Metabolomics Analysis of Rabbit Plasma after Ocular Exposure to Vapors of Sulfur Mustard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.2. Untargeted LC–HRMS Metabolomics
2.3. UHPLC–MS/MS Targeted Quantification of SM Adducts
2.4. Data Processing and Analysis of Metabolomics Data
2.5. Statistical Analyses
3. Results and Discussion
3.1. Plasma Metabolite Profiling of Control and SM-Exposed Rabbits
3.2. Global Metabolic Changes Occurring in Plasma Post-SM Exposure
3.3. Looking for Biomarkers of SM Exposure
3.4. Metabolic Pathways Dysregulated after Ocular Exposure to SM
3.4.1. Ocular Exposure to SM Induces Systemic Inflammation
3.4.2. Metabolites Potentially Associated with Ocular Neovascularization
3.4.3. Additional Systemic Effects Induced by SM Ocular Exposure and Potentially Associated with Microbiota
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Javadi, M.A.; Yazdani, S.; Sajjadi, H.; Jadidi, K.; Karimian, F.; Einollahi, B.; Ja’farinasab, M.R.; Zare, M. Chronic and delayed-onset mustard gas keratitis: Report of 48 patients and review of literature. Ophthalmology 2005, 112, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Sezigen, S.; Kenar, L. Recent sulfur mustard attacks in Middle East and experience of health profession. Toxicol. Lett. 2020, 320, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Etemad, L.; Moshiri, M.; Balali-Mood, M. Advances in treatment of acute sulfur mustard poisoning—A critical review. Crit. Rev. Toxicol. 2019, 49, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, G.A.; Petteys, S.M.; Phelps, J.F.; Wasmund, J.B.; Plackett, T.P. Sulfur mustard exposure: Review of acute, subacute, and long-term effects and their management. J. Spec. Oper. Med. 2019, 19, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Agarwal, R. Research models of sulfur mustard- and nitrogen mustard-induced ocular injuries and potential therapeutics. Exp. Eye Res. 2022, 223, 109209. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.N.; Tripathi, R.; Balne, K.P.; Green, L.S.; Sinha, R.P.; Bunyak, F.; Giuliano, A.E.; Chaurasia, S.S.; Mohan, R.R. Time-dependent in situ structural and cellular aberrations in rabbit cornea in vivo after mustard gas exposure. Exp. Eye Res. 2022, 224, 109247. [Google Scholar] [CrossRef] [PubMed]
- Etezad-Razavi, M.; Mahmoudi-Hefazi, M.; Balali-Mood, M. Delayed ocular complications of mustard gas poisoning and the relationship with respiratory and cutaneous complications. Clin. Exp. Ophthalmol. 2006, 34, 342–346. [Google Scholar] [CrossRef]
- Solberg, Y.; Alcalay, M.; Belkin, M. Ocular Injury by Mustard Gas. Surv. Ophthalmol. 1997, 41, 461–466. [Google Scholar] [CrossRef]
- McNutt, P. Progress towards a standardized model of ocular sulfur mustard injury for therapeutic testing. Exp. Eye Res. 2023, 228, 109395. [Google Scholar] [CrossRef]
- McNutt, P.M.; Kelly, K.E.M.; Altvater, A.C.; Nelson, M.R.; Lyman, M.E.; O’Brien, S.; Conroy, M.T.; Ondeck, C.A.; Bodt, S.M.L.; Wolfe, S.E.; et al. Dose-dependent emergence of acute and recurrent corneal lesions in sulfur mustard-exposed rabbit eyes. Toxicol. Lett. 2021, 341, 33–42. [Google Scholar] [CrossRef]
