Type 2 Diabetes, Circulating Metabolites, and Calcific Aortic Valve Stenosis: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources and Genetic Instrument Selection
2.3. Statistical Analysis
3. Results
3.1. Causal Effect of T2D on CAVS
3.2. Causal Effect of CAVS on T2D
3.3. Causal Effects of Glycemic Traits and Insulin Resistance on CAVS
3.4. Mediating Effects of Metabolites and Blood Pressure in the Association of T2D with CAVS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moncla, L.-H.M.; Briend, M.; Bossé, Y.; Mathieu, P. Calcific Aortic Valve Disease: Mechanisms, Prevention and Treatment. Nat. Rev. Cardiol. 2023, 20, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Thaden, J.J.; Nkomo, V.T.; Enriquez-Sarano, M. The Global Burden of Aortic Stenosis. Prog. Cardiovasc. Dis. 2014, 56, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Strange, G.; Stewart, S.; Celermajer, D.; Prior, D.; Scalia, G.M.; Marwick, T.; Ilton, M.; Joseph, M.; Codde, J.; Playford, D. Poor Long-Term Survival in Patients With Moderate Aortic Stenosis. J. Am. Coll. Cardiol. 2019, 74, 1851–1863. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Rawshani, A.; Franzén, S.; Rawshani, A.; Svensson, A.-M.; Rosengren, A.; McGuire, D.K.; Eliasson, B.; Gudbjörnsdottir, S. Age at Diagnosis of Type 2 Diabetes Mellitus and Associations With Cardiovascular and Mortality Risks. Circulation 2019, 139, 2228–2237. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.D.; Sattar, N. Cardiovascular Risk in Diabetes Mellitus: Epidemiology, Assessment and Prevention. Nat. Rev. Cardiol. 2023, 20, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.-S.; Ko, S.-H. Current Trends in Epidemiology of Cardiovascular Disease and Cardiovascular Risk Management in Type 2 Diabetes. Metabolism 2021, 123, 154838. [Google Scholar] [CrossRef]
- Aronow, W.S.; Ahn, C.; Kronzon, I.; Goldman, M.E. Association of Coronary Risk Factors and Use of Statins with Progression of Mild Valvular Aortic Stenosis in Older Persons. Am. J. Cardiol. 2001, 88, 693–695. [Google Scholar] [CrossRef]
- Katz, R.; Wong, N.D.; Kronmal, R.; Takasu, J.; Shavelle, D.M.; Probstfield, J.L.; Bertoni, A.G.; Budoff, M.J.; O’Brien, K.D. Features of the Metabolic Syndrome and Diabetes Mellitus as Predictors of Aortic Valve Calcification in the Multi-Ethnic Study of Atherosclerosis. Circulation 2006, 113, 2113–2119. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wallin, A.; Håkansson, N.; Stackelberg, O.; Bäck, M.; Wolk, A. Type 1 and Type 2 Diabetes Mellitus and Incidence of Seven Cardiovascular Diseases. Int. J. Cardiol. 2018, 262, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.T.; Koh, M.; Chan, K.K.; Guo, H.; Alter, D.A.; Austin, P.C.; Tu, J.V.; Wijeysundera, H.C.; Ko, D.T. Association Between Cardiovascular Risk Factors and Aortic Stenosis. J. Am. Coll. Cardiol. 2017, 69, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Emdin, C.A.; Khera, A.V.; Kathiresan, S. Mendelian Randomization. JAMA 2017, 318, 1925. [Google Scholar] [CrossRef] [PubMed]
- Pingault, J.-B.; O’Reilly, P.F.; Schoeler, T.; Ploubidis, G.B.; Rijsdijk, F.; Dudbridge, F. Using Genetic Data to Strengthen Causal Inference in Observational Research. Nat. Rev. Genet. 2018, 19, 566–580. [Google Scholar] [CrossRef]
