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Abstract: Stoichiometric genome-scale metabolic models (generally abbreviated GSM, GSMM, or
GEM) have had many applications in exploring phenotypes and guiding metabolic engineering
interventions. Nevertheless, these models and predictions thereof can become limited as they do not
directly account for protein cost, enzyme kinetics, and cell surface or volume proteome limitations.
Lack of such mechanistic detail could lead to overly optimistic predictions and engineered strains.
Initial efforts to correct these deficiencies were by the application of precursor tools for GSMs, such
as flux balance analysis with molecular crowding. In the past decade, several frameworks have been
introduced to incorporate proteome-related limitations using a genome-scale stoichiometric model
as the reconstruction basis, which herein are called resource allocation models (RAMs). This review
provides a broad overview of representative or commonly used existing RAM frameworks. This
review discusses increasingly complex models, beginning with stoichiometric models to precursor
to RAM frameworks to existing RAM frameworks. RAM frameworks are broadly divided into two
categories: coarse-grained and fine-grained, with different strengths and challenges. Discussion
includes pinpointing their utility, data needs, highlighting framework strengths and limitations,
and appropriateness to various research endeavors, largely through contrasting their mathematical
frameworks. Finally, promising future applications of RAMs are discussed.

Keywords: systems biology; computational biology; genome-scale modeling

1. Introduction

Metabolic modeling (i.e., mathematically and computationally representing the bio-
chemical processes occurring in the context of an organism’s metabolism) is an important
and increasingly used tool in systems biology. Early metabolic models were stoichiometric
models of metabolism (SMMs). Such models empower mathematical and systematic frame-
works (i.e., paradigms of methodology and workflows) for integrating and evaluating
large-scale reaction networks [1] and are enabling of numerous potential applications.
Perhaps the most widespread application is the in silico design of microbial cellular fac-
tories [2,3], with analysis and design thereof accomplished using established tools for
network manipulations and analysis [2,4]. Other applications range from (re)evaluation
of in vivo data to elucidate mechanisms and phenomena which are expensive or difficult
to measure or are otherwise unmeasured [5–7] to drug target identification and develop-
ment [7–9]. Many such applications of metabolic modeling using SMMs have been recently
reviewed [9,10].

Despite their extensive successful applications, SMMs are limited in their predictive
capability as they do not explicitly track the costs of protein beyond its bulk contribution to
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biomass. Furthermore, they do not directly incorporate mechanistic detail that can reduce the
solution space such as enzyme kinetic capacity or physical proteome limitations, crowding,
degradation, and dilution through growth and cell division. Having models that can more
accurately account for these items could safeguard against overly optimistic phenotype
predictions. At present, there are several types of modeling frameworks, each with its own
strengths, areas of applicability, and data requirements. Here, we will discuss those which
go beyond simple stoichiometric genome-scale models of metabolism and integrate the cost
to metabolism for enzymatic catalysis in the mathematical problems which form the model.
These models are reconstructed through one of several current protein constraint frameworks
which integrate enzyme capacity, cost, and simple kinetic limitations at genome scale. The
mathematical form of these problems ranges in solution complexity. Some are relatively
straightforward linear programming (LP) problems that only contain continuous variables
with each equation expression a polynomial of degree one or less. In some cases, LP is applied
iteratively to reduce computational complexity by avoiding non-linear programming (NLP).
NLP is also sometimes used in place of iterative LP. Finally, more computationally demanding
mixed-integer linear programming (MILP) problems that are also linear but contain some
variables that can only take on integer values.

As the field of metabolic modeling has evolved, it has resulted in instances of unclear
or inconsistent terminology, which should briefly be discussed so that all readers will
have the same understanding of the terms used herein. As previously stated, a model is
the mathematical representation of the biochemical processes occurring in an organism’s
metabolism. A framework is the methodology and/or workflow by which a model is cre-
ated which often determines the form of the mathematical representation. The term scale
will be used to describe the size or breadth of a model. From these fairly basic definitions,
inconsistencies in the meaning of terms arise quickly. One of the most commonly used
terms, genome-scale (GS) is one such term. Conventionally, the term GS has been synony-
mous with SMM models [1,11], indicating that the stoichiometric metabolic model accounts
for all metabolic functions supported by its current gene sequence, genome annotation,
and available biochemical data. These models were often referred to as GSM, GSMM,
GEM, or M-models. However, the term GS has recently also been applied to describe the
scale of other model types. For example, it has been used to describe a resource allocation
model (RAM) [12]. Also, there has been considerable attention as to how to achieve GS
kinetic models of metabolism [13,14], with some kinetic models already described as “near
genome-scale” [15]. Given its expanding definition, here we will follow the newer conven-
tion of using the GS descriptor to indicate model scale, not type. Models which are purely
stoichiometric, such as iCTH669 [5], will be referred to as stoichiometric metabolic models
(SMMs) to avoid confusing model type and scale.

Similarly, we note that significant disagreement in terminology exists for models which
account for protein or enzyme synthesis and capacity in metabolic modeling (i.e., the focus
of this review). We address the differing terminologies used throughout this field briefly to
familiarize the reader with differing descriptions of the same idea, as well as to establish
the definition of convenient terms used throughout this review. Some works have referred
to such models as resource balance analysis (RBA) models (example: scRBA) [16]; other au-
thors have referred to such models as resource allocation models (RAMs) [12,17,18], others
as proteome- or enzyme-constrained genome-scale models (ecGEMs or pcGEMs) [19], or
ME-models (where “ME” stands for metabolism and macromolecular expression) [20–23].
For convenience, we will follow the convention used by two recent reviews [17,24] describ-
ing all models which account for protein or enzyme synthesis and capacity in models of
metabolism under the umbrella term of resource allocation models (RAMs). We reserve the
use of the terms RBA and ME-models to specific realizations of models constructed using
their respective modeling framework, such as the scRBA model [16].

Herein, we provide a broad discussion of precursor tools for accounting for protein
cost (such as flux balance analysis with molecular crowding (FBAwMC)) and current RAM
frameworks and some of their applications. Specifically, the first part pinpoints their utility,
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data needs, and appropriateness to various research endeavors, through examining and
contrasting their mathematical frameworks. The second part details challenges and oppor-
tunities these frameworks can help address or can be expanded to address. The third part
addresses the current divergent landscape of frameworks and vocabulary and advocates
for community standards regarding language and naming conventions. Finally, we draw
conclusions and posit promising future directions for RAMs in medicine, bioproduction,
and agriculture.

2. Stoichiometric Models of Metabolism (SMMs) and Flux Balance Analysis (FBA)

Stoichiometric models of metabolism (SMMs) are the forerunners of RAMs and are
often wholly or largely incorporated into GS RAMs [16,20]. They therefore form an appro-
priate starting point for the discussion of RAMs. SMMs are mathematical representations
of the network of metabolic reactions in an organism and are used to explore possible
phenotypes of said organism, typically during exponential growth phase. They contain a
comprehensive list of both metabolites and reactions occurring within the organism and
environment, organized as a stoichiometric matrix, as well as a set of bounds for the flux
of each reaction. The stoichiometric matrix (detailing the stoichiometry of each modeled
reaction), flux bounds (which specify reaction direction and reversibility), gene-protein-
reaction associations (GPR), and ATP maintenance values form the core of SMMs [11,25].
In building the stoichiometric matrix, gene-protein-reaction (GPR) relationships linking
the genome to metabolism are established. A biomass description in the form of a biomass
pseudo-reaction is added to the stoichiometric matrix for modeling growth. Finally, main-
tenance costs, in growth and non-growth associated maintenance (GAM and NGAM,
respectively), define an ATP-based cost to non-modeled cellular functions [11,25]. The
most basic analysis of SMMs is called flux balance analysis (FBA) which seeks to maximize
or minimize a particular objective function (e.g., biomass yield, product yield, substrate
uptake, etc.) subject to mass balance at pseudo-steady state [25]. Mathematically, this
objective is represented as:

min or max z = cjvj (1)

where z is the objective variable, J is the set of reactions, cj is a vector of the objective weight
for reaction j, and vj is the flux through reaction j (in mmol gDW−1 h−1). FBA is a linear
programming (LP) problem formulated so that it seeks to solve Objective (1) as follows:

Subject to (s.t.)

