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Abstract: Breast cancer imposes a significant burden globally. While the survival rate is steadily
improving, much remains to be elucidated. This observational, single time point, multiomic study
utilizing genomics, proteomics, targeted and untargeted metabolomics, and metagenomics in a breast
cancer survivor (BCS) and age-matched healthy control cohort (N = 100) provides deep molecular
phenotyping of breast cancer survivors. In this study, the BCS cohort had significantly higher
polygenic risk scores for breast cancer than the control group. Carnitine and hexanoyl carnitine were
significantly different. Several bile acid and fatty acid metabolites were significantly dissimilar, most
notably the Omega-3 Index (O3I) (significantly lower in BCS). Proteomic and metagenomic analyses
identified group and pathway differences, which warrant further investigation. The database built
from this study contributes a wealth of data on breast cancer survivorship where there has been a
paucity, affording the ability to identify patterns and novel insights that can drive new hypotheses
and inform future research. Expansion of this database in the treatment-naïve, newly diagnosed,
controlling for treatment confounders, and through the disease progression, can be leveraged to
profile and contextualize breast cancer and breast cancer survivorship, potentially leading to the
development of new strategies to combat this disease and improve the quality of life for its victims.

Keywords: breast cancer survivors; breast cancer; multiomics; genomics; metagenomics; metabolomics;
proteomics; microbiome; omega-3 fatty acids; aptamer

1. Introduction

Breast cancer (BrCa) remains a formidable global health challenge, affecting more
than two million women and their families each year and leading to almost 700,000 deaths
globally [1]. In 2020, female breast cancer had the highest incidence rate of all cancers in
both sexes and in female-specific cancers, accounting for 11.7% of all cancers and 24.5% of
female cancers [1]. In the United States, breast cancer accounted for an estimated 31% of
new female cancer cases and an estimated 15% of female cancer-related deaths in 2022 [2].
As such, women with breast cancer represent the largest sub-population of those with
cancer in the United States and worldwide.

There exists a body of literature on molecular analytics and therapeutics in breast
cancer [3–17], including an emergent body of literature with multiomics applied to biopsy
specimens in breast cancer [4,6,9–11,14,15,17]. However, there is a paucity of research in
which multiomic analyses have been applied to breast cancer survivors (BCS) who have
completed treatment.

The present study was established as part of a two-step investigation to address this
need. The first step, reported herein, was designed to apply a comprehensive multiomic
analysis (using untargeted genomics, proteomics (serum), metabolomics (plasma, urine,
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stool), gut metagenomics, and polygenic risk scores) to a cohort of BCS derived from the
Mayo Clinic Breast Cancer Registry. This includes the most detailed NextGen sequencing
of the gut metagenome in BCS to date.

The primary aim was to develop a comprehensive molecular atlas of a single time
point comparing a BCS cohort with an age-matched control group of individuals with no
history of breast cancer. The resultant molecular atlas would form the foundation upon
which future multiomics investigations into a larger BCS cohort might be based.

The second step was envisioned to refine the paradigm and apply those lessons to
a multiomic study of those newly diagnosed with breast cancer and prior to treatment
initiation. An acknowledged limitation of the present study is the confounding effect of
treatment on the molecular dynamics in BCS, wherein it is not possible to draw conclusions
about how the molecular findings may or may not have contributed to the evolution of
the disease. However, the present study does lend insight into whether the molecular
phenotypes in the BCS vs. the control cohorts were convergent or divergent. In general, the
application of the methods reported in this paper is expected to, in the future, provide the
ability to describe the molecular dynamics in those newly diagnosed with breast cancer
in greater detail than has been reported previously. From this study, and future studies
building upon this platform, new insights and hypotheses can emerge which strengthen,
deepen, and potentially improve the way breast cancer is approached, before, during, and
after diagnosis.

2. Materials and Methods
2.1. Study Design, Recruitment, Inclusion/Exclusion Criteria, and Informed Consent

In this study, we performed advanced multiscale omics analysis coupled with gut
microbiome metagenome and gut microbiome metabolome data analyses in Breast Cancer
Survivors (BCS). This included univariate, multivariate, and pathway analysis applied to
large datasets developed to detect unique patterns of variance in targeted serum metabolites,
plasma metabolites, gut microbiome community structure, gut microbiome metabolome,
urine metabolome, and quality of life measures. These measures have aided in the devel-
opment of a database that can be used as a reference population for precision medicine
in BCS.

Cases and controls were recruited to the study via mail or in person. Each study packet
included an informed consent document, an invitation letter, and a return envelope. For
BCS cases, eligible participants were adult females enrolled in the Mayo Clinic Biospecimen
Resource for Breast Disease (IRB # 1815-04), current ages 18–75 years, with a prior diagnosis
of stage 0–3 (in situ or invasive) breast cancer (BCS) who had completed active therapy
(surgery, radiation, and/or chemotherapy) approximately 8–30 months prior to provision
of their samples. For trial controls, age-matched (within 0–5 years depending upon the
convenience and availability) females with no history of cancer (other than non-melanoma
skin cancer) were selected from the PRISM Study (IRB #18-002366 The Predicting Risk after
Screening Mammogram (PRISM) Study) or the Mayo Clinic Breast Mammography practice.
Exclusion criteria for both cohorts (BCS cases and trial controls) exclusion criteria included:
male biological sex or gender, pregnant females, or participants unwilling to travel to Mayo
Clinic Rochester for the study visit or unwilling to provide mail-in stool samples.

Participants came to the Mayo Clinic Clinical Research and Trials Unit (Mayo Clinic
CRTU) in Rochester, MN, USA. At the CRTU, participants were asked to sign the consent
form, their height and weights were then obtained, questionnaires were completed, and
the participants’ samples were obtained. Some data was gathered via electronic health
record (EHR) or was from other studies in which these individuals had participated (Mayo
Clinic Biospecimen Resource for Breast Disease (IRB # 1815-04) or IRB #18-002366: The
Predicting Risk after Screening Mammogram (PRISM Study)). Both avenues of additional
data collection were consented to by participants prior to enrollment in this study.