- Korkmaz, A.; Tan, D.; Reiter, J.R. Acute and delayed sulfur mustard toxicity; novel mechanisms and future studies. Interdiscip. Toxicol. 2008, 1, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Batal, M.; Rebelo-Moreira, S.; Hamon, N.; Bayle, P.A.; Mouret, S.; Cléry-Barraud, C.; Boudry, I.; Douki, T. A guanine-ethylthioethyl-glutathione adduct as a major DNA lesion in the skin and in organs of mice exposed to sulfur mustard. Toxicol. Lett. 2015, 233, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Batal, M.; Boudry, I.; Mouret, S.; Cléry-Barraud, C.; Wartelle, J.; Bérard, I.; Douki, T. DNA damage in internal organs after cutaneous exposure to sulphur mustard. Toxicol. Appl. Pharmacol. 2014, 278, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Van der Schans, G.P.; Mars-Groenendijk, R.; De Jong, L.P.A.; Benschop, H.P.; Noort, D. Standard Operating Procedure for Immunuslotblot Assay for Analysis of DNA/Sulfur Mustard Adducts in Human Blood and Skin. J. Anal. Toxicol. 2004, 28, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Hefazi, M. The pharmacology, toxicology, and medical treatment of sulphur mustard poisoning. Fundam. Clin. Pharmacol. 2005, 19, 297–315. [Google Scholar] [CrossRef]
- Kehe, K.; Szinicz, L. Medical aspects of sulphur mustard poisoning. Toxicology 2005, 214, 198–209. [Google Scholar] [CrossRef]
- Rose, D.; Schmidt, A.; Brandenburger, M.; Sturmheita, T.; Zille, M.; Boltze, J. Sulfur mustard skin lesions: A systematic review on pathomechanisms; treatment options and future research directions. Toxicol. Lett. 2018, 293, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Witkiewicz, Z.; Neffe, S. Chromatographic analysis of chemical warfare agents and their metabolites in biological samples. TrAC 2020, 130, 115960. [Google Scholar] [CrossRef]
- Batal, M.; Boudry, I.; Mouret, S.; Wartelle, J.; Emorine, S.; Bertoni, M.; Bérard, I.; Cléry-Barraud, C.; Douki, T. Temporal and spatial features of the formation of DNA adducts in sulphur mustard-exposed skin. Toxicol. Appl. Pharmacol. 2013, 273, 644–650. [Google Scholar] [CrossRef]
- Barr, J.R.; Pierce, C.L.; Smith, J.R.; Capacio, B.R.; Woolfitt, A.R.; Solano, M.I.; Wooten, J.V.; Lemire, S.W.; Thomas, J.D.; Ash, D.H.; et al. Analysis of Urinary Metabolites of Sulfur Mustard in Two Individuals after Accidental Exposure. J. Anal. Toxicol. 2008, 32, 10–16. [Google Scholar] [CrossRef]
- Roser, M.; Beal, D.; Eldin, C.; Gudimard, L.; Caffin, F.; Gros-Desormeaux, F.; Leonco, D.; Fenaille, F.; Junot, C.; Pierard, C.; et al. Glutathione conjugates of the mercapturic acid pathway and guanine adduct as biomarkers of exposure to CEES; a sulfur mustard analog. Anal. Bioanal. Chem. 2021, 413, 1337–1351. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.; Giuliano, E.; Nishant, R.; Sinha, N.; Mohan, R.R. Ocular toxicity of mustard gas: A concise review. Toxicol. Lett. 2021, 343, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, A.; Chen, X.; Zhu, A.; Zhang, L.; Hong, Z.; Chai, Y. Nuclear magnetic resonance-based plasma metabolomics revealed the protective effect of tea polyphenols on sulfur mustard-induced injury in rats. J. Pharm. Biomed. Anal. 2020, 186, 113278. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Liu, C.; Yang, Y.; Liang, L.; Chen, B.; Yu, H.; Xia, J.; Liu, S.; Li, Y. Advances in sulfur mustard-induced DNA adducts: Characterization and detection. Toxicol. Lett. 2021, 344, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Yang, L.; Kong, L.; Sun, Y.; Shen, K.; Cai, Y.; Sun, H.; Zhang, B.; Guo, S.; Zhang, A.; et al. Metabolomics of various samples advancing biomarker discovery and pathogenesis elucidation for diabetic retinopathy. Front. Endocrinol. 2022, 13, 1037164. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.; Chen, Y.; Hsieh, Y.; Chang, K.; Hsueh, P.; Chen, T.; Yu, J.; Chang, Y.; Li, L.; Wu, C. Integrated analyses utilizing metabolomics and transcriptomics reveal perturbation of the polyamine pathway in oral cavity squamous cell carcinoma. Anal. Chim. Acta 2018, 1050, 113–122. [Google Scholar] [CrossRef]
- Zaccherini, G.; Aguilar, F.; Caraceni, P.; Clària, J.; Lozano, J.J.; Fenaille, F.; Castelli, F.; Junot, C.; Curto, A.; Formentin, C.; et al. Assessing the role of amino acids in systemic inflammation and organ failure in patients with ACLF. J. Hepatol. 2021, 74, 1117–1131. [Google Scholar] [CrossRef] [PubMed]
- Carrizo, D.; Chevallier, P.O.; Woodside, V.J.; Brennan, F.S.; Cantwell, M.M.; Cuskelly, G.; Elliott, T.C. Untargeted metabolomic analysis of human serum samples associated with exposure levels of Persistent organic pollutants indicate important perturbations in Sphingolipids and Glycerophospholipids levels. Chemosphere 2017, 168, 731–738. [Google Scholar] [CrossRef]
- Zhu, L.; Jia, W.; Wang, Q.; Zhuang, P.; Wan, X.; Ren, Y.; Zhang, Y. Nontargeted metabolomics-based mapping urinary metabolic fingerprints after exposure to acrylamide. Ecotoxicol. Environ. Saf. 2021, 224, 112625. [Google Scholar] [CrossRef]
- Zamani, A.; Ghanei, M.; Panahi, Y.; Arjmand, M.; Sadeghi, S.; Mirkhani, F.; Parvin, S.; Salehi, M.; Sahebkar, A.H.; Vahabi, F. Serum Metabolomic Profiling of Sulphur Mustard-Exposed Individuals Using 1HNuclear Magnetic Resonance Spectroscopy. Basic. Clin. Pharmacol. Toxicol. 2016, 118, 77–82. [Google Scholar] [CrossRef]
- Gilardoni, M.; Leonço, D.; Caffin, F.; Gros-Desormeaux, F.; Eldin, C.; Beal, D.; Ouzia, S.; Junot, C.; Fenaille, F.; Pierard, C.; et al. Evidence for the systemic diffusion of (2-chloroethyl)-ethyl-sulfide, a sulfur mustard analog, and its deleterious effects in brain. Toxicology 2021, 462, 152950. [Google Scholar] [CrossRef]
- Milhorn, D.; Hamilton, T.; Nelson, M.; McNutt, P. Progression of ocular sulfur mustard injury: Development of a model system. Ann. N. Y. Acad. Sci. 2010, 1194, 72–80. [Google Scholar] [CrossRef]
- Boudah, S.; Olivier, M.F.; Aros-Calt, S.; Oliveira, L.; Fenaille, F.; Tabet, J.C.; Junot, C. Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 966, 34–47. [Google Scholar] [CrossRef]
- Moreau, R.; Clària, J.; Aguilar, F.; Fenaille, F.; Lozano, J.J.; Junot, C.; Colsch, B.; Caraceni, P.; Trebicka, J.; Pavesi, M.; et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF. J. Hepatol. 2019, 72, 688–701. [Google Scholar] [CrossRef]