∑
j∈J

Sijvj = 0 ∀j ∈ J (2)

vLB
j ≤ vj ≤ vUB

j ∀j ∈ J (3)

where I is the set of metabolites, Sij is the stoichiometric matrix expressing participation
of metabolites in corresponding reactions with the sign denoting reactants (negative) or
products (positive), vLB

j are the lower bounds for vj, and vUB
j are the upper bounds for

vj. Constraint (2) is the steady-state assumption, assuming that metabolite concentration
is unchanging at the time scale of FBA (e.g., a “snapshot” of metabolism). Different
frameworks use different objective weight vectors, but typically, cj = 0 for all reactions
other than the reaction corresponding to the desired biological optimization goal.

As a result of their form and computation, stoichiometric GSMs are often reconstructed
soon after a modeled organism is sequenced as data needs for a first draft model are
minimal. For example, the first sequence of Escherichia coli was published in 1997 [26], with
its first stoichiometric GSM following only three years later [27]. Since then, the number of
SMMs has increased dramatically, reaching 6239 organisms by 2019 [10]—albeit with a vast
range in the extent of curation. Some larger recent efforts, such as AGORA2, have exceeded
that mark, generating 7302 draft stoichiometric GSMs in a single study [28]. Figure 1a
summarizes the features of SMM that are relevant to this review. Curated SMMs have been
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rather successful in addressing a wide range of research questions, testing hypotheses, and
generating testable hypotheses [10,29].
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Figure 1. Radar graphs depicting the compared abilities and constraints of a given model type for
(a) stoichiometric metabolic models, (b) precursor frameworks and coarse-grained resource allocation
models (cgRAM), and (c) fine-grained resource allocation models (fgRAM). Each of the four categories
is assigned an arbitrary value 1–6, designating a comparative “ranking” between the six modeling
types within each category (e.g., a value of “1” designates the highest amount within a category, “2”
designates second highest, and so on). When necessary, equivalent values are assigned to model
types that have no meaningful distinction within a given category. Descriptions of MOMENT and
GECKO frameworks can be found in Sections 4.1.1 and 4.1.2, respectively. Descriptions of RBA, ME
Modeling, and ETFL modeling frameworks can be found in Sections 4.2.1–4.2.3, respectively.

However, being purely stoichiometric representations reconstructed from genomic
and direct biochemical data [11], these models face several inherent limitations. First,
in vivo reaction fluxes are constrained by thermodynamics, the abundance of enzymes,
and enzyme kinetics, among other factors. However, within SMMs, aside from specifying
directionality, allowable bounds are set to arbitrarily large values which can be too per-
missive. Many cellular phenotypes (i.e., growth rates, flux distribution, or product yield)
remain stoichiometrically feasible but are physiologically unrealizable. Second, SMMs do
not capture quantitatively genome to proteome to metabolome relations beyond simple
mapping information (i.e., GPRs). The cost of macromolecular synthesis and maintenance
is captured in an aggregated manner within simple metrics such as growth-associated
maintenance (i.e., GAM) or the non-growth associated equivalent, NGAM. Third, whereas
the biomass description contains provisions for accounting for amino acid needs for protein
synthesis in aggregate, no specific connection is made between the amount of enzyme
synthesized and the possible flux of the associated reaction(s). Finally, physical limitations
by cellular and organelle size and area impose additional limits to their total proteome
(i.e., volume of cytosol, membrane surface area, etc.). In other words, the machinery of
metabolism is limited by the products of metabolism. Interesting questions arising from
the limitations of protein allocation are illustrated with Figure 2.
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Figure 2. Pictorial representation of example research questions that can be answered with various
model types. The trapezoidal shape showcases the relative number of model types that can answer a
given question, with all models above a given question able to provide an answer, and all models
below unable to do so.

3. Precursor Frameworks

Flux profiles determined by optimization for SMMs sometimes tend towards extremal
states that may be physiologically unreachable. To address these shortcomings, resource
allocation models (RAMs) were developed, building upon SMMs with additional con-
straints on metabolic flux, macromolecular synthesis networks, and/or information flow
(i.e., transcription and translation rates). Prior to the development of full RAMs, there
were a few ad hoc SMM tools which sought to address these limitations. One of the first
such attempts was the Flux Balance Analysis with Molecular Crowding (FBAwMC) [30],
which limited the total volume of metabolic enzymes. Another effort, FBA with solvent
capacity constraints, followed similar mathematical principles, yet was based on total
enzyme concentration [31]. This latter framework has been particularly influential in RAM
modeling frameworks. Another framework [32] applied weighting coefficients based on
enzyme burden to direct metabolic flux on a pathway-scope (e.g., glycolysis and pentose
phosphate pathways) down optimal paths. These efforts, however, are mathematical tools
applied to SMMs, rather than new modeling frameworks.

Since these early efforts, several different modeling frameworks or analysis tools for
SMM models which constrain metabolism through allocation of protein resource have
been developed. In general, these frameworks limit either the total abundance of protein
or of individual proteins, but they lack explicit per-reaction constraints limiting flux in
accordance with a kinetic parameter. Here, we briefly discuss two influential tools. All
precursor SMM tools are linear programming problems (LPs). Their requirements and
their abilities are summarized in Figure 1b, and the modeling framework is summarized in
Figure 3.

3.1. Flux Balance Analysis with Molecular Crowding (FBAwMC)

Flux balance analysis with molecular crowding (FBAwMC) [30] sought to apply the
limitations of cellular volume to FBA. It uses Constraints (1) to (3) as well as a new cellular
volume limitation constraint as shown below:

∑
j∈J

ρjC
kval

vi = ∑
j∈J

ajvi ≤ 1 ∀j ∈ J (4)
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where ρj is the volume (mL) per mmol enzyme associated with reaction j, kval is a kinetic
parameter (not necessarily kcat, h−1), and C is the cytoplasmic density, in g mL−1. Taken
together, these terms define the parameter aj which is defined as the crowding coefficient
of reaction j (gDW h−1 mmol−1). FBAwMC has been used to predict metabolic switching
between high and low yield pathways and its relation to redox metabolism [33], predict
growth rate and substrate utilization of mutant E. coli strains [30], and identify regulatory
mechanisms controlling metabolic switches between states [34]. Given the nature of the
new bounding constraint introduced, FBAwMC can be run without needing additional data
beyond a typical SMM. However, to elucidate meaningful information on the kinetics of
various fluxes, enzyme volume and cytoplasmic density data are necessary (see Figure 1b
for a comparison of data needs between different modeling frameworks).
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3.2. FBA with Solvent Capacity Constraints (FBAwSCC)