- Relton, C.L.; Davey Smith, G. Two-Step Epigenetic Mendelian Randomization: A Strategy for Establishing the Causal Role of Epigenetic Processes in Pathways to Disease. Int. J. Epidemiol. 2012, 41, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Timpson, N.J.; Higgins, J.P.T.; Dimou, N.; Langenberg, C.; et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomisation (STROBE-MR): Explanation and Elaboration. BMJ 2021, 375, n2233. [Google Scholar] [CrossRef]
- Xue, A.; Wu, Y.; Zhu, Z.; Zhang, F.; Kemper, K.E.; Zheng, Z.; Yengo, L.; Lloyd-Jones, L.R.; Sidorenko, J.; Wu, Y.; et al. Genome-Wide Association Analyses Identify 143 Risk Variants and Putative Regulatory Mechanisms for Type 2 Diabetes. Nat. Commun. 2018, 9, 2941. [Google Scholar] [CrossRef]
- Chen, J.; Spracklen, C.N.; Marenne, G.; Varshney, A.; Corbin, L.J.; Luan, J.; Willems, S.M.; Wu, Y.; Zhang, X.; Horikoshi, M.; et al. The Trans-Ancestral Genomic Architecture of Glycemic Traits. Nat. Genet. 2021, 53, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.; Norris, D.M.; Yin, X.; Broadaway, K.A.; Moxley, A.H.; Vadlamudi, S.; Wilson, E.P.; Jackson, A.U.; Ahuja, V.; Andersen, M.K.; et al. Genome-Wide Association Study and Functional Characterization Identifies Candidate Genes for Insulin-Stimulated Glucose Uptake. Nat. Genet. 2023, 55, 973–983. [Google Scholar] [CrossRef]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic Studies of Body Mass Index Yield New Insights for Obesity Biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef]
- Shungin, D.; Winkler, T.W.; Croteau-Chonka, D.C.; Ferreira, T.; Locke, A.E.; Mägi, R.; Strawbridge, R.J.; Pers, T.H.; Fischer, K.; Justice, A.E.; et al. New Genetic Loci Link Adipose and Insulin Biology to Body Fat Distribution. Nature 2015, 518, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Nightingale Health and UK Biobank Announces Major Initiative to Analyse Half a Million Blood Samples to Facilitate Global Medical Research. Available online: https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/news/nightingale-health-and-uk-biobank-announces-major-initiative-to-analyse-half-a-million-blood-samples-to-facilitate-global-medical-research (accessed on 25 June 2024).
- Evangelou, E.; Program, T.M.V.; Warren, H.R.; Mosen-Ansorena, D.; Mifsud, B.; Pazoki, R.; Gao, H.; Ntritsos, G.; Dimou, N.; Cabrera, C.P.; et al. Genetic Analysis of over 1 Million People Identifies 535 New Loci Associated with Blood Pressure Traits. Nat. Genet. 2018, 50, 1412–1425. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Thompson, S.G.; CRP CHD Genetics Collaboration. Avoiding Bias from Weak Instruments in Mendelian Randomization Studies. Int. J. Epidemiol. 2011, 40, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Greco, M.F.D.; Minelli, C.; Sheehan, N.A.; Thompson, J.R. Detecting Pleiotropy in Mendelian Randomisation Studies with Summary Data and a Continuous Outcome. Stat. Med. 2015, 34, 2926–2940. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.R.; Minelli, C.; Del Greco, M.F. Mendelian Randomization Using Public Data from Genetic Consortia. Int. J. Biostat. 2016, 12, 20150074. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base Platform Supports Systematic Causal Inference across the Human Phenome. Elife 2018, 7, e34408. [Google Scholar] [CrossRef] [PubMed]
