder cancer, we
leveraged a two-sample MR to investigate the causal impacts of 73 ATP associated metabolites
on the risk of bladder cancer. Metabolites for which the OR values from all five methods (see
statistical analyses in method) are either all more than 1 or all less than 1, and the p value on
IVW method is less than 0.05, are identified as the metabolites associated with risk of bladder
cancer. Finally, we obtained eight ATP-associated metabolites based on the filtering criteria
shown in Figure 3. The detailed results of MR analysis are shown in Table 1.
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Table 1. MR analysis for eight ATP-associated metabolites’ associations with bladder cancer risk.

ID Exposure Method No. of
SNPs OR 95% CI p Value

GCST90199642 Ribitol levels MR-Egger 31 0.999064 0.99816~0.99997 0.052
Weighted median 31 0.999396 0.99854~1.00025 0.167
Inverse variance

weighted 31 0.999435 0.99889~0.99998 0.041

Simple mode 31 0.998796 0.9973~1.00029 0.125
Weighted mode 31 0.999261 0.9984~1.00012 0.103

GCST90200673 Carnitine C4 levels MR-Egger 35 1.000092 0.9996~1.00058 0.716
Weighted median 35 1.000298 0.9999~1.0007 0.147
Inverse variance

weighted 35 1.00039 1.00006~1.00072 0.021

Simple mode 35 1.000362 0.99928~1.00145 0.517
Weighted mode 35 1.000297 0.99991~1.00069 0.142

GCST90199776 Malonylcarnitine levels MR-Egger 20 1.000758 0.99885~1.00267 0.446
Weighted median 20 1.000772 0.99976~1.00179 0.135
Inverse variance

weighted 20 1.000771 1.00005~1.00149 0.035

Simple mode 20 1.000998 0.99908~1.00292 0.321
Weighted mode 20 1.000998 0.99918~1.00282 0.295

GCST90200327 Choline levels MR-Egger 23 1.000352 0.99851~1.0022 0.713
Weighted median 23 1.001155 1.00009~1.00222 0.034
Inverse variance

weighted 23 1.000838 1.00008~1.0016 0.031

Simple mode 23 1.00173 0.99969~1.00378 0.111
Weighted mode 23 1.001141 0.99932~1.00296 0.232

GCST90200865

Adenosine
5′-monophosphate
(AMP) to histidine

ratio

MR-Egger 22 1.002257 1.0002~1.00432 0.044
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Table 1. Cont.

ID Exposure Method No. of
SNPs OR 95% CI p Value

Weighted median 22 1.000794 0.99968~1.00191 0.161
Inverse variance

weighted 22 1.000846 1.00005~1.00164 0.036

Simple mode 22 1.000893 0.99876~1.00303 0.421
Weighted mode 22 1.000931 0.99887~1.003 0.386

GCST90200859

Adenosine
5′-monophosphate

(AMP) to asparagine
ratio

MR-Egger 23 1.001818 1.0002~1.00344 0.039

Weighted median 23 1.000706 0.99961~1.0018 0.205
Inverse variance

weighted 23 1.000882 1.00017~1.00159 0.015

Simple mode 23 1.000947 0.99916~1.00274 0.312
Weighted mode 23 1.000841 0.99944~1.00225 0.254

GCST90200245 Eicosenedioate
(C20:1-DC) levels MR-Egger 19 1.000108 0.99889~1.00133 0.865

Weighted median 19 1.000867 0.99993~1.00181 0.071
Inverse variance

weighted 19 1.000743 1.00007~1.00141 0.03

Simple mode 19 1.000731 0.99887~1.0026 0.452
Weighted mode 19 1.000931 0.99998~1.00188 0.07

GCST90200916 Fructose to sucrose
ratio MR-Egger 23 0.998772 0.99675~1.0008 0.248

Weighted median 23 0.999235 0.99812~1.00035 0.18
Inverse variance

weighted 23 0.99916 0.99833~0.99999 0.047

Simple mode 23 0.999513 0.99748~1.00155 0.644
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Figure 3. The process of screening metabolites related to bladder cancer. Circular heatmaps of
ATP-associated metabolites display the Mendelian randomization results calculated by five methods
(left) and filtered metabolites with a causal relationship (right).

