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Abstract: Wheat bran (WB) is a low-value by-product of the wheat milling industry. Solid-state
fermentation with Rhizopus oligosporus is performed to improve WB’s nutritional quality (RH). Twenty-
five mice (11-week-old C57BL/6N male mice) were divided into three groups. The first group was fed
a control diet (n = 8), the second group a 10% WB-supplemented diet (n = 8), and the last group had a
10% RH-supplemented diet (n = 9). The diet treatment was administered for 4 days before dextran
sodium sulfate (DSS, 3% in drinking water) was administered for 9 days. RH supplementation
prevented bodyweight loss and reduced the disease activity index in mice. An increase in the level of
SCFAs in mouse intestines was detected post-RH supplementation, suggesting that SCFAs might have
contributed to its anti-colitis effect. Metabolome analysis was conducted to explore other bioactive
compounds in RH. R. oligosporus fermentation significantly increased the amounts of ergothioneine,
arginine, branched-chain amino acids, and adenosine in wheat bran. All of these compounds are
known to have antioxidant and anti-inflammatory capacities. These bioactive compounds might also
have contributed to the RH’s ability to ameliorate DSS-induced colitis.

Keywords: adenosine; colitis; fermented wheat bran; Rhizopus oligosporus; short-chain fatty acids

1. Introduction

The world’s wheat production in 2021–2022 was forecasted to be around 785.8 million
tonnes [1]. After the de-husking process, the wheat grains that undergo the milling process
can then be separated into a bran section (14–16% of the grain), a germ or embryo section
(2–3%), and an endosperm section (81–84%) [2]. Wheat bran (WB) has been recorded to
contain various antioxidant compounds such as phenolic acids, carotenoids, tocopherols,
and alkylresorcinols. It is also known to be high in dietary fibers (44.6% of the wheat
bran weight). WB also contains various nutritional compounds such as methionine and
cysteine, B group vitamins, vitamin E, carotenoids, and various minerals [2,3]. However,
WB is also known to have low nutritional value, namely due to its high level of phytic acid
(3116–5839 mg/100 g dry weight), which can obstruct the absorption of minerals including
calcium, iron, magnesium, and zinc. WB phenolic compounds also usually exist in forms
bound to indigestible polysaccharides, limiting their bioavailability [2].
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Fermentation is a method of food preservation that may also increase the nutritional
value of its substrate. R. oligosporus is a fungus commonly used in producing tempe, a
fermented bean food from Indonesia. Fermentation with R. oligosporus has been recorded
to eliminate the phytic acid content in tempe made from soybean, chickpea, white bean,
black bean, red lentil, green lentil, and broad bean [4,5]. R. oligosporus fermentation has
also been observed to release phenolic compounds from their bonded form and is able to
degrade lignin, cellulose, and hemicellulose [6,7]. While the product of WB fermentation
with R. oligosporus has not been extensively investigated, R. oligosporus fermentation has
the potency to increase the nutritional value of WB.

Inflammatory bowel disease (IBD) involves chronic and remitting inflammation that
occurs in the gastrointestinal tract [8–10]. Patients with IBD experience not only pain and
discomfort, but also an increased risk of developing colorectal cancer [9], negative impacts
on their quality of life and work productivity, impairments to social and interpersonal
interactions, and an increase in health care resource utilization [10]. Therefore, a new
treatment that can prevent the onset of IBD is highly sought.

Polyphenols are one subset of the substances that have been suggested as capable of
ameliorating inflammatory bowel disease. Polyphenols curb the onset of reactive oxygen
species that accumulate in inflamed intestines [11]. Therefore, the ability of R. oligosporus
to release phenolic compounds from their bonded form in WB might influence fermented
WB’s colitis-preventing ability. On top of that, the risk of IBD [12] and the occurrence of
IBD are also associated with dietary fiber intake [13]. R. oligosporus fermentation was found
to be able to degrade lignin, cellulose, and hemicellulose, possibly altering WB’s dietary
fiber content and, consequently, its capacity to mitigate the onset of IBD.