- Yavorska, O.O.; Burgess, S. MendelianRandomization: An R Package for Performing Mendelian Randomization Analyses Using Summarized Data. Int. J. Epidemiol. 2017, 46, 1734–1739. [Google Scholar] [CrossRef]
- Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr. Cardiol. Rep. 2019, 21, 21. [Google Scholar] [CrossRef]
- Mordi, I.R.; Lumbers, R.T.; Palmer, C.N.; Pearson, E.R.; Sattar, N.; Holmes, M.V.; Lang, C.C. Type 2 Diabetes, Metabolic Traits, and Risk of Heart Failure: A Mendelian Randomization Study. Diabetes Care 2021, 44, 1699–1705. [Google Scholar] [CrossRef]
- Taniguchi, T.; Morimoto, T.; Shiomi, H.; Ando, K.; Kanamori, N.; Murata, K.; Kitai, T.; Kawase, Y.; Izumi, C.; Miyake, M.; et al. Initial Surgical Versus Conservative Strategies in Patients With Asymptomatic Severe Aortic Stenosis. J. Am. Coll. Cardiol. 2015, 66, 2827–2838. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Greenwood, J.P.; Berry, C.; Dawson, D.K.; Hogrefe, K.; Kelly, D.J.; Dhakshinamurthy, V.; Lang, C.C.; Khoo, J.P.; Sprigings, D.; et al. Comparison of Exercise Testing and CMR Measured Myocardial Perfusion Reserve for Predicting Outcome in Asymptomatic Aortic Stenosis: The PRognostic Importance of MIcrovascular Dysfunction in Aortic Stenosis (PRIMID AS) Study. Eur. Heart J. 2017, 38, 1222–1229. [Google Scholar] [CrossRef]
- López-de-Andrés, A.; Perez-Farinos, N.; de Miguel-Díez, J.; Hernández-Barrera, V.; Méndez-Bailón, M.; de Miguel-Yanes, J.M.; Jiménez-García, R. Impact of Type 2 Diabetes Mellitus in the Utilization and In-Hospital Outcomes of Surgical Aortic Valve Replacement in Spain (2001–2015). Cardiovasc. Diabetol. 2018, 17, 135. [Google Scholar] [CrossRef] [PubMed]
- Kamalesh, M.; Ng, C.; El Masry, H.; Eckert, G.; Sawada, S. Does Diabetes Accelerate Progression of Calcific Aortic Stenosis? Eur. J. Echocardiogr. 2009, 10, 723–725. [Google Scholar] [CrossRef]
- Mosch, J.; Gleissner, C.A.; Body, S.; Aikawa, E. Histopathological Assessment of Calcification and Inflammation of Calcific Aortic Valves from Patients with and without Diabetes Mellitus. Histol. Histopathol. 2017, 32, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Testuz, A.; Nguyen, V.; Mathieu, T.; Kerneis, C.; Arangalage, D.; Kubota, N.; Codogno, I.; Tubiana, S.; Estellat, C.; Cimadevilla, C.; et al. Influence of Metabolic Syndrome and Diabetes on Progression of Calcific Aortic Valve Stenosis. Int. J. Cardiol. 2017, 244, 248–253. [Google Scholar] [CrossRef]
- Marcovecchio, M.L.; Lucantoni, M.; Chiarelli, F. Role of Chronic and Acute Hyperglycemia in the Development of Diabetes Complications. Diabetes Technol. Ther. 2011, 13, 389–394. [Google Scholar] [CrossRef]
- Hwang, I.-C.; Kim, S.; Boo, D.; Park, C.; Yoo, S.; Yoon, Y.E.; Cho, G.-Y. Impact of Glycemic Control on the Progression of Aortic Stenosis: A Single-Center Cohort Study Using a Common Data Model. BMC Endocr. Disord. 2023, 23, 143. [Google Scholar] [CrossRef]