- Giacomoni, F.; Le Corguillé, G.; Monsoor, M.; Landi, M.; Pericard, P.; Pétéra, M.; Duperier, C.; Tremblay-Franco, M.; Martin, J.F.; Jacob, D.; et al. Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics 2015, 31, 1493–1495. [Google Scholar] [CrossRef]
- Barbier Saint Hilaire, P.; Rousseau, K.; Seyer, A.; Dechaumet, S.; Damont, A.; Junot, C.; Fenaille, F. Comparative Evaluation of Data Dependent and Data Independent Acquisition Workflows Implemented on an Orbitrap Fusion for Untargeted Metabolomics. Metabolites 2020, 10, 158. [Google Scholar] [CrossRef]
- McNutt, P.; Tuznik, K.; Nelson, M.; Adkins, A.; Lyman, M.; Glotfelty, E.; Hughes, J.; Hamilton, T. Structural, morphological; and functional correlates of corneal endothelial toxicity following corneal exposure to sulfur mustard vapor. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6735–6744. [Google Scholar] [CrossRef]
- Kadar, T.; Dachira, S.; Cohen, L.; Sahara, R.; Fishbine, E.; Cohen, M.; Turetz, J.; Gutman, H.; Brandeis, R.; Horwitz, V.; et al. Ocular injuries following sulfur mustard exposure-Pathological mechanism and potential therapy. Toxicology 2009, 263, 59–69. [Google Scholar] [CrossRef]
- Froger, N.; Cadetti, L.; Lorach, H.; Martins, J.; Bemelmans, A.P.; Dubus, E.; Degardin, J.; Pain, D.; Forster, V.; Chicaud, L.; et al. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration. PLoS ONE 2012, 7, e42017. [Google Scholar] [CrossRef]
- Froger, N.; Moutsimilli, L.; Cadetti, L.; Jammoul, F.; Wang, Q.P.; Fan, Y.; Gaucher, D.; Rosolen, S.G.; Neveux, N.; Cynober, L.; et al. Taurine: The comeback of a neutraceutical in the prevention of retinal degenerations. Prog. Retin. Eye Res. 2014, 41, 44–63. [Google Scholar] [CrossRef]
- Huxtable, R.J. Physiological actions of taurine. Physiol. Rev. 1992, 72, 101–163. [Google Scholar] [CrossRef]
- Boillot, T.; Rosolen, G.S.; Dulaurent, T.; Goulle, F.; Thomas, P.; Isard, P.F.; Azoulay, T.; Lafarge-Beurlet, S.; Woods, M.; Lavillegrand, S.; et al. Determination of Morphological, Biometric and Biochemical Susceptibilities in Healthy Eurasier Dogs with Suspected Inherited Glaucoma. PLoS ONE 2014, 9, 111873. [Google Scholar] [CrossRef]
- McPherson, P.; Türemen, B. 3;4-Dihydroxy-l-phenylalanine as a biomarker of oxidative damage in proteins: Improved detection using cloud-point extraction and HPLC. Biochem. Biophys. Res. Commun. 2014, 452, 376–381. [Google Scholar] [CrossRef]
- Kawashima, T.; Ohkubo, K.; Fukuzum, S. Radical Scavenging Reactivity of Catecholamine Neurotransmitters and the Inhibition Effect for DNA Cleavage. J. Phys. Chem. B 2010, 114, 675–680. [Google Scholar] [CrossRef]
- Jowsey, P.A.; Williams, F.M.; Blain, P.G. DNA damage responses in cells exposed to sulphur mustard. Toxicology 2012, 209, 1–10. [Google Scholar] [CrossRef]
- Goswami, G.D.; Tewari-Singh, N.; Agarwal, R. Corneal toxicity induced by vesicating agents and effective treatment options. Ann. N. Y. Acad. Sci. 2016, 1374, 193–201. [Google Scholar] [CrossRef]