Solvent capacity constraints, as in FBAwMC [30], limit the total amount of proteome
in the cell as a fraction of the total biomass in FBA with solvent capacity constraints
(FBAwSCC) [31]. For this framework, the enzyme capacity constraint is as follows:

∑
j∈J

MWjvj

kcat,j
≤ C ∀j ∈ J (5)

where MWj is the molecular weight of the protein associated with reaction j (in g mmol−1),
kcat,j is the enzyme turnover number (in h−1) of the enzyme associated with reaction j, and
C is the limit on metabolic enzyme concentration in g gDW−1. This constraint was used to
model the Warburg effect in proliferating cancer cells, which is a metabolic phenotype with
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high glycolytic flux and lactic acid fermentation [31]. Outside the typical SMM data needs,
kinetic and molecular weight data are necessary to introduce the new constraint, although
much of these data can be found in online databases, such as BRENDA [35]. However,
an accurate limit on the metabolic enzyme concentration may need to be acquired from
explicitly performed proteomics experiments (see Figure 1b for a comparison of data needs
between different modeling frameworks). To our knowledge, FBAwSCC has only been
applied once; however, this framework is influential in that some of the RAM frameworks
utilize a very similar solute capacity constraint.

4. Resource Allocation Model (RAM) Frameworks

Broadly, RAM frameworks fall into two categories: those which do not impose
metabolic costs for the synthesis of macromolecules, and those which do. Models which do
not require macromolecule synthesis have been referred to as enzyme-constrained GEM
(ecGEM) [24,36] and coarse-grained pcGEM [37] models. Herein, the term coarse-grained
RAM (cgRAM) will be used to describe these models. The latter category, which explicitly
imposes metabolic costs, includes RBA models, ME-models, and ETFL models. These
model types are more complex, leading to a non-static biomass composition, though gen-
erally at the cost of requiring more data. These models have confusingly also been called
proteome-constrained GEM [36], enzyme-constrained GEMs (ecGEM) [24], RAM [24], and
fine-grained proteome-constrained (pcGEM) [38] models. For this review, since the term
RAM is used inclusively for all protein-constrained metabolic models, the term fine-grained
RAM (fgRAM) will be used. A visual summary of various RAM frameworks is given in
Figure 3, highlighting the different constraints and what is explicitly modeled in the flow
of metabolites and biological information within a cell.

4.1. Coarse-Grained RAMs (cgRAMs)

Coarse-grained RAMs are easier to reconstruct and analyze because only some of the
steps of the central dogma of biology are explicitly modeled. Therefore, information on
enzyme degradation rates, ribosome efficiency, and global proteomic measurements are
not needed. These frameworks are based on the structure of stoichiometric models, but
with two new key constraints added.

The first constraint limits reaction fluxes in proportion to the enzyme concentration
and a single kinetic parameter in the form

vj ≤ kvalej ∀j ∈ J (6)

where kval is a kinetic parameter (in h−1, often kcat for cgRAMs [39–41]), and ej is the concen-
tration of enzyme e catalyzing reaction j in mmol gDW−1. Generally, kcat values are extracted
from a database such as BRENDA [35], though conceivably an apparent kinetic parameter
(kapp) could be used to correct for kinetics overestimation where substrate saturation is low.
Depending on the framework, this constraint is modified to account for scenarios where
an enzyme complex catalyzes a reaction (“and” GPR logic, Constraint (7) below) or where
multiple isozymes catalyze a single reaction (“or” GPR logic, Constraint (8) below):

vj = kvalmin
(
ej,1, ej,2, . . . , ej,n

)
∀j ∈ J (7)

vj = kval ∑
ej∈Ej

ej ∀j ∈ J (8)

where Ej is the set of isozymes capable of catalyzing reaction j.
The second key constraint in cgRAM models is a limit on the total protein or enzyme

concentration in the cell. This constraint takes various specific forms, following the general
form below, similar to Constraints (4) and (5) of the precursor frameworks FBAwMC and
FBAwSCC, respectively:



Metabolites 2024, 14, 365 8 of 23

∑
e∈E

ee MWe ≤ C (9)

where E is the set of all modeled enzymes, MWe is the molecular weight of enzyme e, and C is
some upper limit on total enzyme concentration (making it more analogous to FBAwSCC than
FBAwMC). The exact formulation of this constraint varies between frameworks. Constraint (9)
renders protein allocation at high levels of metabolic activity into a zero-sum game, implying
that more enzyme for one pathway means less enzyme capacity for others. C should therefore
be interpreted as the overall enzyme concentration limit and be carefully chosen. The result of
these models are flux distributions and enzyme concentrations.

Only a limited amount of data is required for cgRAM parameterization beyond what is
already included in SMMs (i.e., reaction stoichiometry, directionality, gene-protein-reaction
links) as reflected in Figure 1b. At minimum, cgRAM reconstruction also requires kcat
value estimates, molecular weights from each enzyme, and an estimate for C present in
Equation (9). Approximate kcat values and protein sequence data can be obtained from
databases such as BRENDA [35], SABIO-RK [42], and UniProt [43]. Of course, database kcat
values refer to in vitro measurements which may differ considerably from in vivo values.
Thus, cgRAM models can be reconstructed using only database-derived information. In
general, cgRAM models are dominated by two frameworks: MOMENT and GECKO (and
their progeny or variants thereof). Their requirements and capabilities are summarized
graphically in Figure 2b, and the constituents of a cgRAM model are shown in Figure 3.

4.1.1. Metabolic Modeling with Enzyme Kinetics (MOMENT) Framework and Successors

The MOMENT framework [41] utilizes Constraints (1) through (3) and (6) through (9).
It was first demonstrated by applying it to the iAF1260 model of E. coli. In Constraint (9), C
represents the total weight of proteins in g gDW−1 in the cell. A follow up of MOMENT,
referred to as short MOMENT (sMOMENT), reformulates Constraints (6) and (9) to reduce
the number of model constraints as shown below [44]:

−
(

∑j∈J vj
MWj

kcat,j

)
+ MPool = 0 (10)

MPool ≤ Ptot (11)

where Ptot is the total protein concentration, MPool is the mass of all metabolic enzymes
needed to catalyze all reaction fluxes, and MWj is the molecular weight of the enzyme
associated with reaction j. Essentially, this reformulation removes variables ej. Note that
Constraints (10) and (11) taken together is equivalent to Constraint (5) of FBAwSCC except
that C is replaced with Ptot and its enforcement as an upper bound is now handled through
the intermediary MPool variable. This alteration somewhat blurs the line between what
does and does not constitute an RAM. We refer to sMOMENT as an RAM as it identifies
as a modeling framework, whereas FBAwMC and FBAwSCC identify as FBA tools for
SMMs and so we classify them as such. Notably, sMOMENT is introduced alongside
AutoPACMEN, an automated workflow for generating sMOMENT models given a Systems
Biology Markup Language (SBML) [45] formatted SMM [44]. MOMENT and sMOMENT
models are generally formatted as SBML models, with AutoPACMEN implemented as a
module in the Python package COBRApy [46]. The AutoPACMEN framework is available
through GitHub (https://github.com/klamt-lab/autopacmen, accessed on 24 June 2024).

MOMENT models have been used to model the change in fermentation product yield
in E. coli with increased glucose uptake [44], evaluating predicted growth rates of E. coli on
various carbon sources [41], and evaluating proteome distribution efficiency in E. coli [47].