Descriptive statistics (mean; median; SD; IQR) were obtained for BCS and HC for
parametric variables. For PHQ-8 and GAD-7, the mean and standard deviation were
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analyzed. For significance testing of parametric variables, Student’s t-tests were conducted.
For non-parametric statistics, the Wilcoxon Rank-Sum Test was performed. All statistical
analysis for metadata was performed using R version 4.2.3.

2.2. Whole Genome Sequencing

The WGS protocol used in this experiment was similar to the protocol previously
described by Meydan et al. and will be briefly summarized here [18]. Stool samples were
collected using Thorne’s Gut Health Test, which provides metagenomic sequencing of
the microbiome. To isolate microbial DNA from the samples, an automated protocol, and
MoBio’s PowerMag® (+CleaMag®) microbiome DNA isolation kit were utilized on the
KingFischerTM Flex Instrument. The concentration of extracted DNA from each sample and
estimated sample purity were determined by Qubit measurement and spectrophotometry
(A260/280 and A260/230 absorbance ratios), respectively.

Nextera XT Library Prep (Illumina, San Diego, CA, USA) was used to enzymatically
fragment and tag primer sites for adapter index addition, creating next-generation se-
quencing libraries. Sequencing adapters and indices were added during polymerase chain
reaction (PCR) amplification, followed by library verification by fragment analysis (Agilent
Bioanalyzer, Agilent, Santa Clara, CA, USA). DNA sequencing was performed utilizing
the Illumina NextSeq platform, which generated 350 M reads per sample (150 × 150 read
length) and translated to 24× coverage.

Whole genome sequences were aligned to the hg38 reference genome using BWA
mem with the default parameters [19]. Sentieon LocusCollector and Dedup algorithms
were used to remove duplicate reads [20]. After indel realignment and base recalibration
using Sentieon default parameters, Somatic SNVs, and SVs were called with the DNAscope
algorithm [21]. Known variants were annotated using dbSNP SNVs, Indels, and Mills, and
1000 genomes indels [22,23]. After variant calling, variants were filtered by QC, including
removing any sites with p > 0.25 or marked as low quality.

Polygenic risk score (PRS) matrices were collected from PGS Catalog [24] for signa-
tures of breast cancer-specific scores and other breast cancer subtypes, as well as genetic
signatures for 54 health and disease scores [25]. PRS for each individual was calculated by
scoring the variants of the subject using the PGS Catalog calculator (PGS Catalog Calculator
(in preparation [0]). PGS Catalog Team. PGScatalog/pgsc_calc). Statistical comparison of
healthy controls versus breast cancer survivors was performed on these scores using the
Wilcoxon rank-sum test.

2.3. Proteomics via Aptamer

Proteomic profiling was conducted at SomaLogic Operating Co., Inc. (Boulder, CO, USA),
using the SomaScan Assay. The SomaScan method has been previously described in detail
by Gold and colleagues and Kim et al. [26,27]. Briefly, SOMAmer (Slow Off-rate Modified
Aptamers) reagents consist of short single-stranded DNA sequences with a high binding
affinity for proteins. The diverse chemical properties allow for a greatly expanded library
from which SOMAmer reagents are selected. SOMAmer reagents are discovered in vitro
using the SELEX (Systemic Evolution of Ligands by EXponential enrichment) process,
which incorporates chemically modified nucleotides with structural similarity to desired
amino acid side chains. This enhances the specificity and affinity of the target protein
binding interaction.

Initially, samples were diluted and incubated with SOMAmer reagent mixes attached
to streptavidin (SA)-coated beads. The beads had been washed and tagged with an
NHS-biotin reagent. SOMAmer complexes and unbound SOMAmer reagents were sub-
jected to ultraviolet light to cleave a “photo-cleavable” linker within the SOMAmer reagent
which released them into a solution containing an anionic competitor. The anionic com-
petitor displaced the SOMAmer reagents in the eluent, which was then incubated with a
second SA-coated bead. Subsequent washing removed the free SOMAmer regent, followed
by a final elution step, in which the protein-bound SOMAmer reagent was released from
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the proteins when mixed with a denaturing agent. Quantification of SOMAmer reagents
was achieved by hybridization to custom DNA microarrays, which were detected via their
cyanine-3 signal.

Principle component analysis was performed to reduce the dimensionality of a dataset
by identifying and retaining the most significant features. The distance matrix from
generalized unifrac metrics was fed into t-distributed stochastic neighbor embedding
(t-SNE) to project the samples into a two-dimensional space [28]. Log-normal univariate
(Model A) and multivariate modeling (Model B and Model C) were performed. Model A
was an uncorrected comparison for BCS versus healthy cohort. Model B corrected for age
and menopause status and Model C corrected for age, menopause, and treatment type.
Pathway enrichment analysis was performed, and the top 50 pathways were presented for
each model.

2.4. Targeted Metabolomics
2.4.1. Acylcarnitines

The following acylcarnitines were analyzed in human plasma samples: carnitine,
2-methyl butyryl carnitine, 3-hydroxy butyryl carnitine, acetylcarnitine, butyryl carnitine,
decanoyl carnitine, hexanoyl carnitine, isobutyryl carnitine, isovaleryl carnitine, lauroyl
carnitine, linoleoyl carnitine, myristoyl carnitine, octanoyl carnitine, oleoyl carnitine, palmi-
toyl carnitine, propionyl carnitine, stearoyl carnitine, and valeryl carnitine. Samples were
analyzed via LC-MS/MS by Metabolon, Inc. (Morrisville, NC, USA). The plasma samples
were spiked with stable, labeled internal standards, homogenized, and subjected to protein
precipitation with organic solvents. Following centrifugation, an aliquot of the supernatant
was injected into an Agilent 1290/AB Sciex QTrap 5500 LC-MS/MS system equipped with
a C18 reversed-phase UHPLC column. The mass spectrometer was operated in positive
mode using electrospray ionization (ESI).