- Eghtedari, Y.; Lawrence, J.; Di Girolamo, N.L.; Watson, S.; Watson, L.S. The role of topical N-acetylcysteine in ocular therapeutics. Surv. Ophthalmol. 2022, 67, 608–622. [Google Scholar] [CrossRef]
- Cuartero, M.I.; De la Parra, J.; García-Culebras, A.; Ballesteros, I.; Lizasoain, I.; Moro, M.A. The Kynurenine Pathway in the Acute and Chronic Phases of Cerebral Ischemia. Curr. Pharm. Des. 2016, 22, 1060–1073. [Google Scholar] [CrossRef]
- Michaudel, C.; Danne, C.; Agus, A.; Magniez, A.; Aucouturier, A.; Spatz, M.; Lefevre, A.; Kirchgesner, J.; Rolhion, N.; Wang, Y.; et al. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut 2023, 72, 1296–1307. [Google Scholar] [CrossRef]
- Yeum, K.J.; Russell, R.M.; Krinsky, N.I.; Aldini, G. Biomarkers of antioxidant capacity in the hydrophilic and lipophilic compartments of human plasma. Arch. Biochem. Biophys. 2004, 430, 97–103. [Google Scholar] [CrossRef]
- Tretter, L.; Adam-Vizi, V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J. Neurosci. 2000, 20, 8972–8979. [Google Scholar] [CrossRef]
- Tretter, L.; Adam-Vizi, V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J. Neurosci. 2004, 24, 7771–7778. [Google Scholar] [CrossRef]
- Nobakht, B.F.; Arefi Oskouie, A.; Rezaei-Tavirani, M.; Aliannejad, R.; Taheri, S.; Fathi, F.; Taghi Naseri, M. NMR spectroscopy-based metabolomic study of serum in sulfur mustard exposed patients with lung disease. Biomarkers 2016, 22, 413–419. [Google Scholar] [CrossRef]
- Jeon, G.Y.; Kim, Y.Y.; Lee, G.; Kim, B.J. Physiological and pathological roles of lipogenesis. Nat. Metab. 2023, 5, 735–759. [Google Scholar] [CrossRef]
- Ho, H.J.; Shirakawa, H. Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022, 12, 88. [Google Scholar] [CrossRef]
- Dhummakupt, E.; Jenkins, C.; Rizzo, G.; Melka, A.; Carmany, D.; Prugh, A.; Horsmon, J.; Renner, J.; Angelini, D. Proteomic, Metabolomic, and Lipidomic Analyses of Lung Tissue Exposed to Mustard Gas. Metabolites 2022, 12, 815. [Google Scholar] [CrossRef]
- Mino, R.P.; Spoerri, P.E.; Caballero, S.; Player, D.; Belardinelli, L.; Biaggioni, I.; Grant, M.B. Adenosine receptor antagonists and retinal neovascularization in vivo. Investig. Ophthal Vis. Sci. 2001, 42, 3320–3324. [Google Scholar]
- Ishizaki, E.; Fukumoto, M.; Puro, D.G. Functional K(ATP) channels in the rat retinal microvasculature: Topographical distribution; redox regulation, spermine modulation and diabetic alteration. J. Physiol. 2009, 587, 2233–2253. [Google Scholar] [CrossRef]
- Narayanan, P.S.; Rojas, M.; Suwanpradid, J.; Toquec, H.A.; Caldwell, R.W.; Caldwell, B.R. Arginase in Retinopathy. Prog. Retin. Eye Res. 2013, 36, 260–280. [Google Scholar] [CrossRef]
- Buisset, A.; Gohier, P.; Leruez, S.; Muller, J.; Amati-Bonneau, P.; Lenaers, G.; Bonneau, D.; Simard, G.; Procaccio, V.; Annweiler, C.; et al. Metabolomic Profiling of Aqueous Humor in Glaucoma Points to Taurine and Spermine Deficiency: Findings from the Eye-D Study. J. Proteome Res. 2019, 18, 1307–1315. [Google Scholar] [CrossRef]