3.3. Two-Sample Mendelian Randomization Analysis of Eight ATP-Associated Metabolites and
Bladder Cancer

To investigate the precise relationship between filtered metabolites and the risk of
bladder cancer, we leveraged five MR methods to scrutinize the relationship between eight
ATP-associated metabolites and the risk of bladder cancer. Our results revealed a negative
correlation between GCST90199642 (Ribitol) and GCST90200916 (fructose-to-sucrose ratio)
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and the likelihood of bladder cancer (Figure 4A,B), and a positive correlation between the
remaining six ATP metabolites and risk of bladder cancer (Figure 4C–H). Additionally,
the leave-one-out analysis indicated that our results did not change significantly after
excluding a single SNP, suggesting that the results were stable (Figure 5A–H). We further
used three MR methods based on urine metabolomics data to investigate whether urinary
metabolomics data matched previous results. Figure 6A shows that the results of MR
analysis based on two different datasets are consistent. The volcano plot further revealed
relative levels of specific urinary metabolites in patients with bladder cancer compared
with healthy subjects (Figure 6B). Interestingly, levels of fructose and sucrose are both lower
in bladder cancer patients, further requiring a combination of fructose and sucrose as a
biomarker to elevate sensitivity and specificity for urinalysis.
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3.4. Reverse Mendelian Randomization Analysis of Eight ATP-Associated Metabolites and
Bladder Cancer

To ascertain the potential reverse causal association between eight urinary metabo-
lites and bladder cancer, a Mendelian randomization (MR) analysis was conducted with
bladder cancer as the exposure variable and the eight urinary metabolites as the outcome
variable. The results revealed a nonsignificant correlation between the two variables with p
value greater than 0.05, except for GCST90200916 (fructose-to-sucrose ratio) (Figure 7A).
The leave-one-out analysis demonstrated that the relationship between them was stable
(Figure 7B). A scatter plot for the causal effects of bladder cancer level and fructose-to-
sucrose ratio based on five MR methods revealed a strong negative relationship between
them (Figure 7C).
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3.5. Fructose-to-Sucrose Ratio Was Validated in a BBN-Induced Bladder Cancer Mouse Model

To further verify the feasibility and actionability of fructose-to-sucrose ratio as the uri-
nalysis target, as mentioned previously, a volcano plot of DEGs associated with metabolism
revealed that ALDOA, PKM, BPGM, GAPDH, and TPI1 were upregulated in bladder cancer
(Figure 2C).

Among the above DEGs, only TPI1 and ALDOA are directly involved in the fructose
metabolism pathway [21,22]. A study also indicated that ALDOA was upregulated in
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bladder cancer and promoted bladder cancer malignant progression, while there is no
report associated with TPI1 in bladder cancer [23]. Therefore, we established a BBN-
induced bladder cancer mouse model to detect expression of TPI1 in the tumors and the
normal bladder tissues. As shown in Figure 8A, we studied mice either with or without
0.05% BBN, and then collected bladders from the control group and BBN group after four
months. Next, the bladder tumors and normal bladder tissues were subjected to H&E
staining and IHC. H&E staining and IHC results showed that TPI1 was upregulated in
tumor tissues (Figure 8B,C). Collectively, these results indicated that fructose-to-sucrose
ratio may be an ideal candidate screening target.
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Figure 8. Expression of TPI1 was validated in BBN-induced mouse model of bladder cancer.
(A) Schematic diagram of the generation of BBN-induced mouse model of bladder cancer and
histological analyses. (B) Bladders from BBN and control group were collected and subjected to H&E
staining. Normal: n = 3; tumor: n = 3. Scale bars, 50 µm. (C) TPI1 staining of bladder tissues from
BBN and control group. Normal: n = 3; tumor: n = 3. Scale bars, 50 mm.
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4. Discussion

In this study, we leveraged scRNA-seq across seven bladder tumors and three normal
bladders to determine the critical role of the ATP metabolism process in bladder cancer
development. Through forward MR study on 73 ATP-associated metabolites and the risk of
bladder cancer, we did find that 2 ATP-associated metabolites (GCST90199642: Ribitol and
GCST90200916: fructose-to-sucrose ratio) were negatively associated with risk of bladder
cancer, and 6 ATP metabolites (GCST90199776: Malonylcarnitine; GCST90199909: Eicosene-
dioate (C20:1-DC); GCST90200327 Choline; GCST90200673: Carnitine C4; GCST90200859:
Adenosine 5′-monophosphate (AMP)-to-asparagine ratio; GCST90200865: Adenosine 5′-
monophosphate (AMP)-to-histidine ratio) were positively associated with risk of bladder
cancer. The MR analysis of the above eight metabolites using urinary metabolomics data
further supported their causal relationship. The reverse MR analysis further revealed a
negative association between GCST90200916 (fructose-to-sucrose ratio) in urine and blad-
der cancer. BBN-induced bladder tumors confirmed higher expression of TPI1, a critical
gene in the fructose metabolism pathway.