The peak of the individual analyte product ions was measured against the peak of
the corresponding internal standards. Quantitation was performed using a weighted
linear least squares regression analysis generated from fortified calibration standards and
prepared immediately prior to each run.

LC-MS/MS raw data were collected and processed using AB SCIEX software Analyst
1.6.3 and SCIEX OS-MQ software v1.7. Data reduction was performed using Microsoft
Excel for Office 365 v.16.

2.4.2. Bile Acids

A Human Plasma Bile Acid Panel was performed, which measures all the primary
and secondary bile acids and their conjugates. Bile acid concentrations were analyzed by
LC-MS/MS (Metabolon Method TAM178: “LC-MS/MS Method for the Quantitation of Bile
Acids”). Bile acids measured included: cholic acid (CA), chenodeoxycholic acid (CDCA),
deoxycholic acid (DCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), glycocholic
acid (GCA), glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA), gly-
coursodeoxycholic acid (GUDCA), taurocholic acid (TCA), taurochenodeoxycholic acid
(TCDCA), taurodeoxycholic acid (TDCA), taurolithocholic acid (TLCA), tauroursodeoxy-
cholic acid (TUDCA), and lycolithocholic acid (GLCA).

Calibration samples were prepared at eight different concentration levels by spiking
a phosphate-buffered saline/bovine serum albumin (PBS/BSA) solution with a corre-
sponding calibration spiking solution. Calibration samples, study samples, and quality
control samples were spiked with a solution of isotopically labeled internal standards
and subjected to protein separation with acidified methanol (organic solvent). Following
centrifugation, an aliquot of supernatant was evaporated and dried in a stream of nitrogen.
The dried extracts were reconstituted and injected on an Agilent 1290 Infinity/SCIEX
QTRAP 6500 LC-MS/MS system equipped with a C18 reverse phase UHPLC column. The
mass spectrometer was operated in negative mode using electrospray ionization (ESI).
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The peak area of each bile acid parent (pseudo-MRM mode) or the product ion was
measured against the peak area of the respective internal standard parent (pseudo-MRM
mode) or the product ion. Quantitation was performed using a weighted linear least squares
regression analysis generated from fortified calibration standards prepared immediately
prior to each run.

LC-MS/MS raw data were collected using SCIEX software Analyst 1.7.3 and processed
using SCIEX OS-MQ v.1.7. Data reduction was performed using Microsoft Excel for
Office 365 v.16.

2.4.3. Fatty Acid Panel

In order to assess red blood cell (RBC) fatty acids, dried blood spot (DBS) samples
were collected according to manufacturer instructions (OmegaQuant Analytics, LLC.;
Sioux Falls, SD, USA). Samples were processed and analyzed according to OmegaQuant
Omega-3 Index® methodology, as follows. A drop of blood was collected on filter paper
that was pre-treated with a cocktail solution (Fatty Acid Preservative Solution, FAPS™)
and allowed to dry at room temperature for 15 min. Following drying, samples were
kept at 2–8 ◦C. The DBS was shipped to OmegaQuant for fatty acid analysis. One punch
of the DBS was transferred to a screw-cap glass vial followed by the addition of BTM
(methanol containing 14% boron trifluoride, toluene, methanol; 35:30:35 v/v/v; Sigma-
Aldrich, St. Louis, MO, USA). The vial was briefly vortexed and heated in a hot bath at
100 ◦C for 45 min. After cooling, hexane (EMD Chemicals, Gibbstown, NJ, USA) and
HPLC-grade water were added. Subsequently, the tubes were recapped, vortexed, and
centrifuged to help separate layers. An aliquot of the hexane layer was transferred to
a gas chromatography (GC) vial. GC was carried out using a GC-2010 Gas Chromato-
graph (Shimadzu Corporation, Columbia, MD, USA) equipped with an SP-2560, 100-m
fused silica capillary column (0.25 mm internal diameter, 0.2 um film thickness; Supelco,
Bellefonte, PA, USA).

Fatty acids were identified by comparison with a standard mixture of fatty acids
characteristic of RBC (GLC OQ-A, NuCheck Prep, Elysian, MN, USA) which was also used
to construct individual fatty acid calibration curves. The following 24 fatty acids (by class)
were identified: saturated (14:0, 16:0, 18:0, 20:0, 22:0 24:0); cis monounsaturated (16:1, 18:1,
20:1, 24:1); trans (16:1, 18:1*, 18:2*—see below for more details); cis n-6 polyunsaturated
(18:2, 18:3, 20:2, 20:3, 20:4, 22:4, 22:5); cis n-3 polyunsaturated (18:3, 20:5, 22:5, 22:6). Fatty
acid composition was expressed as a percent of total identified fatty acids. The Omega-3
Index is defined as the sum of 20:5n-3 (EPA) and 22:6n-3 (DHA) adjusted by a regression
equation (r = 0.97) to predict the Omega-3 Index in the RBC.

* The chromatographic conditions used in this study were sufficient to isolate the
C16:1trans isomers and the C18:2 D 9t-12c, 9t-12t, and 9c-12t isomers; the latter is reported
as C18:2n6t. However, each individual C18:1 trans molecular species (i.e., C18:1 D6 through
D13) could not be separated but appeared as two blended peaks that eluted just before
oleic acid. The areas of these two peaks were summed and referred to as a C18:1 trans.

2.4.4. Targeted Metabolomics Statistical Methods

Due to non-normal distributions, acylcarnitine, bile acid, and RBC fatty acid data were
subjected to Mann Whitney U Tests (non-parametric, between groups) and Kruskal-Wallis
ANOVA (non-parametric, select findings) (OriginPro 2024 (64-bit) SR1 ver 10.1.0.178). Data
were Log10 normalized and presented as split violin plots to enhance visualization.