This study aimed to evaluate whether R. oligosporus-fermented WB (RH) supplementa-
tion is able to ameliorate dextran sodium sulfate (DSS)-induced intestinal inflammation in
mice, an animal model of IBD. Furthermore, since the effect of R. oligosporus fermentation
on WB has not been documented, we also observed the different metabolites that arise
from this fermentation process, with a specific recognition of compounds that may control
the risk of IBD.

2. Materials and Methods
2.1. Wheat Bran Fermentation

WB (400–450 g) was mixed with water (1:1) and steamed at 121 ◦C for 20 min. After
the steamed mixture cooled down to 30 ◦C, 0.1% (w/w) tempe starter was inoculated. This
tempe starter was a commercial starter containing R. microspores var. oligosporus, also known
as R. oligosporus. Originally developed by The Indonesian Institute of Science in 2001, it has
been produced and commercialized under the name of Raprima by PT. Aneka Fermentasi
Industri, Bandung, Indonesia. This particular starter is currently one of the most commonly
used starters in tempe production in Indonesia, especially in the Java area [14–16].

The inoculated mixture was then incubated in a shallow, rectangular vat vessel (solid-
state fermentation) in an incubator at 30 ◦C for 44 h. To maintain an adequate temperature
and access to oxygen, the mixture was stirred several times throughout the day. This
fermented mixture was then mixed with 5 times the amount of water and saccharified
at 65 ◦C for 16 h. The fermented WB that was intended to be used in the compound
analysis was filtered, while the batch that was used in the animal feed was left as it
was. Afterward, both mixtures were lyophilized for 48 h. The fermented WB (RH for R.
oligosporus-fermented WB) produced was then stored at −30 ◦C. The non-fermented WB
was prepared using the same process without the starter inoculation.

2.2. Animal Experiment

Twenty-five mice (11-week-old C57BL/6N male) were housed in a pathogen-free
environment at 23 ± 3 ◦C, with a relative humidity of 55 ± 10% and a 12 h/12 h light/dark
cycle. After four days of the acclimation period, the mice were divided into three groups.
The first group (n = 8) was administered a control diet, the second group (n = 8) was
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administered a 10% WB-supplemented diet, and the third group (n = 9) was fed a 10%
RH-supplemented diet. The diet formulations are displayed in Table 1.

Table 1. Diet composition.

Ingredients CON * WB RH

tert-Butylhydroquinone 0.008 0.0072 0.0072
Cystine 1.8 1.62 1.62

Choline bitartrate 2.5 2.25 2.25
Vitamin mixture 10 9 9
Mineral mixture 35 31.5 31.5

Soybean oil 40 36 36
Cellulose 50 45 45
Sucrose 100 90 90
Casein 140 126 126

α-Corn starch 155 139.5 139.5
Corn starch 465.70 419.12 419.12

WB - 100 -
RH - - 100

Total 1000 1000 1000
* Control diet (CON), wheat bran supplemented diet (WB), and R. oligosporus supplemented diet (RH).

The diet was administered for four days before the mice’s drinking water was swapped
with water that had been mixed with 3% DSS. At the end of the fourth day, fecal samples
from each mouse were collected. DSS was administered for 9 days before the mice were
euthanized. During the experiment period, the mice were observed, and the severity of
the effect of DSS was scored using the disease activity index. The scoring system used to
evaluate the disease activity index (DAI) is shown in Table 2. The diet treatments were
continued until the termination point of the experiment. After euthanasia, serum, spleen,
and colon samples were collected. This experiment was approved by the Animal Research–
Animal Care Committee of Tohoku University, and the corresponding ethical approval
code is 2019Ag011-04.

Table 2. Disease activity index score.