- Utsunomiya, H.; Yamamoto, H.; Kunita, E.; Hidaka, T.; Kihara, Y. Insulin Resistance and Subclinical Abnormalities of Global and Regional Left Ventricular Function in Patients with Aortic Valve Sclerosis. Cardiovasc. Diabetol. 2014, 13, 86. [Google Scholar] [CrossRef]
- Jorge-Galarza, E.; Posadas-Romero, C.; Torres-Tamayo, M.; Medina-Urrutia, A.X.; Rodas-Díaz, M.A.; Posadas-Sánchez, R.; Vargas-Alarcón, G.; González-Salazar, M.d.C.; Cardoso-Saldaña, G.C.; Juárez-Rojas, J.G. Insulin Resistance in Adipose Tissue but Not in Liver Is Associated with Aortic Valve Calcification. Dis. Markers 2016, 2016, 9085474. [Google Scholar] [CrossRef]
- Capoulade, R.; Clavel, M.-A.; Dumesnil, J.G.; Chan, K.L.; Teo, K.K.; Tam, J.W.; Côté, N.; Mathieu, P.; Després, J.-P.; Pibarot, P. Insulin Resistance and LVH Progression in Patients With Calcific Aortic Stenosis. JACC Cardiovasc. Imaging 2013, 6, 165–174. [Google Scholar] [CrossRef]
- White, P.J.; McGarrah, R.W.; Herman, M.A.; Bain, J.R.; Shah, S.H.; Newgard, C.B. Insulin Action, Type 2 Diabetes, and Branched-Chain Amino Acids: A Two-Way Street. Mol. Metab. 2021, 52, 101261. [Google Scholar] [CrossRef]
- Tessari, P.; Cecchet, D.; Cosma, A.; Puricelli, L.; Millioni, R.; Vedovato, M.; Tiengo, A. Insulin Resistance of Amino Acid and Protein Metabolism in Type 2 Diabetes. Clin. Nutr. 2011, 30, 267–272. [Google Scholar] [CrossRef]
- Athyros, V.G.; Doumas, M.; Imprialos, K.P.; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and Lipid Metabolism. Hormones 2018, 17, 61–67. [Google Scholar] [CrossRef]
- Titchenell, P.M.; Lazar, M.A.; Birnbaum, M.J. Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol. Metab. 2017, 28, 497–505. [Google Scholar] [CrossRef]
- Vanweert, F.; de Ligt, M.; Hoeks, J.; Hesselink, M.K.C.; Schrauwen, P.; Phielix, E. Elevated Plasma Branched-Chain Amino Acid Levels Correlate With Type 2 Diabetes-Related Metabolic Disturbances. J. Clin. Endocrinol. Metab. 2021, 106, e1827–e1836. [Google Scholar] [CrossRef]
- Moreno-Vedia, J.; Llop, D.; Rodríguez-Calvo, R.; Plana, N.; Amigó, N.; Rosales, R.; Esteban, Y.; Girona, J.; Masana, L.; Ibarretxe, D. Serum Branch-Chained Amino Acids Are Increased in Type 2 Diabetes and Associated with Atherosclerotic Cardiovascular Disease. Cardiovasc. Diabetol. 2023, 22, 249. [Google Scholar] [CrossRef]
- Smith, M.L.; Bull, C.J.; Holmes, M.V.; Davey Smith, G.; Sanderson, E.; Anderson, E.L.; Bell, J.A. Distinct Metabolic Features of Genetic Liability to Type 2 Diabetes and Coronary Artery Disease: A Reverse Mendelian Randomization Study. eBioMedicine 2023, 90, 104503. [Google Scholar] [CrossRef]
- Surendran, A.; Edel, A.; Chandran, M.; Bogaert, P.; Hassan-Tash, P.; Kumar Asokan, A.; Hiebert, B.; Solati, Z.; Sandhawalia, S.; Raabe, M.; et al. Metabolomic Signature of Human Aortic Valve Stenosis. JACC Basic Transl. Sci. 2020, 5, 1163–1177. [Google Scholar] [CrossRef]