As with all cgRAM models, MOMENT models are relatively easy to reconstruct, and
require datasets from well-established databases. This feature makes MOMENT models
more accessible for under-studied organisms. MOMENT models are also less computa-
tionally complex than models reconstructed in other RAM, particularly using sMOMENT.
MOMENT models are also relatively consistent in formatting using the systems biology

https://github.com/klamt-lab/autopacmen
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markup language (SBML), which is commonly used with SMMs. However, there is no
explicit metabolic cost for the proteome, and total protein distribution is limited by a single
constant (C of Ptot). A poor selection of this constant may render a MOMENT reconstruction
with similar behavior to an SMM (where the constant is too large) or with unrealistically
sluggish metabolism (where the constant is too small). A relatively simple future devel-
opment to partially overcome this problem could be the definition of a “dummy” protein,
the synthesis rate for which replaces C of Ptot. Doing so would limit cell total protein con-
tent while creating a metabolic burden with relatively minimal increase in computational
complexity (i.e., the introduction of a single reaction).

4.1.2. GEM with Enzymatic Constraints Using Kinetics and Omics (GECKO) Framework
and Its Progeny

The GECKO framework was first introduced in 2017 [39] by expanding upon the
Yeast7 SMM of Saccharomyces cerevisiae. In analogy to MOMENT, GECKO is defined by
constraints (1) through (3), (6), and (9). GECKO, however, incorporates enzymes directly
into the stoichiometric matrix. A reaction catalyzed by enzyme ej, ej is treated as an
additional substrate with a coefficient of k−1

cat . In Constraint (9), parameter C accounts for
protein saturation and the fraction of metabolic enzymes, as shown below:

C = σ f Ptot (12)

where σ is the protein saturation (i.e., what fraction of the maximum protein concentration
is currently being used) and f is the fraction of enzymes accounted for in the model (i.e.,
metabolic enzymes). GECKO 2.0 expands on the GECKO framework by integrating within
the COBRA toolbox for MATLAB [38] and the Python package COBRApy [46]. Additional
improvements include improved automated kcat gathering, new utilities, and more flex-
ible input formats [46]. More recently, the protein allocation adjustment for alternative
environments (PARROT) framework [40] builds upon GECKO 2.0. PARROT minimizes the
distance between enzyme allocation in a reference state, Ere f , compared to an alternative
growth condition, Es, using weighted or unweighted Manhattan or Euclidean distances.
Model file types are in plain text and SBML formats. Models constructed by following
GECKO and PARROT frameworks both generate proteome allocation predictions. GECKO
is available through GitHub (https://github.com/SysBioChalmers/GECKO, accessed on
24 June 2024), which as of the time of writing has advanced to GECKO 3.0. GECKO 3.0 is
published as a protocol for model reconstruction which integrates deep learning-predicted
enzyme kinetics [48]. GECKO models have been used to design a biosynthetic pathway
for poly-γ-glutamic acid in B. subtilis [49], studying long-term adaptation to stress through
proteomics incorporation in budding yeasts [50], and to explore anoxic metabolism and
metabolic cooperation in tumor cell microenvironments [51].

The GECKO framework has relatively similar strengths, weaknesses, and potential
for future development to the MOMENT framework. However, the strong programming
support for GECKO, with continual improvement up to version 3.0 at the time of writing, and
implementation as a package in MATLAB and python, in addition to the recently published
protocol and integration of deep-learning predicted enzyme kinetics [48], provide a substantial
implementation and support advantage in this framework compared to MOMENT.

4.1.3. Automated Reconstruction of MOMENT and GECKO Models

The reconstruction of cgRAM models has largely been automated. The first tool,
codeveloped with sMOMENT, but also capable of generating GECKO models, was the
automatic integration of protein allocation constraints in metabolic networks (AutoPAC-
MEN) tool [44]. It uses SABIO-RK, BRENDA, and optional user-provided databases for
assigning kcat values. For cases with unknown kcat values, median or mean values are used.
This effort was shortly followed by the Python-based workflow for constructing enzymatic
constrained metabolic network models (ECMpy), first demonstrated using the iML1515
SMM of E. coli. ECMpy has a slightly different formalism on the total enzyme constraint,

https://github.com/SysBioChalmers/GECKO


Metabolites 2024, 14, 365 10 of 23

∑
j∈J

vj MWj

σikcat,j
≤ Ptot f (13)

where σi is enzyme saturation (default value of 1). This single constraint is a condensation
of Constraints (9) through (12), making the framework compatible with both MOMENT and
GECKO. Specifically, for a MOMENT model f , σi = 1 and C = Ptot, whereas for a GECKO
model σi = 1 and ej = vj/kcat,j as defined in the GECKO mass balance. ECMpy has a
python-based cgRAM reconstruction workflow available through GitHub (https://github.
com/tibbdc/ECMpy, accessed on 24 June 2024), and is now on its second version [52]
Notably, successive iterations of GECKO reconstructive workflows have been created, the
most recent being GECKO 3.0 [48], and are available through GitHub (https://github.com/
SysBioChalmers/GECKO, accessed on 24 June 2024).

4.2. Fine-Grained RAMs (fgRAMs)

As with cgRAMs, fgRAMs contain the basic FBA framework constraints (constraints
(1) to (3)), and basic cgRAM constraints (Constraints (6) and (9)). fgRAMs expand upon
cgRAMs by requiring the synthesis of macromolecules, particularly metabolic enzymes
from products of metabolism (e.g., amino acids, ATP, GTP) which in turn limits their pro-
duction (e.g., enzyme catalytic activity). As these models are at pseudo-steady state and do
not include metabolite concentrations, synthesis rates are instead used to impose metabolic
burden for macromolecules, as well as to bound their activities. The use of synthesis rate
is based on the steady-state assumption (i.e., that macromolecular concentrations do not
change). These frameworks generally use three drains on macromolecular concentration
which their synthesis must match: degradation, dilution, and consumption, which the
synthesis rate must match. This constraint takes the following form.

vm = kdeg,mem + µem + vcon,m ∀m ∈ M (14)

where M is the set of macromolecules modeled (note E ⊂ M), vm is the flux through the
macromolecule synthesis reaction (in that macromolecular synthesis is incorporated into
the stoichiometric matrix), kdeg,m is a degradation constant for macromolecule m, em is the
concentration of the macromolecule m, µ is the growth rate of the organism (representing
the loss in concentration occurring from dilution), and vcon,m is the rate of macromolecule
m consumption. From the rate of enzyme synthesis, Constraint (6) is modified slightly to
the following:

vj ≤
kappve,j

µ
∀j ∈ J, e ∈ E (15)

where ve,j is the flux through the enzyme synthesis reaction for enzyme e catalyzing
reaction j and kapp is the apparent kinetic parameter. Note that in many frameworks, such
as Resource Balance Analysis (RBA) modeling, Constraint (15) is used to tune or calculate
kapp values based on proteomic and fluxomic datasets (such that metabolic flux and enzyme
abundance can change for different growth conditions).

A notable feature of fgRAM models distinguishing them from cgRAM models is their
semi-variable biomass composition. The flux through the metabolic network is dependent
on macromolecular synthesis rate, and these macromolecules constitute the majority of
biomass. Therefore, the weight of biomass components synthesized are tracked and weight
ratios enforced to produce a biomass reaction or pseudo-metabolite of appropriate weight.
Therefore, the composition of protein, RNA, DNA, or other macromolecular components
of biomass is dependent on the metabolic state. Their requirements prediction range
are summarized graphically in Figure 1c, and the components of cgRAM framework are
summarized in Figure 3.

