Non-Alcoholic Fatty Liver Disease Induced by Feeding Medium-Chain Fatty Acids Upregulates Cholesterol and Lipid Homeostatic Genes in Skeletal Muscle of Neonatal Pigs
Abstract
:1. Introduction
2. Methods
2.1. Animals and Diets
2.2. Dual-Energy X-ray Absorptiometry
2.3. RNA Extraction
2.4. RNA Sequencing
2.5. Data Analysis and Transcriptomics
3. Results
3.1. Growth Performance and Organ Weights
3.2. Energy Utilization
3.3. Transcriptomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Tilg, H.; Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 2010, 52, 1836–1846. [Google Scholar] [CrossRef]
- Gabbia, D.; Roverso, M.; Guido, M.; Sacchi, D.; Scaffidi, M.; Carrara, M.; Orso, G.; Russo, F.P.; Floreani, A.; Bogialli, S.; et al. Western diet-induced metabolic alterations affect circulating markers of liver function before the development of steatosis. Nutrients 2019, 11, 1602. [Google Scholar] [CrossRef]
- Quek, J.; Chan, K.E.; Wong, Z.Y.; Tan, C.; Tan, B.; Lim, W.H.; Tan, D.J.H.; Tang, A.S.P.; Tay, P.; Xiao, J. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.L.; Howe, L.D.; Jones, H.E.; Higgins, J.P.; Lawlor, D.A.; Fraser, A. The prevalence of non-alcoholic fatty liver disease in children and adolescents: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0140908. [Google Scholar] [CrossRef] [PubMed]
- Arisqueta, L.; Navarro-Imaz, H.; Labiano, I.; Rueda, Y.; Fresnedo, O. High-fat diet overfeeding promotes nondetrimental liver steatosis in female mice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2018, 315, G772–G780. [Google Scholar] [CrossRef] [PubMed]
- Mock, K.; Lateef, S.; Benedito, V.A.; Tou, J.C. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation. J. Nutr. Biochem. 2017, 39, 32–39. [Google Scholar] [CrossRef]
- Gerrard, S.D.; Yonke, J.A.; McMillan, R.P.; Sunny, N.E.; El-Kadi, S.W. Medium-chain fatty acid feeding reduces oxidation and causes panacinar steatosis in livers of neonatal pigs. J. Nutr. 2024, 154, 908–920. [Google Scholar] [CrossRef]
- Gerrard, S.D.; Yonke, J.A.; Seymour, K.A.; Sunny, N.E.; El-Kadi, S.W. Feeding medium-chain fatty acid-rich formula causes liver steatosis and alters hepatic metabolism in neonatal pigs. Am. J. Physiol.-Gastrointest. Liver Physiol. 2023, 325, G135–G146. [Google Scholar] [CrossRef]
- Carter-Kent, C.; Brunt, E.M.; Yerian, L.M.; Alkhouri, N.; Angulo, P.; Kohli, R.; Ling, S.C.; Xanthakos, S.A.; Whitington, P.F.; Charatcharoenwitthaya, P. Relations of steatosis type, grade, and zonality to histological features in pediatric nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 190–197. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Reeds, P.J.; Burrin, D.G.; Davis, T.A.; Fiorotto, M.L.; Stoll, B.; van Goudoever, J.B. Protein nutrition of the neonate. Proc. Natl. Acad. Sci. USA 2000, 59, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.J.; Scottoline, B.; Imam, F.; Hellerstein, M.; Garton, K.; Czerwieniec, G.; Nyangau, E.; Shankaran, M. D3-creatine dilution for the noninvasive measurement of skeletal muscle mass in premature infants. Pediatr. Res. 2021, 89, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef]
- Wang, Z.; Ying, Z.; Bosy-Westphal, A.; Zhang, J.; Schautz, B.; Later, W.; Heymsfield, S.B.; Müller, M.J. Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 2010, 92, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.B. Non-alcoholic fatty liver disease: The hepatic consequence of obesity and the metabolic syndrome. Proc. Nutr. Soc. 2010, 69, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Altajar, S.; Baffy, G. Skeletal muscle dysfunction in the development and progression of nonalcoholic fatty liver disease. J. Clin. Transl. Hepatol. 2020, 8, 414. [Google Scholar] [CrossRef]
- Nachit, M.; Leclercq, I.A. Emerging awareness on the importance of skeletal muscle in liver diseases: Time to dig deeper into mechanisms! Clin. Sci. 2019, 133, 465–481. [Google Scholar] [CrossRef]