- Nazarzadeh, M.; Pinho-Gomes, A.-C.; Bidel, Z.; Dehghan, A.; Canoy, D.; Hassaine, A.; Ayala Solares, J.R.; Salimi-Khorshidi, G.; Smith, G.D.; Otto, C.M.; et al. Plasma Lipids and Risk of Aortic Valve Stenosis: A Mendelian Randomization Study. Eur. Heart J. 2020, 41, 3913–3920. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, N.; Kim, M.; Woo, S.-H.; Han, I.; Park, J.; Kim, K.; Park, K.S.; Kim, K.; Shim, D.; et al. Single-Cell Transcriptomics Reveal Cellular Diversity of Aortic Valve and the Immunomodulation by PPARγ during Hyperlipidemia. Nat. Commun. 2022, 13, 5461. [Google Scholar] [CrossRef]
- Ouimet, M.; Barrett, T.J.; Fisher, E.A. HDL and Reverse Cholesterol Transport. Circ. Res. 2019, 124, 1505–1518. [Google Scholar] [CrossRef]
- Girona, J.; Amigó, N.; Ibarretxe, D.; Plana, N.; Rodríguez-Borjabad, C.; Heras, M.; Ferré, R.; Gil, M.; Correig, X.; Masana, L. HDL Triglycerides: A New Marker of Metabolic and Cardiovascular Risk. Int. J. Mol. Sci. 2019, 20, 3151. [Google Scholar] [CrossRef]
- Rimm, E.B.; Appel, L.J.; Chiuve, S.E.; Djoussé, L.; Engler, M.B.; Kris-Etherton, P.M.; Mozaffarian, D.; Siscovick, D.S.; Lichtenstein, A.H.; American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; et al. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2018, 138, e35–e47. [Google Scholar] [CrossRef]
- Chou, C.-L.; Chen, J.-S.; Kang, Y.-N.; Chen, Y.-J.; Fang, T.-C. Association of Polyunsaturated Fatty Acids with Improved Heart Rate Variability and Cardiovascular Events in Patients with End-Stage Renal Disease Receiving Maintenance Dialysis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Food Funct. 2021, 12, 8090–8099. [Google Scholar] [CrossRef]
- Marklund, M.; Wu, J.H.Y.; Imamura, F.; Del Gobbo, L.C.; Fretts, A.; de Goede, J.; Shi, P.; Tintle, N.; Wennberg, M.; Aslibekyan, S.; et al. Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality. Circulation 2019, 139, 2422–2436. [Google Scholar] [CrossRef]
- Artiach, G.; Carracedo, M.; Plunde, O.; Wheelock, C.E.; Thul, S.; Sjövall, P.; Franco-Cereceda, A.; Laguna-Fernandez, A.; Arnardottir, H.; Bäck, M. Omega-3 Polyunsaturated Fatty Acids Decrease Aortic Valve Disease Through the Resolvin E1 and ChemR23 Axis. Circulation 2020, 142, 776–789. [Google Scholar] [CrossRef]
- Borges, M.C.; Haycock, P.C.; Zheng, J.; Hemani, G.; Holmes, M.V.; Davey Smith, G.; Hingorani, A.D.; Lawlor, D.A. Role of Circulating Polyunsaturated Fatty Acids on Cardiovascular Diseases Risk: Analysis Using Mendelian Randomization and Fatty Acid Genetic Association Data from over 114,000 UK Biobank Participants. BMC Med. 2022, 20, 210. [Google Scholar] [CrossRef]
- Yuan, S.; Bäck, M.; Bruzelius, M.; Mason, A.M.; Burgess, S.; Larsson, S. Plasma Phospholipid Fatty Acids, FADS1 and Risk of 15 Cardiovascular Diseases: A Mendelian Randomisation Study. Nutrients 2019, 11, 3001. [Google Scholar] [CrossRef]
- Ferrannini, E.; Cushman, W.C. Diabetes and Hypertension: The Bad Companions. Lancet 2012, 380, 601–610. [Google Scholar] [CrossRef]
- Ganne, S.; Arora, S.K.; Dotsenko, O.; McFarlane, S.I.; Whaley-Connell, A. Hypertension in People with Diabetes and the Metabolic Syndrome: Pathophysiologic Insights and Therapeutic Update. Curr. Diab. Rep. 2007, 7, 208–217. [Google Scholar] [CrossRef]
- Sun, D.; Zhou, T.; Heianza, Y.; Li, X.; Fan, M.; Fonseca, V.A.; Qi, L. Type 2 Diabetes and Hypertension. Circ. Res. 2019, 124, 930–937. [Google Scholar] [CrossRef]