2.5. Untargeted Metabolomics

Untargeted metabolomics analyses were conducted on stool, plasma, and urine sam-
ples. Stool samples were homogenized by sonification after adding 1 × PBS (10 mL per
mg tissue) prior to prepping. Plasma, urine, and stool homogenates were deproteinized
with 6× volume of cold acetonitrile:methanol (1:1) solution following the addition of 13C6-
phenylalanine (3 µL at 250 ng/)µL as internal standard. Samples were kept on ice with
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intermittent vortexing and centrifuged at 18,000× g for 30 min at 4 ◦C. The supernatants
were divided into 2 aliquots and dried down for analysis on a Quadruple Time-of-Flight
Mass Spectrometer (Agilent Technologies 6550 Q-TOF, San Diego, CA, USA) coupled with
an Ultra High-Pressure Liquid Chromatograph (1290 Infinity UHPLC Agilent Technologies,
San Diego, CA, USA). Profiling data were acquired under both positive and negative
electrospray ionization conditions over a mass range of 100–1200 m/z at a resolution of
10,000–35,000 (separate runs). Metabolite separation was achieved using two columns
of differing polarity, a hydrophilic interaction column (HILIC, ethylene-bridged hybrid
2.1 × 150 mm, 1.7 mm; Waters) and a reversed-phase C18 column (high-strength silica
2.1 × 150 mm, 1.8 mm; Waters). For each column, the run time is 20 min using a flow rate
of 400/µL min. A total of four runs per sample was performed to give maximum coverage
of metabolites. A quality control sample, made up of a subset of samples from the study,
was injected several times during each run. All raw data files obtained were converted
to compound exchange file format using Masshunter DA reprocessor software (Agilent,
San Diego, CA, USA). Mass Profiler Professional (Agilent, San Diego, CA, USA) was used
for data alignment and to convert each metabolite feature (m/z × intensity × time) into
a matrix of detected peaks for compound identification. Putative Identifications (IDs)
were given to components based on mass molecular weights and further examined by
comparison to a reference standard of the proposed compound. The mass accuracy of the
Q-TOF method was <5 ppm with retention time precision better than 0.2%. A 1.2× fold
change can be detected with a precision of 4%. 13C6 phenylalanine internal standard was
used to check for recovery of each sample only and not in normalization of the data.

An unsupervised principal component analysis, ANOVA, 3D plot and heat map, and
a Partial Least Square discrimination analysis (PLS-DA) comparison between groups were
generated for analysis. The R-package MetaboanalystR software (version 3.3.0) was used
for data normalization, differential expression analysis, and visualization. In each mode,
metabolites were row-wise normalized to a constant sum (SumNorm), log-transformed,
and then scaled by mean centering (MeanCenter). Normalized data were analyzed by
multivariate Principal Component Analysis (PCA) to reveal data heterogeneity, groupings,
outliers, and trends. Hierarchical clustering analysis (HCA) was performed to reveal
clustering between sample injections, group replicates, and multiple metabolite clusters that
correlate with different subsets of clinical variables. The univariate Student’s unpaired t-test
was conducted for between-group analysis with multiple testing corrections to identify
differentially expressed metabolites between two groups with statistical significance (FDR
adjusted p-value ≤ 0.05 and |fold change| ≥ 1.5).

2.6. Gut Metagenomics

Gut metagenomics analyses were performed at CosmosID (Germantown, MD, USA).
DNA from stool samples was isolated using the QIAGEN DNeasy PowerSoil Pro Kit,
according to the manufacturer’s protocol. DNA samples were quantified using the GloMax
Plate Reader System (Promega, Madison, WI, USA) using the QuantiFluor® dsDNA System
(Promega, Madison, WI, USA) chemistry. DNA libraries were prepared using the Nextera
XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA) and IDT Unique Dual
Indexes with a total DNA input of 1 ng. Genomic DNA was fragmented using a propor-
tional amount of Illumina Nextera XT fragmentation enzyme. Unique dual indexes were
added to each sample followed by 12 cycles of PCR to construct libraries. DNA libraries
were purified using AMpure magnetic beads (Beckman Coulter) and eluted in QIAGEN EB
buffer. DNA libraries were quantified using Qubit 4 fluorometer and Qubit™ dsDNA HS
Assay Kit. Libraries were then sequenced on an Illumina NextSeq 2000 platform 2 × 150b.

Sequences were trimmed by Trimmomatic [29], and then aligned to human genome ref-
erence using BWA [19]. Taxonomic annotation was performed by utilizing KrakenUniq [30]
and subsequently Bracken [31] on a database that includes all bacterial, archaeal, viral, and
fungal references from RefSeq along with human references. The lowest common ancestor
taxonomic annotations were adjusted within the lineage until at least 10% of the unique
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k-mers belonged to a specific clade and not its parent, then filtered for at least 10 reads and
a minimum Bracken-adjusted relative abundance of 0.005%. Pearson correlation was calcu-
lated by taking the log abundances of the species (or other relevant ranks) and comparing
these between the two samples. The functional annotations for genes were performed by
using HUMAnN3 with the UniRef90 clusters and summarized as MetaCyc v19.1 pathways
by HUMAnN3 [32]. The alpha diversity analysis was performed using Shannon entropy
and species richness on the Bracken results of each replicate. Beta diversity was calculated
as a generalized unifrac distance between the samples [33,34]. Statistical analyses of beta
diversity were performed by comparing the within-group distance to inter-group distances.
Differential abundance was calculated using MaAsLin2 with a negative binomial model
and trimmed mean of M-values normalization (TMM) [35,36]. Differentially abundant taxa
were modeled in three ways: (1) BCS vs. HC, (2) BCS grouped by stage at diagnosis, and
(3) BCS grouped by cancer subtype. The correction factors were age, as well as the age and
menopause state at the time of sampling. For differentially abundant taxa, taxon disease
annotation was accomplished via the Disbiome database [37].