- Leruez, S.; Marill, A.; Bresson, T.; De Saint Martin, G.; Buisset, A.; Muller, J.; Tessier, L.; Gadras, C.; Verny, C.; Gohier, P.; et al. A Metabolomics Profiling of Glaucoma Points to Mitochondrial Dysfunction; Senescence, and Polyamines Deficiency. Invest. Ophthalmol. Vis. Sci. 2018, 59, 4355–4361. [Google Scholar] [CrossRef]
- Herbst-Gervasoni, C.J.; Christianson, D.W. Binding of N8-Acetylspermidine Analogues to Histone Deacetylase 10 Reveals Molecular Strategies for Blocking Polyamine Deacetylation. Biochemistry 2019, 58, 4957–4969. [Google Scholar] [CrossRef]
- Schipper, R.G.; Penning, L.C.; Verhofstad, A.A. Involvement of polyamines in apoptosis. Facts and controversies: Effectors or protectors. Semin. Cancer Bio 2000, 10, 55–68. [Google Scholar] [CrossRef]
- Silva, R.L.; Kachi, S.; Akiyama, H.; Shen, J.; Hatara, M.C.; Aslam, S.; Gong, Y.Y.; Khu, N.H.; Lauer, T.W.; Hackett, S.F.; et al. Trans-scleral delivery of polyamine analogs for ocular neovascularization. Exp. Eye Res. 2006, 83, 1260–1267. [Google Scholar] [CrossRef]
- Flanagan, J.L.; Simmons, P.A.; Vehige, J.; Willcox, M.D.; Garrett, Q. Role of carnitine in disease. Nutr. Metab. 2010, 7, 30. [Google Scholar] [CrossRef]
- Theodoridis, K.; Gika, H.; Kotali, A. Acylcarnitines in Ophthalmology: Promising Emerging Biomarkers. Int. J. Mol. Sci. 2022, 23, 16183. [Google Scholar] [CrossRef]
- Calandrella, N.; De Seta, C.; Scarsella, G.; Risuleo, G. Carnitine reduces the lipoperoxidative damage of the membrane and apoptosis after induction of cell stress in experimental glaucoma. Cell Death Dis. 2010, 1, e62. [Google Scholar] [CrossRef]
- Sumarriva, K.; Uppal, K.; Ma, C.; Herren, D.J.; Wang, Y.; Chocron, I.M.; Warden, C.; Mitchell, S.L.; Burgess, L.G.; Goodale, M.P. Arginine and carnitine metabolites are altered in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2019, 60, 3119–3126. [Google Scholar] [CrossRef]
- Krautkramer, A.K.; Fan, J.; Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 2021, 19, 77–94. [Google Scholar] [CrossRef]
- Brunt, V.E.; Gioscia-Ryan, R.A.; Casso, A.G.; VanDongen, N.S.; Ziemba, B.P.; Sapinsley, Z.J.; Richey, J.J.; Zigle, M.C.; Neilson, A.P.; Davy, K.; et al. Trimethylamine-N-Oxide Promotes Age-Related Vascular Oxidative Stress and Endothelial Dysfunction in Mice and Healthy Humans. Hypertension 2020, 76, 101–112. [Google Scholar] [CrossRef]
Cohort 1 | Cohort 2 | ||||||
---|---|---|---|---|---|---|---|
Metabolite | Time Point 1 | Fold Change (SM/CTL) 2 | p-Value | Time Point 1 | Fold Change (SM/CTL) 2 | p-Value | |
Transulfuration pathway | Cystathionine | day 8 | 1.45 | 0.028 | ns | ||
day 15 | 1.76 | 0.021 | |||||
Cysteic acid | day 15 | 1.81 | 0.033 | ns | |||
Cysteine | day 15 | 1.37 | 0.028 | ns | |||
Cysteine-S-sulphate | day 21 | 1.54 | 0.028 | ns | |||
day 28 | 1.50 | 0.048 | |||||
Glutathione oxidized | ns | day 3 | 3.10 | 0.042 | |||
Methionine | day 15 | 1.26 | 0.048 | ns | |||
Methionine sulfoxide | ns | day 8 | 0.59 | 0.028 | |||
N-Acetyl-methionine | day 3 | 0.75 | 0.048 | ns | |||
Cysteine-S-sulphate | day 21 | 1.54 | 0.028 | ns | |||
Taurine | day 3 | 1.59 | 0.016 | day 3 | 1.71 | 0.012 | |
day 8 | 1.46 | 0.016 | |||||
day 15 | 1.32 | 0.048 | |||||