- Yonke, J.A.; Seymour, K.A.; El-Kadi, S.W. Branched-chain amino acid supplementation does not enhance lean tissue accretion in low birth weight neonatal pigs, despite lower Sestrin2 expression in skeletal muscle. Amino Acids 2023, 55, 1389–1404. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2021, 50, D988–D995. [Google Scholar] [CrossRef]
- Kinsella, R.J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Tischler, G.; Leonard, S. biobambam: Tools for read pair collation based algorithms on BAM files. Source Code Biol. Med. 2014, 9, 1–18. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 11 June 2024).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Samuel, V.T.; Liu, Z.-X.; Qu, X.; Elder, B.D.; Bilz, S.; Befroy, D.; Romanelli, A.J.; Shulman, G.I. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 2004, 279, 32345–32353. [Google Scholar] [CrossRef]
- Kyrana, E. Impact of chronic liver disease on nutrition, growth and puberty in adolescence. In Liver Disease in Adolescence; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3–19. [Google Scholar]
- Guan, D.; Xiong, Y.; Trinh, T.M.; Xiao, Y.; Hu, W.; Jiang, C.; Dierickx, P.; Jang, C.; Rabinowitz, J.D.; Lazar, M.A. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science 2020, 369, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Rome, S.; Lecomte, V.; Meugnier, E.; Rieusset, J.; Debard, C.; Euthine, V.; Vidal, H.; Lefai, E. Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol. Genom. 2008, 34, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 2005, 115, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Jump, D.B.; Tripathy, S.; Depner, C.M. Fatty acid–regulated transcription factors in the liver. Annu. Rev. Nutr. 2013, 33, 249–269. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, V.; Meugnier, E.; Euthine, V.; Durand, C.; Freyssenet, D.; Nemoz, G.; Rome, S.; Vidal, H.; Lefai, E. A new role for sterol regulatory element binding protein 1 transcription factors in the regulation of muscle mass and muscle cell differentiation. Mol. Cell. Biol. 2010, 30, 1182–1198. [Google Scholar] [CrossRef]
- McPherson, R.; Gauthier, A. Molecular regulation of SREBP function: The Insig-SCAP connection and isoform-specific modulation of lipid synthesis. Biochem. Cell Biol. 2004, 82, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, X.; Ding, Y.; Liu, X.; Diggle, K.; Kisseleva, T.; Brenner, D.A. SREBP regulation of lipid metabolism in liver disease, and therapeutic strategies. Biomedicines 2023, 11, 3280. [Google Scholar] [CrossRef]
- Picklo, M.J.; Murphy, E.J. A high-fat, high-oleic diet, but not a high-fat, saturated diet, reduces hepatic α-linolenic acid and eicosapentaenoic acid content in mice. Lipids 2016, 51, 537–547. [Google Scholar] [CrossRef]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry; WH Freeman: New York, NY, USA, 2002. [Google Scholar]
- Bennett, M.K.; Osborne, T.F. Nutrient regulation of gene expression by the sterol regulatory element binding proteins: Increased recruitment of gene-specific coregulatory factors and selective hyperacetylation of histone H3 in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 6340–6344. [Google Scholar] [CrossRef] [PubMed]
- Surdo, P.L.; Bottomley, M.J.; Calzetta, A.; Settembre, E.C.; Cirillo, A.; Pandit, S.; Ni, Y.G.; Hubbard, B.; Sitlani, A.; Carfí, A. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 2011, 12, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Dubuc, G.; Chamberland, A.; Wassef, H.; Davignon, J.; Seidah, N.G.; Bernier, L.; Prat, A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The effect of coconut oil consumption on cardiovascular risk factors: A systematic review and meta-analysis of clinical trials. Circulation 2020, 141, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Wellington, C.L.; Walker, E.K.; Suarez, A.; Kwok, A.; Bissada, N.; Yang, Y.-Z.; Zhang, L.-H.; James, E.; Wilson, J.E.; Francone, O. ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab. Investig. 2002, 82, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Mullen, P.J.; Lüscher, B.; Scharnagl, H.; Krähenbühl, S.; Brecht, K. Effect of simvastatin on cholesterol metabolism in C2C12 myotubes and HepG2 cells, and consequences for statin-induced myopathy. Biochem. Pharmacol. 