2.7. Quality of Life Questionnaires

Participants each electronically completed the Generalized Anxiety Disorder-7 questionnaire
(GAD-7) and the Patient Health Questionnaire-8 (PHQ-8). Results were used as a means
to assess the differences in the general quality of life (QoL) between the two groups.
The PHQ-8 consists of 8 questions (0–3 points each) focused on anxiety (4 questions)
and depression (4 questions). Scores range from 0–24 and are interpreted as 5–9 mild,
10–14 moderate, 15–19 moderately severe, and 20+ severe depression. The GAD-7 consists
of 7 questions (0–3 points each) focused on generalized anxiety. Scores range from 0–21 and
are interpreted as 5–9 mild, 10–14 moderate, and 15+ severe anxiety. Wilcoxon rank-sum
tests were performed on the total score from each questionnaire.

3. Results

To accomplish the stated objectives of this single time point, observational controlled
study, metadata were gathered by questionnaire, taken (blinded for the study team) from
electronic health records of BCS participants, and analyzed from biological samples (blood,
urine, feces). Whole genome sequencing (WGS) from blood yielded polygenic risk scores via
analysis of single nucleotide polymorphisms (SNP). Targeted metabolomics panels included
acylcarnitines and bile acids from plasma and fatty acids from RBCs. Untargeted proteomics
was analyzed from plasma and assessed via aptamers. Untargeted metabolomics assays
were run on plasma, urine, and stool to unmask unknown or unexpected differences.
Metagenomics via NextGen sequencing was completed for the microbiome from stool
samples. The data map in Figure 1 outlines these multiomic features and the following
sections report the results from each class of data gathered.

3.1. Metadata: Description of the Cohort

Data were collected from a total of 100 female participants comprised of two equal
groups—50 Breast Cancer Survivors (BCS) and 50 healthy controls (HC). These results are
shown in Table 1. The mean age of all participants was 63 years (BCS = 62.8; HC = 63.2).
Participants assigned to the BCS group had a prior diagnosis of stage 0–3 (in situ or inva-
sive) breast cancer and had completed active therapy (e.g., chemotherapy, radiotherapy,
endocrine therapy, or some mixture of treatment modalities), with a mean-time from treat-
ment of 518 days (IQR: 411–613 days) prior to provision of the samples. Questionnaire data
for the PHQ-8 and the GAD-7 are shown in Figure A1a,b, respectively. There were no signif-
icant findings between the two cohorts, in regards to the responses to those questionnaires.
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Figure 1. Data map showing classes of data with a number of subjects, detailed metrics assessed
within each class, and a number of features measured within each metric.

Table 1. Metadata: Description of the Cohort.

Metric 1 BCS HC

Subjects (N) 50 50

Age, yrs (mean (SD)) 62.8 (9.91) 63.2 (9.7)

BMI, kg/m2 (mean (SD)) 28.8 (5.9) 27.5 (5)

Breast Cancer Type
Ductal: 35 (70%)

Lobular: 12 (24%)
Mixed: 3 (6%)

NA

Treatment Type (N (%))
Chemo: 10 (20%)
Endo: 34 (68%)
Radio: 32 (64%)

NA

Tamoxifen Use (N (%)) 16 (32%) NA

Breast Cancer Stage at Diagnosis (N (%))

Stage 0: 7 (14%)
Stage I: 31 (62%)
Stage II: 8 (16%)
Stage III: 4 (8%)

NA

Type II Diabetes—Pre-Treatment Yes: 5 (10%)
No: 45 (90%) NA

Type II Diabetes—Post-Treatment Yes: 5 (10%) 3

No: 45 (90%) NA

Type II Diabetes Health Cohort NA Yes: 6 (12%)
No: 45 (88%)

HER2 BrCa Status
Negative: 40 (80%)

Positive: 3 (6%)
Unknown: 7 (14%)

NA
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Table 1. Cont.

Metric 1 BCS HC

BRCA1 BrCa Status

Negative: 17 (34%)
Pathogenic: 1 (2%)

Not tested: 31 (62%)
VUS: 1 (2%)

NA

BRCA2 BrCa Status

Negative: 17 (34%)
Pathogenic: 1 (2%)

Not tested: 31 (62%)
VUS: 1 (2%)

NA

Menopause Status (N (%)) Pre: 8 (16%)
Post: 42 (84%)

Pre: 6 (12%)
Post: 44 (88%)

PHQ-8 Total Score (mean (SD)) 1.58 (2.59) 1.06 (1.62)

GAD-7 Total Score (mean (SD)) 1.16 (2.71) 1.30 (2.70)

Biotics (N (%))
Prebiotics 3 (6%) 1 (2%)
Probiotics 1 (2%) 0 (0%)
Antibiotics 2 (4%) 1 (2%)

History (N (%))

Diabetes 5 (10%) 6 (12%)
Blood Pressure 14 (28%) 20 (40%)
Depression 9 (18%) 5 (10%)
Anxiety 2 12 (24%) 2 (4%)
Pain 7 (14%) 3 (6%)
Heart Problems 3 (6%) 3 (6%)

1 PHQ-8: Patient Health Questionnaire 8; GAD-7: Generalized Anxiety Disorder 7 questionnaire; Prebiotics: (“Are
you currently taking prebiotic supplements?”); Probiotics: (“Are you currently taking probiotic supplements?);
Antibiotics: (“Have you ever taken antibiotics for more than 3 months in the past year?); NA: not applica-
ble; VUS: variant of unknown significance; BrCa: breast cancer. 2 Wilcoxon Rank-Sum Test, between-groups
p-value < 0.05. 3 The participants with Type II diabetes (T2D) post-treatment were the same participants with
T2D pre-treatment.