Generally, fgRAMs are solved by either an iterative LP or mixed-integer linear pro-
gramming (MILP) approach, increasing the computational complexity of the models com-
pared to cgRAM and precursor frameworks. Below, we discuss three representative fgRAM

https://github.com/tibbdc/ECMpy
https://github.com/tibbdc/ECMpy
https://github.com/SysBioChalmers/GECKO
https://github.com/SysBioChalmers/GECKO
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frameworks. Although this list is not exhaustive, we believe that these three highlight
representative trends within fgRAM modeling and at present are the most influential and
widely used frameworks in this space. Other frameworks include the resource constrained
FBA framework [53] and the deFBA framework [54].

4.2.1. Resource Balance Analysis (RBA)

The first RBA framework was developed in 2011 to model Bacillus subtilis, using a
previously published but unnamed SMM as a basis for the metabolic network [55] and
was expanded upon in 2015 [56]. More recently, updates and extensions to this framework
were inspired from the deFBA framework by Reimers et al. [18]. These extensions include
organelles and separate tracking of mitochondrial proteins, and was applied to RAM recon-
struction scRBA, which expanded upon the SMM iSace1144 [16]. This extended framework
will be used as the mathematical description of the RBA framework, as it has a compre-
hensive formulation and straightforward workflow. Through utilizing Equation (16), RBA
frameworks assume kdeg,m, vcon = 0 for all macromolecules, and thus the synthesis rate of
macromolecules is balanced only by dilution. Furthermore, whereas macromolecules such
as RNA, DNA, lipids, and proteins among others constitute biomass, RBA models only
consider the cost of protein and RNA synthesis. This assumption is generally reasonable
as these are the two largest fractions of cell dry weight (55% and 20%, respectively in E.
coli [57]). As such, biomass is generally variable in amino acid and RNA composition and
fixed in terms of other biomass contributors (though the scRBA model does add biomass
variability because of growth rate [16]). Given that enzyme synthesis, not concentration, is
used, Constraint (9) is implemented in RBA models with the following modification:

1
µ ∑

p∈P
vp MWp ≤ C (16)

where P is the set of proteins, vp is the rate of protein synthesis, and MWp is the protein
molecular weight. Note that depending on the framework, these equations may be arranged
differently, but we will present framework constraints as close to forms already presented
as possible to highlight similarities and/or differences. Constraint (16) is functionally
equivalent to Constraint (9) on a protein basis (rather than an enzyme basis) noting that
vp/µ = ep in the case of no degradation or consumption. This same equality also means
Constraint (15) is equivalent to Constraint (6) in an RBA model. RBA models use two
additional and new constraints. First, a limit on rRNA capacity is imposed:

1
µ ∑

r∈Rr
vr MWr ≤ Cr (17)

where Rr is the set of rRNA molecules in the organism, MWr is the molecular weight of
r, and Cr is an upper bound (in g gDW−1) on rRNA abundance (the same base symbol
denotes its identical role to C, except applied to rRNA). Second, protein synthesis is limited
by the capacity of ribosomes in the protein-ribosome coupling constraint, shown below:

kribovribo ≤ µ ∑
p∈P

Naa
p vp (18)

where kribo is the rate at which ribosomes elongate peptides (in amino acids s−1) and Naa
p

is the number of amino acids in protein p. In total then, RBA models use Constraints (1)
through (3), and (15) through (18).

Another consideration in the RBA framework is that not all synthesized proteins have
a metabolic role. Therefore, these frameworks generally enforce some maximum fraction of
the total protein sum that is allowed to be metabolic protein, with the remainder regrettably
referred to as “dummy” protein. Beyond the data inherent in cgRAM frameworks, RBA models
require the definition of a dummy protein, kapp values (or proteomics and fluxomics from
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which to calculate them), an estimate of the fraction of proteome that is metabolic, and detailed
knowledge about the aggregation of proteins into enzyme (e.g., heteromers, homomers).

RBA models are analyzed using Resource Balance Analysis, the analysis technique
inherent in the modeling framework. In the analyses of these models, iterative linear
programming is used. The iterative steps are used to maximize growth rate, and the
objective function used is generally to minimize protein synthesis [16]. The results of these
analyses are a single metabolic state, akin to flux balance analysis (FBA).

For manual reconstruction of RBA models a protocol [58] and a workflow [16] have
been developed. There are some tools for automating RBA model reconstruction and anal-
ysis. A recent Python package, RBApy [59], has been created to automatically reconstruct
RBA models from genome annotations in XML format. RBApy has been used to recon-
struct RBA models for wild-type and engineered E. coli, which demonstrate comparable
growth rates on several carbon substrates [59]. This tool is available through GitHub at
https://github.com/SysBioInra/RBApy, accessed on 24 June 2024. In addition, the RBA-
tools python package has been developed more specifically for non-modeling experts to ap-
proach RBA modeling [60]. RBAtools was used to evaluate metabolic trade-offs in B. subtilis,
namely protein to ATP, growth to vitamin production, and fitness to ribosome concentra-
tion [60]. This tool is available through GitHub at https://sysbioinra.github.io/rbatools/,
accessed on 24 June 2024. RBA models are encoded either using GAMS [16] or MAT-
LAB [56]. RBA models have been applied to design B. subtilis for identifying metabolic
bottlenecks and the design of de novo amino acid synthesis pathways [55], modeling sea-
sonal variation of phytoplankton communities [61], and recapitulating protein allocation in
B. subtilis [56], and identifying the mechanistic underpinnings of the Crabtree effect [16].

RBA models are useful in that they are the simplest of fgRAM model frameworks
(though this observation does not mean that its reconstruction is simple). Rather, they are
the simplest framework with an explicit metabolic cost for protein synthesis. RBA models
also have automated reconstruction tools and well-described methods. Therefore, this
category may be the most approachable fgRAM type for non-model organisms. Although
they make simplifying assumptions, such as only explicitly synthesizing proteins and RNA,
they have still proven useful to address a variety of research questions. Unfortunately, RBA
models have, at present, a relatively limited repertoire of analysis tools because of their
iterative LP solution methods, generally only being analyzed with resource balance analysis
to date. Therefore, a key future development for this framework will be the development
and application of analysis tools analogous to those in SMMs.

4.2.2. Model of Metabolism and Macromolecular Expression (ME-Models)

A more detailed accounting of all macromolecules is found in the genome-scale
model of metabolism and expression (ME-model). The first modeling framework for
addressing macromolecular cost was the ME-model (where “ME” stands for metabolism
and macromolecular expression) of E. coli in 2012, used to investigate codon usage bias and
its relation to growth rate [62]. This modeling framework combines the metabolic network
of an SMM with the synthesis of all major molecular machinery in a cell, including enzymes,
mRNA, tRNA, ribosomes, cell wall, and DNA. In the first ME-model, Equation (14) is
applied to all macromolecules including enzymes, tRNAs, mRNAs, RNAPs, and ribosomes,
though kdeg,m = 0 for all macromolecules except mRNA. In subsequent models, degradation
of macromolecules used various forms, including a first-order constant (as in the case of
mRNA in the first ME-model), or more complex descriptions. Further, macromolecules are
not consumed, so vcon = 0 for all macromolecules in ME-models.