Score Bodyweight Loss Bloody Stool Diarrhea

0 <5% Normal Normal
1 5–10% Brown Soft
2 10–20% Reddish Very soft
3 >20% Bloody Watery

2.3. High-Performance Liquid Chromatography (HPLC) Analysis for Short-Chain Fatty
Acids (SCFAs)

A fecal short-chain fatty acid analysis was conducted as mentioned by Islam et al. [17].
In short, the fecal sample was homogenized in a 10 mM NaOH solution containing crotonic
acids as an internal standard. The homogenized mixture was then centrifuged. The
supernatants were then collected and extracted with chloroform to remove the fat-soluble
compounds. The remaining supernatants were then diluted with NaH2PO4 pH 2.7 and
used in the analysis. The HPLC analysis was performed under isocratic conditions with
NaH2PO4 as a mobile phase with an Atlantis T3 column (4.6 mm × 50 mm, 5 µm, Waters,
Milford, MA, USA) at 30 ◦C. The flow rate of the mobile phase was 0.5 mL/minute, and
the runtime for each sample was 35 min, with a 100 µL injection volume. Short-chain fatty
acids (SCFAs) were detected with a UV detector at 214 nm.
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2.4. Quantitative Reverse Transcriptase Mediated Polymerase Chain Reaction (qRT-PCR)

The analysis was performed similarly to previously stated methods. Briefly, the
middle sections of colon tissues were homogenized with ISOGEN (Nippon Gene Co., Ltd.,
Tokyo, Japan). The RNA from the homogenized samples was then isolated with chloroform.
The crude RNA was then processed with the Magnosphere UltraPure mRNA purification
kit (Takara Bio Inc., Shiga, Japan) according to the manufacturer’s instructions. The list of
primers is provided in Table 3.

Table 3. Primer list.

Genes Sequences

Interleukin 17 (Il-17)
Forward 5′-CTC CAG AAG GCC CTC AGACTAC-3′

Reverse 5′-GCT TTC CCT CCG CAT TGA CACAG-3′

Interleukin 22 (Il-22)
Forward 5′-GGAGACAGTGAAAAAGCTTG-3′

Reverse 5′-AGCTTCTTCTCGCTCAGACG-3′

Claudin-4
Forward 5′-CCTCTGGATGAACTGCGTGGTG-3′

Reverse 5′-GTCGCGGATGACGTTGTGAG-3′

Occludin
Forward 5′-CTTCTGCTTCATCGCTTCC-3′

Reverse 5′-CTTGCCCTTTCCTGCTTTC-3′

Mucin-1
Forward 5′-TCGTCTATTTCCTTGCCCTG-3′

Reverse 5′-ATTACCTGCCGAAACCTCCT-3′

Mucin-3
Forward 5′-CGTGGTCAACTGCGAGAATGG-3′

Reverse 5′-CGTGGTCAACTGCGAGAATGG-3′

Regenerating islet-derived
protein 3 γ (Reg3γ)

Forward 5′-TTCCTGTCCTCCATGATCAAAA-3′

Reverse 5′-CATCCACCTCTGTTGGGTTCA-3′

2.5. Dietary Fiber Analysis

The dietary fiber analyses of the WB- and RH-supplemented diets were conducted
based on the AOAC 2011.25 method.

2.6. Capillary Electrophoresis-Mass Spectrometry (CE-MS)

CE-MS was conducted following a method previously described by Oikawa et al. [18].
Briefly, the samples with the addition of an internal standard were suspended in MeOH
and centrifuged, and the supernatants were then dispensed for analysis.

2.7. Statistical Analysis

Data are presented as means ± SE. The analysis was performed using Sigma Plot
12.5 and MetaboAnalyst 6.0. The data were analyzed with a Student’s t-test, one-way
ANOVA, or two-way repeated measurement ANOVA. The Tukey–Kramer test was applied
as a post hoc test. Significant differences between groups are denoted in each figure.