- van Oort, S.; Beulens, J.W.J.; van Ballegooijen, A.J.; Grobbee, D.E.; Larsson, S.C. Association of Cardiovascular Risk Factors and Lifestyle Behaviors With Hypertension. Hypertension 2020, 76, 1971–1979. [Google Scholar] [CrossRef]
- Côté, N.; Pibarot, P.; Pépin, A.; Fournier, D.; Audet, A.; Arsenault, B.; Couture, C.; Poirier, P.; Després, J.-P.; Mathieu, P. Oxidized Low-Density Lipoprotein, Angiotensin II and Increased Waist Cirumference Are Associated with Valve Inflammation in Prehypertensive Patients with Aortic Stenosis. Int. J. Cardiol. 2010, 145, 444–449. [Google Scholar] [CrossRef]
- Chu, Y.; Lund, D.D.; Doshi, H.; Keen, H.L.; Knudtson, K.L.; Funk, N.D.; Shao, J.Q.; Cheng, J.; Hajj, G.P.; Zimmerman, K.A.; et al. Fibrotic Aortic Valve Stenosis in Hypercholesterolemic/Hypertensive Mice. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 466–474. [Google Scholar] [CrossRef]
- Myles, V.; Liao, J.; Warnock, J.N. Cyclic Pressure and Angiotensin II Influence the Biomechanical Properties of Aortic Valves. J. Biomech. Eng. 2014, 136, 011011. [Google Scholar] [CrossRef]
- O’Brien, K.D.; Probstfield, J.L.; Caulfield, M.T.; Nasir, K.; Takasu, J.; Shavelle, D.M.; Wu, A.H.; Zhao, X.-Q.; Budoff, M.J. Angiotensin-Converting Enzyme Inhibitors and Change in Aortic Valve Calcium. Arch. Intern. Med. 2005, 165, 858. [Google Scholar] [CrossRef]
Category | Mediator | β1 (95% CI) | β2 (95% CI) | β1∗β2 (95% CI) | β1∗β2/β (%) |
---|---|---|---|---|---|
Amino acids | Total_BCAA | 0.075 (0.056 to 0.093) | 0.445 (0.054 to 0.837) | 0.033 (0.003 to 0.064) | 23.288 |
Tyr | 0.051 (0.031 to 0.071) | 0.271 (0.081 to 0.461) | 0.014 (0.002 to 0.025) | 9.684 | |
Val | 0.075 (0.056 to 0.093) | 0.340 (0.022 to 0.658) | 0.025 (0.001 to 0.050) | 17.782 | |
Blood pressure | SBP | 0.541 (0.366 to 0.716) | 0.023 (0.016 to 0.030) | 0.012 (0.007 to 0.018) | 8.716 |
Cholesterol | L_HDL_CE_pct | −0.068 (−0.089 to −0.047) | −0.155 (−0.299 to −0.012) | 0.011 (0.000 to 0.021) | 7.408 |
L_VLDL_C | 0.040 (0.019 to 0.061) | 0.255 (0.109 to 0.402) | 0.010 (0.002 to 0.018) | 7.158 | |
L_VLDL_CE | 0.027 (0.006 to 0.048) | 0.324 (0.180 to 0.469) | 0.009 (0.001 to 0.017) | 6.094 | |
L_VLDL_FC | 0.052 (0.030 to 0.074) | 0.274 (0.132 to 0.416) | 0.014 (0.005 to 0.024) | 9.965 | |
M_HDL_C_pct | −0.057 (−0.077 to −0.036) | −0.191 (−0.319 to −0.062) | 0.011 (0.002 to 0.019) | 7.556 | |
M_HDL_CE_pct | −0.055 (−0.077 to −0.034) | −0.214 (−0.335 to −0.092) | 0.012 (0.004 to 0.020) | 8.278 | |
M_LDL_FC_pct | −0.075 (−0.095 to −0.055) | −0.158 (−0.274 to −0.042) | 0.012 (0.003 to 0.021) | 8.3 | |
S_HDL_C_pct | −0.052 (−0.072 to −0.031) | −0.156 (−0.294 to −0.019) | 0.008 (0.000 to 0.016) | 5.656 | |
S_HDL_CE_pct | −0.044 (−0.064 to −0.024) | −0.208 (−0.340 to −0.076) | 0.009 (0.002 to 0.016) | 6.419 | |
S_LDL_CE_pct | 0.025 (0.007 to 0.044) | 0.205 (0.077 to 0.334) | 0.005 (0.000 to 0.010) | 3.642 | |
S_LDL_FC_pct | −0.069 (−0.089 to −0.049) | −0.171 (−0.284 to −0.059) | 0.012 (0.003 to 0.020) | 8.279 | |
VLDL_FC | 0.028 (0.006 to 0.049) | 0.309 (0.176 to 0.442) | 0.009 (0.001 to 0.016) | 6.033 | |
XL_VLDL_C | 0.044 (0.024 to 0.064) | 0.317 (0.169 to 0.465) | 0.014 (0.005 to 0.023) | 9.804 | |