ME-models effectively share Constraint (18) with RBA models. ME-models assume
that the rate of RNA polymerase elongation (krnap) is three times that of peptide elongation
by ribosomes (resulting from three nucleotides per peptide in codons). This assumption
results in a very similar constraint for RNA synthesis, as shown below:

kribovribo ≤ µ ∑
r∈R

Nnuc
r vr (19)

https://github.com/SysBioInra/RBApy
https://sysbioinra.github.io/rbatools/
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where R is the set of RNAs, Nnuc
r is the length of r, and vr is the transcription flux of r.

RNA synthesis is distributed by measured fractions of RNA consisting of rRNA, tRNA,
and mRNA. ME-models also model tRNA charging, and it is assumed equal to the rate of
translation in the cell (since the cell is assumed steady-state). Remaining macromolecular
synthesis machinery is assumed to have a common kcat with synthesis rate defined by the
following constraint:

kcatvmach ≤ µ ∑
m∈Mm

vm (20)

where vmach is the flux through the machinery synthesis equation, and Mm is the set of
macromolecular machinery where its synthesis is not already limited. In ME-models,
biomass is modeled as a set of demand reactions, including for DNA, cell wall, glycogen,
enzymes, RNAs, and peptides, with synthesis driven and limited by Constraint (20).

Given the complete macromolecular synthesis included in ME-modeling, ME models
can be used to model synthesis costs associated with many effectors with many biologi-
cal processes. Expanded ME-frameworks have been used to model stress response [63].
FoldME is an expansion of the ME-modeling framework which models protein folding
and unfolding [64]. This expansion allows for modeling the effect of temperature stress on
enzyme kinetics and the system-level protein reallocation. OxidizeME is another expansion
of ME-models which adds the ability to model reactive oxygen species (ROS) stresses. ROS
stresses are modeled through auxotrophy, damage of iron-sulfur clusters, DNA damage,
and protein damage [65]. AcidifyME models pH stress through changing lipid fatty acid
composition as well as protein stability and activity [23]. The new StressME framework
then brings together all three expansions (FoldME, OxidizeMe, and AcidifyME) into a
single stress-response model [63]. To date, the StressME framework has only been applied
to E. coli but can be adapted with some effort to other species. Aside from being used to
model stress conditions, ME-models have been used to investigate codon optimization in
E. coli [62] and recapitulation of transcription and translation rates in E. coli [66].

ME-models are either solved as an iterative LP [66] or as a single-step NLP [65]. The
objective function used in analysis differs. In most cases, growth maximization is the
primary objective [66] (or only objective in NLP cases [65]. Where iterative LP is used to
solve ME-models, the objective for each iteration may be to minimize ribosome dilution [66]
or maximize synthesis of a “dummy complex” [65]. The results of these analyses are a single
metabolic state, akin to flux balance analysis. In many cases, ME-models are analyzed
using flux variability analysis (FVA) at a fixed growth rate [66–68].

Manual ME-model reconstructions are possible by following the detailed reconstruc-
tion descriptions provided in ME-modeling works [62,65,66]. A Python-based tool called
COBRAme [66] is built upon the COBRApy platform for SMMs, which provides tools to
simplify ME-model reconstruction and analysis. Published with COBRAme is a workflow
describing ME-model reconstruction using this tool [67]. However, COBRAme is only
a partially automated reconstruction tool, requiring either the ECOLIme package (an E.
coli-specific python package containing ribosome composition and transcriptional unit
definitions) or requiring equivalent manually curated inputs. COBRAme and ECOLIme
packages are available through GitHub (https://github.com/SBRG, accessed on 24 June
2024). The wide breadth of the ME-Modeling framework necessitates a wide variety of
data for parameterization. Proteomics, transcriptomics, catalytic turnover rates for various
enzymes, and biomass distribution data are all necessary to make an accurate model. Com-
pared to other model types discussed (see Figure 1c), the data availability is relatively low
leading to unavoidable assumptions about parameter values and the use of randomization
for creating synthetic data. As a result of these challenges, ME-models are few in number,
and have only been reconstructed for E. coli [14] and Thermotoga martima [65,66].

ME-model reconstruction and analysis are challenging as a result of the depth of its
data needs and computational complexity. However, this complication is balanced by the
detail of the model and its ability to model phenomena which are not strictly metabolic,
such as stresses through stressME. ME-models are, at present, the most well-developed

https://github.com/SBRG
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RAM framework for studying stress and its effect on metabolism. Future research directions
for ME-modeling might include frameworks for modeling signal transduction and its effect
on metabolism. A particularly interesting application could be in biofilms and quorum
sensing, or identifying pathways in microbial communities that are activated by signals
from other community members.

4.2.3. Expression and Thermodynamics Flux (ETFL) Framework

The ETFL framework was introduced in 2020 [21] as a simultaneous restructuring of
the ME-Model to change from an iterative LP to a mixed-integer linear problem (MILP), as
well as to integrate thermodynamic and gene expression constraints into a single modeling
framework. Similar to the ME-model framework [20], major cell machinery components are
explicitly modeled, with the only notable absentee being the cell wall. As with RBA models,
a “dummy” protein is used to account for the metabolic cost of unmodeled proteins [21].
The thermodynamic constraints come from the thermodynamics-based metabolic flux
analysis (TMFA) framework [69], also an MILP tool for SMMs. TMFA is defined as follows:

constraints (1) to (3)

∆rG′
j = ∆rG′o

j + RT ∑
i∈Ir

SijCi ∀j ∈ J (21)

∆rG′
j − M + Mb+j ≤ 0 ∀j ∈ J (22)

−∆rG′
j − M + Mb−j ≤ 0 ∀j ∈ J (23)

v+j − Mb+j ≤ 0 ∀j ∈ J (24)

v−j − Mb−j ≤ 0 ∀j ∈ J (25)

b+j + b−j ≤ 1 ∀j ∈ J (26)

where ∆rG′o
j is the standard Gibbs free energy of reaction (generally estimated by the group

contribution method [70]), R is the ideal gas constant, T is the temperature in Kelvin, Ci is
the log-fold difference in concentration of metabolite i from some reference state, M is an
arbitrary large number, b+j is a binary variable with a value of 1 if the reaction can proceed

in the forward direction, b−j is a binary variable with a value of 1 if the reaction can proceed

in the reverse direction (mutually exclusive with b+j ). Constraint (21) defines the Gibbs
energy of the reaction. Constraints (22) and (23) ensure the sign of the Gibbs energy of
the reaction matches with the direction that the reaction proceeds in. Constraints (24) and
(25) block or allow a certain direction that the reaction flux can proceed in. Constraint (26)
ensures that the reaction will only progress in one direction.

A primary assumption made within the ETFL model that is notably absent from the
ME-model formulation is that the dilution rate of metabolites and the degradation rate
of certain “stable” macromolecules are negligible. The latter manifests in Constraint (14),
in that kdeg,m = 0 is assumed for all macromolecules. These assumptions reduce the need
to linearize certain portions of the problem. A novel addition to the framework is the
normalization of all variables to an assumed maximum value, as the ranges for synthesis
reaction fluxes of the modeled components (from 10−10 to 101) can cause optimal solutions
to occur outside of a solver’s accuracy limit (typically 10−9).