3.2. Genetic Analysis via Whole Genome Sequencing

Whole genome sequencing (WGS) was completed for each participant in both co-
horts. Using these data, we applied multiple polygenic risk score (PRS) calculations to
the cohort in order to understand their genetic predisposition for health and disease. PRS
categories included breast cancer (108 scores), lipid (65 scores), insulin (23 scores), cardio
(47 scores), and general health and disease (54 scores) [38]. These were assessed for a
total of 297 individual scores. The complete results for BrCa-specific PRSs are reported in
Appendix B (Table A1), with selected PRSs for BrCA and other disease signatures shown
in Figure 2.

As a first-pass genetics analysis, we expected this would give us the best overarching
look at genetic differences between the HC and BCS cohorts. Within this analysis, two major
themes stood out: (1) the genetic homogeneity present between these two age-matched
cohorts and (2) the significant predisposition for BrCa risk present in the BCS cohort. Of
the 189 non-breast cancer-specific PRSs assessed, significant differences were found in only
7. Two p-wave duration scores (p = 0.043 and 0.038) and gout (p = 0.041) were significantly
higher in BCS vs control, while fasting insulin (p = 0.046) and insulin sensitivity index
(p = 0.052), were significantly lower in BCS compared to HC. In the BrCa risk PRS category,
73 of the 108 PRSs assessed showed significance (q < 0.05), indicating a strong genetic
predisposition for a genetic component of BrCa. This battery of predispositions correlated
well with BrCa incidence in the BCS cohort (as the BCS cohort was defined by participants
who had dealt with BrCa and recovered successfully).
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Figure 2. Selected Polygenic Risk Scores. These scores emphasize the significant predisposition for
breast cancer risk and the relative homogeneity of the population in regard to other PRSs assessed.
BrCA: breast cancer, INS: insulin, BP: blood pressure, BMI: body mass index, LDL: low-density
lipoprotein [38].

3.3. Targeted Metabolomics

The investigation of targeted metabolomics was restricted to three important molecular
classes with relevance to BCS and their largely yet-to-be-observed dynamics in each of the
following: acylcarnitines (AC), bile acids (BA), and omega fatty acids (OFA). More specifi-
cally, ACs were investigated due to their relevance to dysfunctions in energy metabolism,
BA was investigated due to their relevance to other types of cancers, and fatty acids were
investigated because of their relevance in inflammatory balance.

3.3.1. Acylcarnitines

Acylcarnitines were analyzed in plasma samples using LC-MS/MS. Eighteen acyl-
carnitines were selected for evaluation including carnitine, 2-methyl butyryl carnitine,
3-hydroxy butyryl carnitine, acetylcarnitine, butyryl carnitine, decanoyl carnitine, hexanoyl
carnitine, isobutyryl carnitine, isovaleryl carnitine, lauroyl carnitine, linoleoyl carnitine,
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myristoyl carnitine, octanoyl carnitine, oleoyl carnitine, palmitoyl carnitine, propionyl
carnitine, stearoyl carnitine, and valeryl carnitine. Overall, principal component analysis
(PCA) plots show a high degree of similarity between the BCS and HC cohorts (Figure A2a).
Of the 18 acylcarnitine metabolites, only carnitine (p = 0.0358; lower) and hexanoyl carni-
tine (p = 0.0410; higher) were found to be significantly different between BCS and healthy
controls (Figure 3a).
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Figure 3. Targeted Metabolomics. Split violin plots showing BCS on the left (red) and HC on the
right (blue) with individual analytes of each type plotted on a Log10 scale. (a) Acylcarnitines
(ng/mL); (b) Bile Acids (ng/mL); (c) Fatty Acids (% composition); (d) AA:EPA Ratio (arachi-
donic acid:eicosapentaenoic acid) and Omega-3 Index. * Wilcoxon Rank-Sum Test between-groups
p-value < 0.05.

3.3.2. Bile Acids

Bile acids were analyzed in plasma samples using LC-MS/MS. As was the case with
acylcarnitines, PCA plots for bile acids showed similarities between the BCS and HC co-
horts (Figure A2b). However, nearly half of them differed, with 7 of the 15 analyzed bile
acids significantly altered in BCS: Chenodeoxycholic acid (CDCA; p = 0.0023), taurour-
sodeoxycholic acid (TUDCA; p = 0.0109), cholic acid (CA; p = 0.0245), glycodeoxycholic acid
(GDCA; p = 0.0249), glycochenodeoxycholic acid (GCDCA; p = 0.0257), and two secondary
bile acids deoxycholic acid (DCA; p = 0.0361), and ursodeoxycholic acid (UDCA; p = 0.0396),
all significantly lower in BCS compared to healthy controls (Figure 3b).
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3.3.3. RBC Fatty Acids

Twenty-four fatty acids were analyzed in red blood cells using gas chromatography
(GC). PCA plot analysis showed a high degree of similarity between the two groups
(Figure A2c). Six of the 24 analytes were significantly altered in BCS compared to HC
(Figure 3c). Eicosapentaenoic Acid (EPA; p = 4.16 × 10−5), Docosahexaenoic Acid (DHA;
p = 0.0071), and Docosapentaenoic Acid (DPA (n−3); p = 0.007), all omega-3 polyunsatu-
rated fatty acids, were significantly lower in BCS compared to controls, whereas arachidic
acid (p = 0.0027), lignoceric acid (p = 0.031), and behenic acid (p = 0.0498) were signif-
icantly higher in BCS compared to controls (Figure 3c). Additionally, the Omega-3 In-
dex (EPA + DHA; p = 4.92 × 10−4) was significantly lower in BCS than in healthy con-
trols (Figure 3d). Arachidonic acid (AA) levels were not significantly different. However
the AA:EPA (arachidonic acid:eicosapentaenoic acid ratio) ratio was significantly higher
(p = 1.0 × 10−5) in BCS with a value of 28.07 compared to 18.00 in healthy controls (Figure 3d).