Catabolism of branched-chain amino acids | 3-Hydroxy-3-methylbutyric acid | day 15 | 1.65 | 0.020 | day 8 | 6.35 | 0.042 |
3-Hydroxy-butyric acid | ns | day 15 | 1.40 | 0.048 | |||
Isoleucine | day 3 | 0.75 | 0.016 | ns | |||
Isovaleric acid | ns | day 15 | 1.76 | 0.004 | |||
Lysine | ns | day 28 | 0.69 | 0.048 | |||
N-acetyl-isoleucine | day 3 | 0.63 | 0.048 | day 21 | 1.85 | 0.016 | |
N6-acetyl-lysine | day 15 | 1.45 | 0.028 | ns | |||
N6,N6,N6-Trimethyl-lysine | ns | day 28 | 0.65 | 0.012 | |||
Valine | day 3 | 0.73 | 0.033 | day 28 | 0.68 | 0.012 | |
Phenylalanine, tyrosine, and tryptophan metabolic pathway | 3,4-Dihydroxy-phenylalanine (Dopa) | day 1 | 11.86 | 0.024 | day 8 | 3.27 | 0.006 |
3-Hydroxy-cinnamic acid (Coumaric acid) | day 3 | 0.69 | 0.028 | day 1 | 0.54 | 0.048 | |
α-Hydroxy-hippuric acid | day 3 | 0.56 | 0.016 | day 21 | 0.51 | 0.024 | |
4-Hydroxy-phenylglycine | day 21 | 1.91 | 0.048 | day 15 | 0.41 | 0.048 | |
5-Hydroxy-indoleacetic acid | day 8 | 10.61 | 0.006 | day 3 | 3.36 | 0.038 | |
Hydroxy-kynurenine | day 3 | 0.77 | 0.048 | day 3 | 2.54 | 0.038 | |
day 8 | 0.65 | 0.020 | day 8 | 3.70 | 0.006 | ||
Indoleacetic acid | day 8 | 2.63 | 0.028 | ns | |||
Indole-3-propionic acid | day 1 | 0.62 | 0.024 | ns | |||
day 3 | 0.51 | 0.041 | |||||
Kynurenine | day 3 | 0.70 | 0.028 | ns | |||
N-acetyl-tryptophan | day 3 | 0.69 | 0.048 | ns | |||
N-acetyl-tyrosine | day 21 | 1.98 | 0.008 | ns | |||
2-Phenylglycine | day 28 | 1.30 | 0.016 | day 8 | 0.64 | 0.016 | |
Quinaldic acid | day 1 | 1.76 | 0.024 | ns | |||
Quinolinic acid | ns | 0.008 | day 1 | 0.39 | 0.048 | ||
Serotonine | day 1 | 2.09 | 0.028 | ns | |||
day 28 | 3.23 | 0.028 | |||||
Tryptophan | day 3 | 0.79 | 0.028 | day 28 | 0.83 * | 0.048 | |
Tyrosine | day 3 | 0.71 | 0.048 | day 28 | 0.69 | 0.024 | |
day 8 | 0.70 | 0.016 | ns | ||||
Polyamines biosynthesis | N8-Acetyl-spermidine | ns | day 8 | 4.17 | 0.024 | ||
Putrescine | day 28 | 0.81 * | 0.004 | day 8 | 2.62 | 0.048 | |
Spermine | day 1 | 0.93 * | 0.048 | day 8 | 3.52 | 0.024 | |
Purines biosynthesis | Adenosine | day 15 | 2.06 | 0.034 | day 8 | 3.63 | 0.042 |
day 28 | 1.85 | 0.028 | |||||
Allantoic acid | day 8 | 0.54 | 0.033 | day 1 | 0.54 | 0.048 | |
Allantoin | day 3 | 0.57 | 0.028 | ns | |||
Guanosine | day 21 | 0.49 | 0.048 | ns | |||
Guanine | ns | day 8 | 0.55 | 0.004 | |||
Methyluric acid | day 3 | 0.72 | 0.048 | day 28 | 0.67 | 0.048 | |
7-Methyl- xanthine | ns | day 8 | 3.65 | 0.042 | |||
N-acetyl-asparagine | day 3 | 0.45 | 0.028 | day 28 | 0.52 | 0.012 | |
2-O-methyl-guanosine | day 1 | 0.86 * | 0.042 | ns | |||
2-O-methyl-inosine | ns | day8 | 6.16 | 0.048 | |||
Proline | day 3 | 0.63 | 0.048 | ns | |||
Glycolysis pathway | Fructose (ketoses) | ns | day 8 | 0.50 | 0.048 | ||
Gluconic acid | ns | day 28 | 1.63 | 0.024 | |||
Glucose 1-phosphate (hexose-phosphate) | |||||||
Lactic acid | day 8 | 0.67 | 0.028 | day 15 | 1.64 | 0.048 | |
day 28 | 0.56 | 0.048 | |||||
Pyruvic acid | day 1 | 0.67 | 0.012 | day 21 | 1.57 | 0.008 | |
day 3 | 0.60 | 0.048 | |||||
Glucose (hexoses) | day 3 | 0.70 | 0.027 | day 8 | 0.50 | 0.028 | |