Linearizing the general formulation is done by performing discretization on the growth
rate in such a way that allows the conversion of the dilution term for macromolecules into
a linear term with integer-based constraints. The term µem in Equation (14) represents the
concentration loss resulting from dilution, in order to linearize this term, the growth rate is
discretized, as shown in Constraints (27) and (28) below:

µ =
pµ̂

N
, (27)
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p = Σ⌈log2 N⌉
s=0 2sδs (28)

where N represents the desired number of discrete levels for the growth rate, and the
parameter µ̂ is an estimated maximum growth rate. The value of p, based on the values of
binary variables δs, decides which discrete value for the growth rate (between 0 and the
maximum growth rate) is chosen. In doing so, the Petersen linearization scheme can be
used to convert the dilution term into a single variable zs

∗ with linear constraints based on
ej and δs variables, as seen in Equations (29)–(31). A similar formulation can be used for
other growth dependent bilinearities, such as the growth-rate-to-protein ratio.

ej + Mδs − zs
∗ ≤ M (29)

zs
∗ − Mδs ≤ 0 (30)

zs
∗ − ej ≤ 0 (31)

Models using the ETFL framework are solved via MILP, in all cases assuming maxi-
mization of growth rate of wild-type strains, which results in a single metabolic state [21,71].
ETFL models have been analyzed using FVA and an adaptation of the minimization of
metabolic adjustment (MOMA) called the minimization of protein adjustment (MOPA),
which assumes that knockout strains will show a minimal change in protein distribution
compared to the wild-type [21].

Not only does the ETFL framework have the data requirements of the ME-Modeling
framework, but the introduction of thermodynamic constraints also requires metabolite
concentration data. Although not strictly necessary, as the data is used to place limits on
metabolite concentration and can be roughly estimated, the accuracy of the model heavily
depends on these limits, and thus would benefit from estimates curated from metabolomic
data. This component gives the ETFL framework the largest data requirement of any
model discussed (see Figure 1c). Because of its complexity, high data requirements, and
corresponding lack of automated reconstruction tools, to date, ETFL models have been
reconstructed only for two species: E. coli and S. cerevisiae [71]. To date, ETFL models have
generally been limited in use to recapitulating growth rate, gene essentiality and overflow
metabolism phenotype [21,71].

Models using the ETFL framework are the most complex RAMs discussed here to
reconstruct because of its need for not only metabolic, fluxomic, and proteomics datasets,
but also data for characterizing in vivo thermodynamics. This burden, along with high
computational complexity, are the trade-offs of a highly detailed and informative model.
Whereas SMMs and other fgRAM models are good at recapitulating or estimating product
yield, in some cases product titer (dependent on thermodynamics) can be a considerable
limitation to the economic viability of bioproduction platforms such as Clostridium ther-
mocellum for ethanol [72]. With the incorporation of concentration and thermodynamics,
ETFL models have the best potential to address limitations of product titer. However, given
the high complexity and data needs of this framework, ETFL models may be slow to be
adopted unless programming packages, semi-automated reconstruction workflows, proto-
cols, and methods of estimating missing data are developed to speed model reconstruction
and breadth of application and build a community of expertise.

5. Discussion and Conclusions

We discussed several SMM tools and RAM frameworks for connecting proteome distri-
bution and/or macromolecule synthesis cost to metabolism. The contents of these various
frameworks are summarized in Figure 3 and their respective constraints are contrasted in
Table 1. These efforts began simply with the addition of cellular volume limitation con-
straints within FBA termed molecular crowding (FBAwMC) applied to SMMs. Since then,
models have expanded to include additional factors including the synthesis and dilution of
all major macromolecules including enzymes (e.g., RBA framework), RNA, DNA, lipids,
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and ribosomes (e.g., ME-model), and models which incorporate thermodynamics (e.g.,
ETFL framework).

Table 1. Constraints involved with resource analysis frameworks to compare and contrast what is
modeled by different frameworks discussed here. Yellow cells indicate the constraint present in the
SMM tool or RAM framework. This table also notes the type of problem for each tool or framework.

Framework Category Constraints
Precursor cgRAM fgRAM

FB
A

w
M

C

FB
A

w
SC

C

G
EC

K
O

M
O

M
EN

T

R
B

A

M
E

M
odel

ET
FL Conceptual Description Eqn. No.

× × × × × × × Objective function (1)
× × × × × × × Mass balance (2)
× × × × × × × Flux bounds (3)
× Molecular crowding (4)

× Solute capacity (5)
× × × × × Linear enzyme kinetics limitation (6)
× × × × × Enzyme capacity (9)

× Enzyme pool determination (10)
× Enzyme pool limit (11)

× × × Macromolecule mass balance (pseudosteady-state) (14)
× × rRNA capacity constraint (17)

× Protein-ribosome coupling constraint (18)
× Transcription capacity constraint (19)

× Macromolecular machinery capacity constraint (20)
× Thermodynamic constraints on reaction direction (21)–(26)
× Petersen linearization of growth-driven dilution (29)–(31)

LP LP LP LP Iterative
LP

Iterative
LP or
NLP

MILP Type of problem

Each model reconstruction framework has strengths and weaknesses, though generally
there exists a trade-off between model complexity, computational complexity, and data
needs (where each increases with the others) which prevents all but model organisms from
being reconstructed using the most detailed frameworks. In general, cgRAM models are
easier to reconstruct with more available protocols and tools to further ease reconstruction.
cgRAM models are limited in that they do not impose a direct metabolic burden for
protein synthesis and will be most useful to answer questions or test hypotheses related to
protein distribution. On the other hand, fgRAM models are more complex. RBA models
are the simplest category of these, which impose metabolic cost of proteins, RNA, and
ribosomes to limit metabolism. Other fgRAM frameworks, such as ME and ETFL, either
have or have great potential for specialization for linking metabolism to phenotypes which
other modeling frameworks cannot address. ME-models for instance can model oxidative
(oxidizeME), acidic (acidifyME), and protein unfolding stress (foldME). On the other
hand, ETFL models include reaction thermodynamics, which is not considered by other
models and has the potential to address issues of product titer limitations. A mathematical
comparison of model frameworks, highlighting their different constraints and the roles of
those constraints, is provided in Table 1.

As happened before with SMMs, RAMs are following a similar pattern of first being
reconstructed for species with abundant data and well-understood metabolism, such as E.
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coli, B. subtilis, and S. cerevisiae. Again, similar to SMMs, this early work has been followed
by automated reconstruction tools and diversified into other organisms. Unlike SMMs,
RAM frameworks can in principle model the complete flow of information through the
central dogma of biology. Doing so requires accounting for the synthesis of macromolecular
machinery (ribosomes, tRNA, etc.) and processes such as protein degradation, protein
folding, and oxidative stress. As noted in Figure 1, these inclusions could enable addressing
several new research questions. In analogy to how SMMs tended to call different tools
for different tasks. For some model types, like ME-models and ETFL models, this process
has already begun with adaptations of flux variability analysis and MOMA. Future tool
development will likely include analogs to OptKnock (a tool which uses gene knockouts
and reaction eliminations to design strains with growth-linked production) [73], OptStoic
(a tool for identifying and designing pathways for production) [74], and OptCom (for
microbial community simulation) [75].

Of the two classes of resource allocation models, fgRAM models are much less stan-
dardized in format usually relying on MATLAB, Python, and GAMS implementations.
Some models are stored as text files [16] whereas others [48] are available in SBML format.
We believe a key development moving forward will be the standardization of fgRAM mod-
els. In the same way that SMMs took many early forms, now are all largely formatted in
SBML. Such standardization would have several key advantages including interoperability,
ease of use on different platforms (for instance, MATLAB and Python COBRA packages
both read SBML files), and ease of using a simpler RAM as the basis for reconstruction of a
more complex type.