3. Results
3.1. Dietary RH Supplementation Prevented DSS-Induced Colitis

DSS ingestion is known to cause inflammation in the intestine. Furthermore, the
incorporation of DSS in the mice’s drinking water led to bodyweight reduction due to a
combination of diarrhea, loss of blood, and loss of appetite. However, Figure 1A shows
that the RH-supplemented diet group exhibited a significantly higher bodyweight in
comparison to the mice that received the control diet. Both the RH- and WB-supplemented
groups had significantly higher food intakes than the control group, as illustrated in
Figure 1B. Figure 2A, however, displays a lower DAI value for the RH-supplemented group
compared to those for the control group and WB-supplemented group. Since the DAI was
scored based on bodyweight loss, the presence of blood in the stools, and diarrhea, we
decided to take a closer look into each of these parameters. There were no differences in the
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bodyweight loss among all groups (Figure 2B). While both WB- and RH-supplemented diet
intakes reduced the presence of blood in feces (Figure 2C), diarrhea was only ameliorated
by RH supplementation (Figure 2D). This observation suggests the possibility that RH
ingestion might be able to ameliorate the effect of DSS ingestion.
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Figure 1. The effect of WB and RH on bodyweight and food intake. (A) RH supplementation
protected mice from the bodyweight loss caused by DSS ingestion. WB- and RH-supplemented
groups consumed more food compared to control group (B). Data were analyzed with two-way
ANOVA (n = 8–9) and further analyzed with Tukey–Kramer post hoc test. Significant differences are
denoted in each graph (p < 0.05, a, b, c, represent statistically different groups at the indicated p-value
within the same day, and #, * represent statistically different groups at the indicated p-value within
the overall experiment period).

DSS also commonly leads to spleen enlargement and colon shortening. The RH-
supplemented group showed a significantly lower ratio of spleen weight to bodyweight
and a shorter spleen length after DSS ingestion compared to the other groups (Figure 3A,B).
However, no differences in the colon length were observed among the three groups
(Figure 3C).
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Figure 2. Compilation of several factors that comprise the disease activity index score (DAI). Total
score of DAI (A). The DAI was scored based on the severity of bodyweight loss (B), diarrhea (C),
and the presence of blood in stools (D). The data were analyzed with two-way ANOVA (n = 8–9)
and further analyzed with a Tukey–Kramer post hoc test. Significant differences are denoted in
each graph (p < 0.05, a, b, represent statistically different groups at the indicated p-value within the
same day, and #, * represent statistically different groups at the indicated p-value within the overall
experiment period).
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Figure 3. Organ comparison after DSS ingestion, followed by WB and RH supplementation. Spleen
weight adjusted to bodyweight (A), spleen length (B), and colon length (C) was evaluated as a
marker of the severity of DSS-induced colitis in mice. The data were analyzed with one-way ANOVA
(n = 8–9) and further analyzed with a Tukey–Kramer post hoc test. Significant differences are denoted
in each graph (p < 0.05, a, b represent statistically different groups at the indicated p-value).

3.2. RH Supplementation Increases Mice Fecal SCFAs

WB is known to contain a high amount of dietary fiber (Table S1; data were calculated
from the WB-supplemented diet, which consisted of 10% WB supplementation and 5%
cellulose). This dietary fiber content can then be metabolized by either the gut microbiota
or the fermenting microbes in fermented food to produce SCFAs. SCFAs are known to be
able to play a key role in maintaining intestinal homeostasis. Furthermore, IBD patients
have been reported to have lower amounts of SCFA-producing gut microbiota [19]. In this
study, the fecal lactic acid, acetic acid, and propionic acid content levels were significantly
higher in the RH-supplemented group than in the control or WB-supplemented groups
(Figure 4). Fecal butyric acid content, however, showed no difference among all groups.
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3.3. RH Consumption Affected the mRNA Levels of Il-17 and Il-22 in Colon

SCFAs are known to be able to regulate the development and function of Th17 [20,21].
Here, we showed that the ingestion of an RH-supplemented diet increased the mRNA
levels of Il-17 and Il-22, as shown in Figure 5A,B. Both of these cytokines serve as key
factors in maintaining the intestinal barrier and homeostasis [22]. While no differences
were observed in the mRNA levels of intestinal tight junction components such as Claudin
4 and Occludin, RH supplementation regulated the expression of anti-bacterial peptides in
the large intestine, such as Mucin 1, Mucin 3, and Reg3γ (Figure 6).
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Figure 5. RH consumption possibly increased the mRNA expression of cytokines that maintain
the intestinal barrier integrity. The mRNA levels of Il-17 (A) and Il-22 (B) were increased by RH
supplementation. The data were analyzed with one-way ANOVA (n = 7–9) and further analyzed
with a Tukey–Kramer post hoc test. Significant differences are denoted in each graph (p < 0.05, a, b
represent statistically different groups at the indicated p-value).