The advances in urine-based genomic and proteomic analysis enable the non-invasive
generation of cellular morphology and both genomic and non-genetic information [24–27].
However, despite substantial progress in diagnosis marker research, the role of genomic
and proteomic cancer biomarkers in clinical practice is still limited by the lack of either
specificity or sensitivity [8,28]. Progress toward answering how to elevate the sensitivity
and specificity of methods requires some new insights into cancer biology and urinalysis
techniques. Following this notion, we applied scRNA-seq to investigate which biological
processes are vital for bladder cancer development. GO enrichment analysis revealed
the ATP metabolism process at the single-cell level was the most enriched in bladder
cancer (Figure 2D). These results indicated that ATP-associated metabolites may be the
potential candidate bladder cancer biomarkers. Indeed, metabolomics focuses on the
more downstream products compared to genomic and proteomic, and thus most closely
reflects a system’s phenotype [29,30]. Four MS studies on metabolic profiles from patients
with bladder cancer and healthy subjects [11,12,31,32] showed excellent sensitivities and
specificities (both 100%). Several studies also reported consistent results for the same
metabolite in patients of bladder cancer using different combinations of metabolomics
methods [11,13,31], indicating that targets of urinalysis based on metabolites are particularly
convincing in terms of the stability of results.

Exploiting cell metabolism for clinical benefit requires understanding the contextual
specificity of metabolic preferences. Some evidence showed fructose in urine from patients
with bladder cancer at lower levels compared with healthy subjects [12,31]. A urine
metabolomics study of rat bladder cancer showed an association between sucrose level
and the risk of bladder cancer [33]. In this study, two-sample MR analysis revealed
that fructose-to-sucrose ratio was negatively associated with risk of bladder cancer. If
there is a bidirectional causal relationship between bladder cancer and metabolites, the
metabolites will demonstrate more sensitivity and specificity as urinalysis biomarkers. To
ascertain whether a reverse causality exists between fructose-to-sucrose ratio and bladder
cancer, a reverse two-sample MR analysis was conducted with bladder cancer serving as
the exposure factor and fructose-to-sucrose ratio in urine as the outcome. The findings
indicated that there is a reverse causal relationship between them (Figure 7A–C). When
fructose-to-sucrose ratio decreases, meaning the relative level of fructose decreases or the
relative level of sucrose increases, risk of bladder cancer increases. Using a combination of
fructose and sucrose level may be a feasible strategy for urinalysis of bladder cancer, but
we need to determine the baseline of fructose-to-sucrose ratio as a reference.

As previously mentioned, urine metabolomics showed different results based on dif-
ferent platforms [11,12,31]. The greatest advantage in this study is that the causal estimate
obtained by MR avoids confounding bias and elevates sensitivity by reverse causality
analysis. Additionally, increasing the number of GWAS data in MR analyses can improve
accuracy. In our study, we also used urinary metabolomics data from other platforms
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to successfully validate the results of MR analysis based on GWAS data (Figure 6A,B).
However, our study still has several limitations. First, the results could not be generalized
to other ethnicities and races because the population in our study was entirely European.
Secondly, the number of IVs used in reverse MR is limited. We should conduct reverse MR
analysis using a larger sample size to increase the reliability of data in the future. Finally,
the sensitivity and specificity should be validated in a large bladder cancer community.

In conclusion, long-term exposure to some ATP-associated metabolites, such as mal-
onylcarnitine and choline, may increase the risk of bladder cancer, but this requires further
support from additional evidence in the future. Our bidirectional MR study showed a
negative association between fructose-to-sucrose ratio in urine and the risk of bladder
cancer, shedding light on a potential actionable target of urine screening. Given the fact
that fructose and sucrose have different levels between patients with bladder cancer and
healthy subjects, further investigations were employed in BBN-induced bladder tumors
and normal bladders to confirm a higher expression of TPI1, a critical gene in the fructose
metabolism pathway.
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https://www.mdpi.com/article/10.3390/metabo14060345/s1, Table S1: Summary of 73 ATP associ-
ated metabolites datasets.
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