TCA cycle | 3-Isopropyl- malic acid | day 8 | 0.53 | 0.028 | ns | ||
day21 | 0.47 | 0.048 | |||||
Ketoglutaric acid | day 1 | 0.75 | 0.006 | ns | |||
N-acetyl-glutamic acid | day 8 | 0.67 | 0.014 | day 1 | 0.51 | 0.028 | |
Isocitric acid/Citric acid | day 1 | 0.70 | 0.012 | day 1 | 0.52 | 0.028 | |
day 8 | 0.80 * | 0.016 | |||||
day 21 | 0.84 * | 0.048 | |||||
Pyroglutamic acid | day 3 | 0.51 | 0.008 | ns | |||
Choline-Trimethylamine N-Oxide (TMAO) pathway | Acetylcholine | day 3 | 0.75 | 0.028 | day 8 | 4.18 | 0.024 |
Phosphorylethanolamine | ns | day 3 | 1.66 | 0.024 | |||
Trimethylamine oxide | ns | day 8 | 3.48 | 0.042 | |||
Carnitines | Acetylcarnitine | ns | day 8 | 5.12 | 0.048 | ||
Butyrylcarnitine | day 15 | 1.07 * | 0.048 | day 8 | 4.12 | 0.024 | |
Carnitine | ns | day 3 | 1.68 | 0.024 | |||
day 8 | 3.10 | 0.012 | |||||
Propionyl-carnitine | ns | day 8 | 6.23 | 0.024 | |||
Fatty acids | Arachidic acid | ns | day 28 | 2.03 | 0.048 | ||
Caproic acid | day 15 | 1.36 | 0.028 | ||||
Cholic acid | ns | day 15 | 4.13 | 0.004 | |||
Dodecanedioic acid | ns | day 1 | 0.57 | 0.048 | |||
Eicosapentaenoic acid | day 28 | 1.37 | 0.016 | day 21 | 2.59 | 0.016 | |
Glycocholic acid | ns | day 15 | 6.55 | 0.008 | |||
Glycochenodeoxycholic acid | ns | day 15 | 4.43 | 0.008 | |||
Hydroxy-eicosatetraenoic acid | day 3 | 0.38 | 0.028 | day 3 | 2.06 | 0.041 | |
Hydroxy- stearic acid | day 21 | 4.29 | 0.028 | ns | |||
Lithocholic acid | ns | day 1 | 0.26 | 0.016 | |||
Mesaconic acid | ns | day 21 | 1.57 | 0.048 | |||
Myristic acid | ns | day 21 | 4.51 | 0.028 | |||
Monomethyl adipic acid | day 15 | 1.81 | 0.008 | ns | |||
Monomethyl glutaric acid | ns | day 21 | 2.11 | 0.016 | |||
Perillic acid | ns | day 15 | 5.64 | 0.028 | |||
Deoxycholic acid | ns | day 15 | 3.24 | 0.016 | |||
Elaidic acid | ns | day 21 | 2.49 | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouhlel, J.; Caffin, F.; Gros-Désormeaux, F.; Douki, T.; Benoist, J.-F.; Castelli, F.A.; Chu-Van, E.; Piérard, C.; Junot, C.; Fenaille, F. Metabolomics Analysis of Rabbit Plasma after Ocular Exposure to Vapors of Sulfur Mustard. Metabolites 2024, 14, 349. https://doi.org/10.3390/metabo14070349
Bouhlel J, Caffin F, Gros-Désormeaux F, Douki T, Benoist J-F, Castelli FA, Chu-Van E, Piérard C, Junot C, Fenaille F. Metabolomics Analysis of Rabbit Plasma after Ocular Exposure to Vapors of Sulfur Mustard. Metabolites. 2024; 14(7):349. https://doi.org/10.3390/metabo14070349
Chicago/Turabian StyleBouhlel, Jihéne, Fanny Caffin, Fanny Gros-Désormeaux, Thierry Douki, Jean-François Benoist, Florence A. Castelli, Emeline Chu-Van, Christophe Piérard, Christophe Junot, and François Fenaille. 2024. "Metabolomics Analysis of Rabbit Plasma after Ocular Exposure to Vapors of Sulfur Mustard" Metabolites 14, no. 7: 349. https://doi.org/10.3390/metabo14070349
APA StyleBouhlel, J., Caffin, F., Gros-Désormeaux, F., Douki, T., Benoist, J. -F., Castelli, F. A., Chu-Van, E., Piérard, C., Junot, C., & Fenaille, F. (2024). Metabolomics Analysis of Rabbit Plasma after Ocular Exposure to Vapors of Sulfur Mustard. Metabolites, 14(7), 349. https://doi.org/10.3390/metabo14070349