3.4. Metabolomics Analysis of WB and RH

To understand the effect of fermentation with R. oligosporus on the nutritional value
of WB, a metabolomics analysis of R. oligosporus-fermented wheat bran was conducted.
The principal component analysis (PCA) results of metabolites from non-fermented wheat
bran (WB) and R. oligosporus-fermented WB (RH) are shown in Figure 7. The proportions
of contributions of PC1 and PC2 are 98.9% and 0.7%, respectively. A score plot from
this analysis shows that wheat bran fermented with R. oligosporus is different from non-
fermented WB on PC1.
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bacterial peptides in the colon. The mRNA expressions of intestinal tight junction components
such as Claudin 4 (A) and Occludin (B) were not affected by the supplementations. However, the
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This result is further elucidated in Figure 8, which shows the heatmap of the metabolite
concentrations in WB and RH. It is apparent that fermentation changes some metabolites,
such as the levels of various amino acids. R. oligosporus fermentation also decreased the
levels of sugars such as raffinose, along with acids such as lactate, citrate, and succinate.
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3.5. Bioactive Compounds in Fermented Wheat Bran

Whether R. oligosporus-fermented product has any health benefit has not been exten-
sively explored. Figure 9 illustrates some of the bioactive compounds that can be found in
WB and RH. One of the bioactive compounds that was identified in WB is raffinose. Raffi-
nose was found to decrease due to R. oligosporus fermentation (Figure 9A). R. oligosporus
fermentation also significantly produces compounds that are known to be able to exert
anti-inflammatory effects or regulate inflammatory responses, namely arginine, isoleucine,
leucine, valine, ergothioneine, and adenosine (Figure 9B–G). These bioactive compounds
might have contributed to RH’s function in alleviating DSS-induced colitis.
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Figure 9. The effect of fermentation with R. oligosporus on wheat bran’s active compounds.
(A) Raffinose, (B) arginine, (C) leucine, (D) isoleucine, (E) valine, (F) ergothioneine, and (G) adenosine
are compounds that are known to be antioxidants and have anti-inflammatory properties. ND value
signifies non-detectable compounds analyzed with the previously described method. The data were
analyzed with t-tests. Significant differences are denoted in each graph (p < 0.05, a, b represent
statistically different groups at the indicated p-value).

4. Discussion

DSS-induced colitis in mice is a model that emulates the symptoms of IBD in hu-
mans. IBD involves chronic and remitting inflammation that occurs in the gastrointestinal
tract [8–10]. The devastating impact that this disease has on the quality of life of its patients
means that the treatment of IBD is highly sought [8–10]. In this paper, we illustrated that
RH dietary supplementation is able to lower the effect of DSS in the large intestine. This
effect appears to be related to RH’s ability to increase the level of Il-22 in the colon. In the
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colon, IL-22, in turn, can induce the production of colonic REG3γ [22]. Here, we found that
although the RH-supplemented diet failed to affect the intestinal tight junction markers,
it elevated the mRNA levels of Reg3γ. At the same time, it also decreased the levels of
Mucin-1 and Mucin-3. The production of mucin is known to be induced by Il-17. We also
observed an increase in Il-17 mRNA expression due to RH supplementation. SCFAs are
among the active compounds that are known to be able to affect the production of Il-22
and Il-17 in the intestine [19].

Wheat grain is known to have a high content of dietary fiber (9.2–17.0 g/100 g) [23].
Furthermore, R. oligosporus has been documented to be able to degrade various polysac-
charides, and its fermentation has been described to increase the level of organic acids,
such as acetic acid and propionic acid, in soybean [24]. During the fermentation process by
R. oligosporus, dietary fiber in WB might be used by various microbiota to produce SCFAs.
This suggestion is supported by the decrease in the low-molecular-weight dietary fiber con-
tent in the mouse diet supplemented by RH (Table S1). SCFAs can also be further produced
in mouse intestines by the gut microbiota. SCFAs can normally act as a source of energy
for intestinal epithelial cells, strengthen the intestinal barrier function, and regulate the
intestinal immunity system. These organic acids are commonly known to signal through
cell-surface G-protein coupled receptors (GPCRs) to modulate intestinal homeostasis [19].
However, the effect of RH supplementation on the expression of GPCR activity needs to be
further studied.