3.4. Aptamer-Based Untargeted Proteomics
3.4.1. Primary and Exploratory Proteomic Analysis

PCA analysis revealed a significant overlap between the two cohorts with several
outliers (Figure 4a). PC1 represented 14.75% of the variance, while PC2 represented 8.19%
of the variance. The initial exploratory untargeted proteomic analysis showed 108 proteins
that were significantly different between BCS and HC (Figure A3a).

Multiple hypothesis corrections narrowed this list to 18 proteins that differed significantly
between the two cohorts (Figure 4c). These proteins are: cGMP-dependent 3′5′-Cyclic Phos-
phodiesterase (PDE6A, p = 8.75 × 10−4), BPI Fold-containing Family A Member 2.1 (BPIFA2,
p = 0.00103), Neurexophilin-2 (NXPH2, p = 0.002099), Thrombospondin-3 (THBS3, p = 0.002937),
Beta-1,4-Mannosyl-Glycoprotein 4-Beta-N-Acetylglucosaminyltransferase (MGAT4B),
p = 0.002305), Protrudin:Cytoplasmic Domain, Region 2, Isoform 5 (ZFYVE27, p = 0.00344),
HORMA Domain-containing Protein (HORMAD2, p = 0.004394), Galectin-3-Binding Pro-
tein (LGALS3BP, p = 0.00454), Speriolin-like Protein (SPATC1L, p = 0.00588), Elafin (PI3,
p = 0.006145), Adhesion G-protein Coupled Receptor D1 (ADGRD1, p = 0.006832), Histo-
Blood Group ABO System Transferase (ABO, p = 0.007125), Protein Canopy Homolog
4 (CNPY4, p = 0.008074), Biglycan (BGN, p = 0.0084147), Protein S100-A13 (S100A13,
p = 0.0084149), Apolipoprotein A-V (APOA5, p = 0.008768), Trefoil Factor 3 (TFF3, p = 0.008676),
and Macrosialin 1 (CD68, p = 0.009711).

3.4.2. Univariate and Multivariate Proteomic Analysis

We ran several log-normal univariate and multivariate models on the proteomic data.
The first model (Model A) found no features that significantly differentiate between BCS
and HC (Figure 3b). The second model (Model B), contrasting BCS and HC while correcting
for age and menopause status, found more than 60 proteomic features that were higher
and 30 proteomic features that were lower as a function of age (Figure 4b). In this same
model, BCS cohort status and menopause status (except for FSH) showed no significant
differentiation (Figures 4b and A3b).

In a third model (Model C) of BCS versus HC, which corrected for age, menopause,
as well as treatment type, age was again the largest differentiator of significant proteomic
features, with more than 30 proteins being higher and 30 proteins being lower (Figure 4e).
BCS cohort status and treatment type showed several higher proteomic features in this
model (Figure 4b). Additionally, Model C found that stathmin (STMN1), syntaxin-7 (STX7),
and the ubiquitin-conjugating enzyme E2 E1 (UBE2E1) were lower in the BCS cohort
(Figure 4d).

Figure A3c shows the enrichment of biological pathways based on the proteomic
analysis in the context of Models A, B, and C used for the analysis above. Pathways of
interest included the BRACA1 PCC network, FoxE1 target genes, chronic myelogenous
leukemia up, and GOMF RNA binding domains, among others, which were significantly
enriched (up/down) in all models (Figure A3c).



Metabolites 2024, 14, 396 13 of 35Metabolites 2024, 14, 396 13 of 37 
 

 

 
Figure 4. Untargeted Proteomics. (a) PCA of BCS Serum Proteomics (lognormal filtered, by type, 
SD = 0.5); (b) Univariate and Multivariate Models (q < 0.1): Model A—BCS Status; Model B—BCS 
status, age, and menopause status; Model C—BCS status, age, menopause status, and treatment 
type; (c) BCS vs. HC: significantly different proteins (after multiple hypothesis correction; log10 
normalized); (d) Volcano plot of Model C by BCS status; (e) Volcano plot of Model C by age; ** and 
*** Wilcoxon Rank-Sum Test p-value < 0.01 and p-value < 0.001, respectively. Note: Gene names are 
used for brevity, however, all findings in this figure refer to gene products (proteins). 

3.4.2. Univariate and Multivariate Proteomic Analysis 
We ran several log-normal univariate and multivariate models on the proteomic 

data. The first model (Model A) found no features that significantly differentiate between 
BCS and HC (Figure 3b). The second model (Model B), contrasting BCS and HC while 
correcting for age and menopause status, found more than 60 proteomic features that were 
higher and 30 proteomic features that were lower as a function of age (Figure 4b). In this 

Figure 4. Untargeted Proteomics. (a) PCA of BCS Serum Proteomics (lognormal filtered, by type,
SD = 0.5); (b) Univariate and Multivariate Models (q < 0.1): Model A—BCS Status; Model B—BCS
status, age, and menopause status; Model C—BCS status, age, menopause status, and treat-
ment type; (c) BCS vs. HC: significantly different proteins (after multiple hypothesis correction;
log10 normalized); (d) Volcano plot of Model C by BCS status; (e) Volcano plot of Model C by age;
** and *** Wilcoxon Rank-Sum Test p-value < 0.01 and p-value < 0.001, respectively. Note: Gene
names are used for brevity, however, all findings in this figure refer to gene products (proteins).