Another key challenge in this area is the estimation of apparent kinetic kapp parameters.
These are concentration-dependent and not the same as kcat for which typically ML tools
can provide estimates [76]. Considering the Michaelis-Menten equation, shown below, kapp
will generally be less than kcat by the extent of substrate saturation.

vj =
kcatejcj

KM + cj
= kappej (32)

kcat

(
cj

KM + cj

)
= kapp (33)

Therefore, kapp is not only dependent on the enzyme, but the state of its environment
(metabolite saturation in parentheses in Equation (33)). Thus, either a workflow needs to
be developed to estimate apparent kinetic parameters, making assumptions of enzyme and
metabolite distribution as done in [16] or kcat values are accepted as surrogates for kapp
with the acknowledgement that it will be an over-estimate of kinetics. What complicates
the picture further is that studies have shown evidence for the presence and operation
of metabolons that enhance locally metabolite concentrations [16] boosting kapp values
even above in vitro derived kcat values. On the parameterization end, a key concern is
the use of mean or median kcat or kapp values when these values are unknown as is done
in AutoPACMEN and in RBA model reconstruction workflows [16,44]. Sensitivity of the
obtained results on the adopted mean values should aways be carried out as a cautionary
check. As mentioned before kcat values are measured under in vitro conditions. However, it
has been shown before that the correlation between in vitro and in vivo activity is generally
weak. Studies have inferred for S. cerevisiae a correlation value of R2 = 0.28 [77], for E.
coli R2 = 0.62 [78] and for Arabidopsis thaliana R2 = 0.45 (compared to median BRENDA
kcat) [79]. Therefore, directly inferring kapp values using quantitative in tandem fluxomic
and proteomic data v = kapp [E] should be the golden standard. This gold standard
has several advantages, including bypassing the issue inconsistent kinetics cause by of
intrinsically disordered-domains, since it results in net apparent kinetics of the in vivo
system, compared to ideal kinetics measured in vitro. Nonetheless, this process is still an
estimate of kinetics, which may change based on metabolic state, and effective kinetics
may be different under different growth conditions and the linear approximation would
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likely fail far from the state at which kapp is estimated. Further, kapp estimates may be
influenced by noise and heterogeneity in both protein abundance and reaction rate (13C
MFA) measurements. Despite the potential for inaccurate kapp estimates, few RAM model
investigations include parameter sensitivity analyses. Model sensitivity to kinetics has
been investigated in multiple ways, including substituting known kapp values for average
values [21] and perturbing the effective kinetic parameter by an order of magnitude in
either direction [65]. A robust analysis of a RAM model should use this gold standard as a
baseline, then apply sensitivity analysis to determine if model conclusions are valid under
different kinetic estimates.

6. Future Directions

A key area of investigation currently lacking in RAM frameworks applications is
investigation of multicellular organisms and microbial communities. This scope is under-
standable as RAM modeling is following a similar trajectory to the early years of SMMs.
In part this limitation arises from the lack of abundance of data, (relative) simplicity of
the modeled organism, and (relative) ease of hypothesis testing. However, we foresee key
research questions addressable by RAM models in eukaryotic and multicellular organ-
isms with great potential to impact diverse fields, particularly medicine, microbial cellular
factories, agriculture, or even questions around the evolution of life.

In medicine, metabolism in cancer is a ripe area of investigation using RAM frame-
works. It has long been noted that cancer cells exhibit unique metabolic phenotypes, such
as the Warburg effect [80], and many have argued that cancer is a metabolic disease [48].
With significant metabolic reprogramming in tumor cells during disease progression [81],
large-scale proteomic changes (for instance, a shift toward anaerobic respiration proteins
such as lactate dehydrogenase) could be used to identify new therapeutic targets unique
to cancer cells. Sequences from cancer cell biopsies along with tools such as SNPeffect
(which uses metabolic models to identify functional roles of SNPs) [82] can be used to create
tumor-specific metabolic networks. In conjunction with drug-target interaction databases,
these networks can be screened for metabolic protein targets which are uniquely susceptible
in the cancer cell.

In cellular factories producing bioproducts or biofuels, whereas SMMs are adept at de-
termining yield, they are unable to infer titer or capture product feedback inhibition [83,84].
Therefore, although an SMM-designed strain may have high yield under low product titer,
it could fail to have economically viable titer by the end of a fermentation process. Here,
ETFL models, which already incorporate thermodynamics, can be used to identify which
pathway steps become highly reversible or irreversible at high product titer, and in what
order. The steps most susceptible to high product titer can be replaced with steps from
other organisms which have higher thermodynamic driving forces. The model can be used
to drive investigation into rebalancing metabolism in cases where substitutions result in
new cofactor stresses.

In agricultural applications, heat-stressed plant enzymes suffer higher protein turnover
(from degradation and damage) [37], increased antioxidant enzyme activity [85], and
change in enzyme activity (including RUBISCO [86]). Each of these imposes protein-
associated metabolic burdens [87], or is a protein-associated metabolic bottleneck [86]
which require RAM-centric descriptions. The foldME and stressME tools are ideally suited
for these investigations. A particularly interesting research question here could include to
what extent the sub-optimal phenotype of heat-stressed plants results from the energetic
cost of protein refolding compared to the increased oxidative stress associated with both
heat and drought. The study could highlight the costliest enzymes as reengineering targets
and hypothesize phenotype improvements from more stable enzymes.

In investigating the origins of life problem, it is hypothesized that early life utilized
catalytic RNA machinery to drive its metabolism, and possibly for storing genetic infor-
mation [88]. RAM models of hypothetical early lifeforms could be reconstructed (perhaps
using a global “dummy” sequence at first, similar to what is suggested for improving
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GECKO and MOMENT frameworks). These models could investigate the cost of metabolic
catalysis in early life and be used to model efficiencies from the transition to protein-based
machinery. Several interesting research questions arise here including: (i) how much more
“fit” would a protein-using organism be than an RNA using one? (ii) how much metabolic
energy in early lifeforms would have to be dedicated to maintaining its RNA machinery
(e.g., re-folding or replacing degraded molecules)? (iii) how would the acidic, reducing
environment of Earth encountered by early life forms stress such an organism?

Another key opportunity is the development of integrated kinetic-resource frame-
works. To elaborate, RAM models provide the most basic linear kinetic approximation as a
bound to reaction rates while simultaneously estimating the rate of synthesis needed to
maintain steady state. If it is assumed that there is neither enzyme degradation nor con-
sumption (kdeg,m = 0 and vconc is assumed negligible in Constraint (14)) then this synthesis
rate is proportional to enzyme concentration. Allowing variable enzyme synthesis would
then allow for an estimation of enzyme concentration from growth rate, which is fixed at
each iteration if using RBA or ME-model frameworks. An iterative framework between
kinetic models (determining metabolite concentration and determining kapp) and resource
allocation models (for determining enzyme concentration) could be used to create a highly
parameterized model of a target organism which integrates the two model types.

Finally, to this point, all models discussed are metabolic “snapshots” at pseudo-steady
state, giving a single metabolic state or evaluating the breadth of feasible metabolic states.
Further, models account for the metabolic cost of transcription and translation, but not its
regulation. However, by modeling the flow of information in a cell, fgRAMs, particularly
ME and ETFL models, can model transcriptional and translational regulatory networks,
as has been suggested [71,89], but not yet implemented. Although it would no doubt
be computationally costly, dynamic fgRAM models could incorporate gene regulatory
network models to capture metabolic dynamics in transitional state. This area holds the
promise of designing inducible metabolic systems.
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