2010, 79, 1200–1209. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.K.; Koenis, D.S.; Scheij, S.; Cook, E.C.L.; Moeton, M.; Santos, A.; Lobaccaro, J.-M.A.; Baron, S.; Zelcer, N. EEPD1 is a novel LXR target gene in macrophages which regulates ABCA1 abundance and cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Muscat, G.E.; Wagner, B.L.; Hou, J.; Tangirala, R.K.; Bischoff, E.D.; Rohde, P.; Petrowski, M.; Li, J.; Shao, G.; Macondray, G. Regulation of cholesterol homeostasis and lipid metabolism in skeletal muscle by liver X receptors. J. Biol. Chem. 2002, 277, 40722–40728. [Google Scholar] [CrossRef]
- Eisenhut, M. Changes in ion transport in inflammatory disease. J. Inflamm. 2006, 3, 1–15. [Google Scholar] [CrossRef]
- Burge, K.; Vieira, F.; Eckert, J.; Chaaban, H. Lipid composition, digestion, and absorption differences among neonatal feeding strategies: Potential implications for intestinal inflammation in preterm infants. Nutrients 2021, 13, 550. [Google Scholar] [CrossRef]
- McDonough, A.A.; Thompson, C.B.; Youn, J.H. Skeletal muscle regulates extracellular potassium. Am. J. Physiol.-Ren. Physiol. 2002, 282, F967–F974. [Google Scholar] [CrossRef] [PubMed]
- Gleason, M.M.; Medow, M.; Tulenko, T.N. Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells. Circ. Res. 1991, 69, 216–227. [Google Scholar] [CrossRef] [PubMed]
CONT | LCFA | MCFA | |
---|---|---|---|
Ingredients, % | |||
Water | 86 | 82 | 82 |
Whey protein isolate 1 | 5.6 | 5.6 | 5.6 |
Fat Pak 80 1,* | 5.4 | 10.1 | - |
Coconut oil | - | - | 8.8 |
Lactose ** | 0.5 | - | 1 |
Trace mineral premix 2,‡ | 0.9 | 0.9 | 0.9 |
Dicalcium phosphate | 0.5 | 0.5 | 0.6 |
Casein | 0.2 | - | 0.5 |
Calcium carbonate | 0.2 | 0.2 | 0.2 |
Vitamin premix 2,§ | 0.2 | 0.2 | 0.2 |
Xanthum gum | 0.1 | 0.1 | 0.1 |
Calculated Analysis | |||
Protein, % | 5.3 | 5.3 | 5.3 |
Fat, % | 4.4 | 8.2 | 8.8 |
Lactose, % | 1.0 | 1.0 | 1.0 |
Calcium, % | 0.23 | 0.23 | 0.23 |
Phosphorus, % | 0.14 | 0.14 | 0.14 |
Metabolizable Energy, Kcal/kg | 656 | 984 | 984 |
Contrast | GO BP ID | Term | N Genes | Enrichment | FWER |
---|---|---|---|---|---|
M-C | GO:0042632 | Cholesterol homeostasis | 8 | 41.5 | 1.8 × 10−10 |
M-C | GO:0008203 | Cholesterol metabolic process | 6 | 31.9 | 4.5 × 10−7 |
M-C | GO:0006629 | Lipid metabolic process | 9 | 11.3 | 1.5 × 10−6 |
M-C | GO:0006631 | Fatty acid metabolic process | 4 | 14.9 | 0.0014 |
M-C | GO:0006811 | Monoatomic ion transport | 4 | 4.7 | 0.080 |
M-C | GO:0000122 | Negative regulation of transcription by RNA polymerase II | 6 | 20.6 | 0.1884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerrard, S.D.; Biase, F.H.; Yonke, J.A.; Yadav, R.; Shafron, A.J.; Sunny, N.E.; Gerrard, D.E.; El-Kadi, S.W. Non-Alcoholic Fatty Liver Disease Induced by Feeding Medium-Chain Fatty Acids Upregulates Cholesterol and Lipid Homeostatic Genes in Skeletal Muscle of Neonatal Pigs. Metabolites 2024, 14, 384. https://doi.org/10.3390/metabo14070384
Gerrard SD, Biase FH, Yonke JA, Yadav R, Shafron AJ, Sunny NE, Gerrard DE, El-Kadi SW. Non-Alcoholic Fatty Liver Disease Induced by Feeding Medium-Chain Fatty Acids Upregulates Cholesterol and Lipid Homeostatic Genes in Skeletal Muscle of Neonatal Pigs. Metabolites. 2024; 14(7):384. https://doi.org/10.3390/metabo14070384
Chicago/Turabian StyleGerrard, Samuel D., Fernando H. Biase, Joseph A. Yonke, Ravi Yadav, Anthony J. Shafron, Nishanth E. Sunny, David E. Gerrard, and Samer W. El-Kadi. 2024. "Non-Alcoholic Fatty Liver Disease Induced by Feeding Medium-Chain Fatty Acids Upregulates Cholesterol and Lipid Homeostatic Genes in Skeletal Muscle of Neonatal Pigs" Metabolites 14, no. 7: 384. https://doi.org/10.3390/metabo14070384
APA StyleGerrard, S. D., Biase, F. H., Yonke, J. A., Yadav, R., Shafron, A. J., Sunny, N. E., Gerrard, D. E., & El-Kadi, S. W. (2024). Non-Alcoholic Fatty Liver Disease Induced by Feeding Medium-Chain Fatty Acids Upregulates Cholesterol and Lipid Homeostatic Genes in Skeletal Muscle of Neonatal Pigs. Metabolites, 14(7), 384. https://doi.org/10.3390/metabo14070384