XL_VLDL_CE | 0.027 (0.006 to 0.048) | 0.264 (0.120 to 0.408) | 0.007 (0.000 to 0.014) | 5.004 | |
XL_VLDL_FC | 0.056 (0.035 to 0.077) | 0.296 (0.152 to 0.440) | 0.016 (0.006 to 0.027) | 11.564 | |
XXL_VLDL_C | 0.061 (0.040 to 0.081) | 0.259 (0.115 to 0.402) | 0.016 (0.005 to 0.026) | 11.001 | |
XXL_VLDL_CE | 0.058 (0.037 to 0.079) | 0.254 (0.126 to 0.383) | 0.015 (0.005 to 0.024) | 10.327 | |
XXL_VLDL_FC | 0.065 (0.044 to 0.085) | 0.202 (0.059 to 0.345) | 0.013 (0.003 to 0.023) | 9.16 | |
Fatty acids | MUFA | 0.047 (0.026 to 0.067) | 0.305 (0.164 to 0.446) | 0.014 (0.005 to 0.023) | 9.972 |
MUFA_pct | 0.062 (0.041 to 0.083) | 0.201 (0.049 to 0.353) | 0.013 (0.002 to 0.023) | 8.764 | |
Omega_3 | 0.022 (0.004 to 0.040) | 0.312 (0.218 to 0.407) | 0.007 (0.001 to 0.013) | 4.783 | |
Omega_6_by_Omega_3 | −0.031 (−0.048 to −0.013) | −0.373 (−0.524 to −0.222) | 0.011 (0.003 to 0.020) | 8.052 | |
Omega_6_pct | −0.062 (−0.083 to −0.040) | −0.297 (−0.473 to −0.120) | 0.018 (0.005 to 0.031) | 12.821 | |
SFA | 0.028 (0.008 to 0.047) | 0.331 (0.164 to 0.498) | 0.009 (0.001 to 0.017) | 6.39 | |
SFA_pct | 0.031 (0.013 to 0.050) | 0.454 (0.131 to 0.777) | 0.014 (0.001 to 0.028) | 9.901 | |
Total_FA | 0.026 (0.008 to 0.044) | 0.290 (0.149 to 0.430) | 0.008 (0.001 to 0.014) | 5.331 | |
Lipoprptein particle concentration | L_VLDL_P | 0.058 (0.037 to 0.079) | 0.287 (0.140 to 0.435) | 0.017 (0.006 to 0.027) | 11.672 |
S_VLDL_P | 0.028 (0.008 to 0.048) | 0.276 (0.149 to 0.403) | 0.008 (0.001 to 0.014) | 5.389 | |
VLDL_P | 0.023 (0.003 to 0.044) | 0.326 (0.197 to 0.455) | 0.008 (0.000 to 0.015) | 5.355 | |
XL_VLDL_P | 0.062 (0.041 to 0.084) | 0.276 (0.150 to 0.403) | 0.017 (0.007 to 0.027) | 12.049 | |
XXL_VLDL_P | 0.067 (0.046 to 0.088) | 0.246 (0.103 to 0.389) | 0.017 (0.006 to 0.028) | 11.605 | |
Phospholipids | L_VLDL_PL | 0.057 (0.036 to 0.077) | 0.269 (0.134 to 0.404) | 0.015 (0.006 to 0.025) | 10.668 |
L_VLDL_PL_pct | 0.036 (0.015 to 0.057) | 0.227 (0.097 to 0.356) | 0.008 (0.001 to 0.015) | 5.748 | |
S_LDL_PL_pct | −0.033 (−0.052 to −0.014) | −0.212 (−0.346 to −0.077) | 0.007 (0.001 to 0.013) | 4.917 | |
VLDL_PL | 0.028 (0.007 to 0.049) | 0.287 (0.153 to 0.421) | 0.008 (0.001 to 0.015) | 5.629 | |
XL_VLDL_PL | 0.058 (0.037 to 0.079) | 0.281 (0.139 to 0.423) | 0.016 (0.006 to 0.027) | 11.401 | |
XXL_VLDL_PL | 0.068 (0.047 to 0.089) | 0.221 (0.073 to 0.369) | 0.015 (0.004 to 0.026) | 10.547 | |
XXL_VLDL_PL_pct | 0.035 (0.017 to 0.053) | 0.217 (0.062 to 0.372) | 0.008 (0.001 to 0.014) | 5.357 | |
Total lipids | L_VLDL_L | 0.058 (0.037 to 0.079) | 0.292 (0.138 to 0.447) | 0.017 (0.006 to 0.028) | 11.828 |
S_VLDL_L | 0.025 (0.005 to 0.044) | 0.280 (0.154 to 0.407) | 0.007 (0.001 to 0.013) | 4.88 | |
VLDL_L | 0.044 (0.024 to 0.064) | 0.314 (0.175 to 0.452) | 0.014 (0.005 to 0.023) | 9.725 | |
XL_VLDL_L | 0.062 (0.041 to 0.084) | 0.281 (0.151 to 0.411) | 0.018 (0.007 to 0.028) | 12.282 | |
XXL_VLDL_L | 0.066 (0.045 to 0.087) | 0.192 (0.033 to 0.351) | 0.013 (0.001 to 0.024) | 8.885 | |
Triglycerides | HDL_TG | 0.048 (0.030 to 0.066) | 0.227 (0.131 to 0.324) | 0.011 (0.005 to 0.017) | 7.641 |
IDL_TG | 0.035 (0.016 to 0.054) | 0.249 (0.118 to 0.381) | 0.009 (0.002 to 0.015) | 6.066 | |