While it is possible that the increases in Il-17 and Il-22 expressions after RH supple-
mentation are induced by the SCFA content, other active compounds in RH might also
play a role in maintaining the integrity of the intestinal membrane against DSS-induced
colitis. The search for other bioactive compounds that are produced in RH was continued
by employing a metabolome analysis approach. Figures 7 and 8 elucidate the differences
that arise between WB and RH due to R. oligosporus fermentation. R. oligosporus is capa-
ble of producing lipases, amylases, phytases, and galactosidase [7,25–29]. These enzyme
functions can be seen in the depletion of simple sugars, such as raffinose and various
acids, such as lactate, citrate, malonate, and shikimate, in WB. While raffinose is known to
cause flatulence, it can also function as a prebiotic in human intestines [30]. R. oligosporus
fermentation also produces various types of amino acids in abundance. The presence of
various free amino acids in the fermented WB might be due to the ability of R. oligosporus
to produce proteases and peptidases [7,26–30].

Among the abundance of amino acids that were produced by R. oligosporus in wheat
bran is arginine. Arginine is a conditionally essential amino acid that functions as a
precursor of nitric oxide in the human body. This amino acid protects against LPS-induced
inflammation and even increases the content of glutathione peroxidase in LPS-stimulated
cells, further decreasing the production of ROS and malonaldehyde [31,32]. Increases in
other amino acids such as valine, leucine, and isoleucine were also detected in R. oligosporus-
fermented wheat bran. These three amino acids belong to the branched-chain amino acid
(BCAA) category and have been shown to reduce inflammatory responses. Isoleucine in
particular is able to reduce the DSS-induced intestinal inflammation by regulating the NFκB
pathway activation and maintaining the expression of intestinal tight junction components
Zo-1 and Claudin 1 [33,34].

Additionally, R. oligosporus fermentation produces ergothioneine and adenosine in
wheat bran. Ergothioneine is a fungus-derived antioxidant that has been classified among
the GRAS compounds by the US Food and Drug Administration in 2018 [35]. Adenosine
is well known for its ability to regulate the immune cell’s response to an inflammatory
inducer [36–42]. Adenosine receptors can be found ubiquitously throughout various
immune cells. Neutrophil, for example, has been reported to express four adenosine
receptors. The A1 receptor plays a role in neutrophil chemotaxis, induces its adhesion, and
increases phagocytosis and the generation of ROS. However, other adenosine receptors,
such as A2A, A2B, and A3, have shown inhibitory effects on these functions [36,43]. In
macrophages, A2A and A2B activation inhibit the release of proinflammatory cytokines.
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Increasing the expression of Il-10 by macrophages is also possible, possibly stimulating M1
to M2 phenotype changes [36,42]. Adenosine receptor A2A is also abundantly expressed
in ILC3 and has been reported to be able to increase the production of Il-22 [44]. It was
also reported to induce Il-17 secretion by Th17 cells [45]. These reports suggested that the
adenosine content of RH, along with its other bioactive compounds, such as ergothioneine,
arginine, BCAAs, and also SCFAs might contribute to its colitis-alleviating effect.

5. Conclusions

The fermentation of WB with R. oligosporus increased its nutritional value, such as by in-
creasing its free amino acid content and increasing some antioxidants and anti-inflammatory
compounds. These changes in RH nutritional values, in turn, might play some role in the
capacity of RH to alleviate DSS-induced colitis in mice. On top of this, the ingestion of
an RH-supplemented diet increased the level of some SCFAs, such as lactic acid, acetic
acid, and propionic acid, in mice feces. The increased levels of SCFAs consequently con-
tribute to maintaining the intestinal barrier and homeostasis by regulating the Il-17- and
Il-22-producing cells’ activity.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/metabo14070359/s1, Table S1: Dietary fiber composition of WB-
and RH-supplemented diets.
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