L_HDL_TG_pct | 0.059 (0.040 to 0.079) | 0.184 (0.075 to 0.293) | 0.011 (0.003 to 0.018) | 7.646 | |
L_LDL_TG | 0.036 (0.017 to 0.055) | 0.258 (0.129 to 0.387) | 0.009 (0.003 to 0.016) | 6.56 | |
L_VLDL_TG | 0.064 (0.042 to 0.085) | 0.257 (0.105 to 0.409) | 0.016 (0.005 to 0.028) | 11.521 | |
LDL_TG | 0.039 (0.020 to 0.058) | 0.253 (0.131 to 0.375) | 0.010 (0.003 to 0.017) | 6.938 | |
M_HDL_TG | 0.052 (0.033 to 0.070) | 0.214 (0.116 to 0.313) | 0.011 (0.005 to 0.018) | 7.761 | |
M_HDL_TG_pct | 0.051 (0.031 to 0.071) | 0.187 (0.067 to 0.308) | 0.010 (0.002 to 0.017) | 6.692 | |
M_LDL_TG | 0.044 (0.024 to 0.064) | 0.247 (0.117 to 0.377) | 0.011 (0.003 to 0.019) | 7.594 | |
M_VLDL_TG | 0.052 (0.030 to 0.073) | 0.303 (0.167 to 0.440) | 0.016 (0.006 to 0.025) | 10.969 | |
S_HDL_TG | 0.063 (0.043 to 0.083) | 0.218 (0.107 to 0.329) | 0.014 (0.005 to 0.022) | 9.624 | |
S_HDL_TG_pct | 0.057 (0.036 to 0.078) | 0.173 (0.061 to 0.284) | 0.010 (0.002 to 0.017) | 6.883 | |
S_LDL_TG | 0.055 (0.035 to 0.076) | 0.276 (0.145 to 0.406) | 0.015 (0.006 to 0.024) | 10.664 | |
S_LDL_TG_pct | 0.074 (0.052 to 0.095) | 0.165 (0.031 to 0.299) | 0.012 (0.002 to 0.023) | 8.51 | |
S_VLDL_TG | 0.059 (0.037 to 0.080) | 0.235 (0.124 to 0.346) | 0.014 (0.005 to 0.022) | 9.637 | |
TG_by_PG | 0.067 (0.046 to 0.088) | 0.161 (0.037 to 0.285) | 0.011 (0.002 to 0.020) | 7.526 | |
Total_TG | 0.061 (0.040 to 0.081) | 0.282 (0.155 to 0.408) | 0.017 (0.007 to 0.027) | 11.989 | |
VLDL_TG | 0.063 (0.042 to 0.084) | 0.260 (0.129 to 0.392) | 0.016 (0.006 to 0.026) | 11.485 | |
XL_HDL_TG_pct | 0.065 (0.045 to 0.085) | 0.198 (0.081 to 0.316) | 0.013 (0.004 to 0.022) | 9.035 | |
XL_VLDL_TG | 0.070 (0.048 to 0.092) | 0.232 (0.092 to 0.372) | 0.016 (0.005 to 0.027) | 11.372 | |
XS_VLDL_TG | 0.045 (0.024 to 0.065) | 0.217 (0.092 to 0.342) | 0.010 (0.002 to 0.017) | 6.813 | |
XXL_VLDL_TG | 0.067 (0.046 to 0.089) | 0.186 (0.014 to 0.359) | 0.013 (0.000 to 0.025) | 8.785 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, R.; Pan, C.; Yi, G.; Li, Z.; Dong, C.; Yu, J.; Zhang, J.; Dong, Q.; Yu, K.; Zeng, Q. Type 2 Diabetes, Circulating Metabolites, and Calcific Aortic Valve Stenosis: A Mendelian Randomization Study. Metabolites 2024, 14, 385. https://doi.org/10.3390/metabo14070385
Shen R, Pan C, Yi G, Li Z, Dong C, Yu J, Zhang J, Dong Q, Yu K, Zeng Q. Type 2 Diabetes, Circulating Metabolites, and Calcific Aortic Valve Stenosis: A Mendelian Randomization Study. Metabolites. 2024; 14(7):385. https://doi.org/10.3390/metabo14070385
Chicago/Turabian StyleShen, Rui, Chengliang Pan, Guiwen Yi, Zhiyang Li, Chen Dong, Jian Yu, Jiangmei Zhang, Qian Dong, Kunwu Yu, and Qiutang Zeng. 2024. "Type 2 Diabetes, Circulating Metabolites, and Calcific Aortic Valve Stenosis: A Mendelian Randomization Study" Metabolites 14, no. 7: 385. https://doi.org/10.3390/metabo14070385
APA StyleShen, R., Pan, C., Yi, G., Li, Z., Dong, C., Yu, J., Zhang, J., Dong, Q., Yu, K., & Zeng, Q. (2024). Type 2 Diabetes, Circulating Metabolites, and Calcific Aortic Valve Stenosis: A Mendelian Randomization Study. Metabolites, 14(7), 385. https://doi.org/10.3390/metabo14070385