3.5. Untargeted Metabolomics
3.5.1. Untargeted Plasma Metabolomics

PCA yielded a high overlap between BCS and HC cohorts, indicating a similarity be-
tween the two groups (Figure A4a), in regards to urine and stool metabolomics, respectively.
Variable importance plots (VIP) for different MS modes highlighted major metabolites of
interest (Figure 5c). In multivariate modeling, when controlling for breast cancer type,



Metabolites 2024, 14, 396 14 of 35

age, and menopause status in the BCS versus HC comparison, 3 metabolites were higher
and 4 metabolites were lower in the BCS cohort (Figure 5a). The molecules that were
significantly higher included diaminopimelic acid (p = 2.646 × 10−5), 12Z-tetradecyl acetate
(p = 0.0422), and one metabolite that could not be annotated. The metabolites that were
significantly lower in BCS compared to HC were Asp-Pro-Thr (p = 0.0045), Ser-Ser-His
(p = 0.0045), glycylproline (p = 0.0075), and 8-hydroxyalanylclavam (p = 0.0451; Figure 5a).
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3.5.2. Untargeted Urine & Stool Metabolomics

PCA yielded a high overlap between BCS and HC cohorts, indicating a similarity
between the two groups (Figure A4b,c). When controlling for breast cancer type, age,
menopause, and treatment type (tamoxifen, chemo, endo, radio) using multivariate model-
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ing (Model C), 48 identifiable metabolites (shown in Figure 5b and listed in Table A2) were
found to be significantly lower (q < 0.1). When controlling for breast cancer type, age, and
menopause status (Model B), no significantly different metabolites were found to be higher
or lower in either the untargeted urine or untargeted stool results (Figure A4d,e).

3.5.3. VIP Plots and Metabolite Type Annotation

For each of the three sample types (plasma, serum, and stool), a PLS-DA comparison
revealed that 122 analytes were of importance. Of those metabolites, 63 were found to be
higher in the BCS cohort and 59 were found to be lower (Figure 5c). An analysis aimed
at deeper annotation of those 122 metabolites represented in the VIP plots showed that
82 (67%) of the metabolites had some biological or chemical function that was annotated in
the literature. The remaining 41 (33%) metabolites had no easily identifiable function. These
82 metabolites were grouped into four categories: (1) known drug (N: 28, 34%), (2) of dietary
or supplement origin (N: 17, 21%), (3) endogenous metabolite (N: 14, 17%), or 4) exogenous
metabolites or known toxicant (N: 23, 28%). When comparing the BCS cohort to the healthy
control, of the: (1) drug metabolites 14 were higher and 14 were lower, (2) dietary or
supplement metabolites, 11 were higher and 6 were lower, (3) endogenous metabolites,
7 were higher and 7 were lower, and (4) exogenous or known toxicant metabolites, 9 were
higher and 14 were lower.

3.6. Gut Microbiome Metagenomics
Stool Microbiome

In the dataset, where the majority of samples fell within the ~10–20 million range, PCA
and Principal Coordinates Analysis (PCoA) highlighted a noticeable overlap of cohorts
with minor separation (Figure 6a). No significant global differences were observed in
phylum distribution (Figure 6b), alpha diversity (Shannon index; Figure 6c), or species
richness (Figure A5a). However, beta diversity (Bray-Curtis dissimilarity) analysis revealed
several noteworthy distinctions, indicating unique community structure profiles between
the two cohorts (Figure 6d). The volcano plots for genus and species revealed separation
between the two cohorts in a large number of features (Figure 7a,b). Similarly, the volcano
plots for family, order, class, and phylum revealed separation in a number of features that
varied between plots (Figure A5b–e).
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Utilizing univariate and multivariate models to account for factors such as stage at di-
agnosis, breast cancer type, age, and menopause status uncovered substantial differences in
the abundance of specific genera and species (Figure 7a–d). Importantly, these distinctions
remained consistent across models. Furthermore, delving into the published literature (via
a proprietary database) unveiled associations between the identified genus and species
differences and a diverse range of diseases with microbiome correlates (Figure 8).
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4. Discussion
4.1. Cohort

This age-matched, entirely female, primarily post-menopausal cohort was statistically
similar across groups in all measured demographic variables except anxiety, which occurred
more frequently in the BCS cohort. Participants provided samples from 93 to 1043 days post-
treatment end. The BrCa types and stages as well as modes of treatment were heterogeneous
in this study, potentially confounding the identification of patterns but important in terms
of the broader application of this data set as a foundational database to build upon for
future work.

4.2. Genetics

Specific to this study, we found a difference in preexisting risk between the two
cohorts, which emphasizes the usefulness of polygenic scores as a screening measure in
women to assess their risk of BrCa. Of the 189 non-breast cancer-specific PRSs assessed,
significant differences were found in only 7 scores (3.2%). This finding was evidence
of the homogeneity of the cohort (for issues beyond BrCa) and success in age-matching
participants. Alternatively, the BCS cohort had a significantly higher predisposition for
breast cancer when compared to the healthy controls (73 of 108 scores significantly different
between groups or 67.6%). BrCa is known to be a disease where genetics are predictive of
future risk. Studies have found that combined risk from single nucleotide polymorphisms
(SNPs) is associated with breast cancer in Genome-Wide Association Studies (GWAS) and
explains over 30% of breast cancer heritability [39].
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4.3. Untargeted Proteomics

Univariate modeling (Model A) comparing only BCS status yielded no significant
differences between the groups. When correcting for age and menopause in multivariate
models in BCS vs. healthy controls (Model B), follicle-stimulating hormone (FSH) was
significantly higher in BCS (Figure A3b). Interestingly, a 2010 study found a positive
association between serum FSH concentrations and better prognosis during tamoxifen
therapy in a cohort of postmenopausal breast cancer patients [40]. Another group of
researchers found that Her-2+ patients had higher serum FSH levels compared to Her-2-
patients and patients with high Ki67 expression also had higher levels of FSH [41].

With the multivariate Model C, we corrected for age, menopause, and treatment and
found that Stathmin (STMN1), Syntaxin-7 (STX7), and Ubiquitin-conjugating enzyme E2
E1 (UBE2E1) were higher in the BCS cohort. STMN1 has been associated with breast cancer
due to its influence on cell proliferation, differentiation, and motility. Phosphorylation of
the four serine residues of STMN1 leads to inhibition of microtubule polymerization [42].
Furthermore, phosphorylated STMN1 contributes to the regulation of cell migration, cell
invasion, and cancer metastasis. Specifically, phosphorylation at serine residues 25 (ser25)
and 38 (ser38) of STMN1 was shown to be increased in cells with higher metastatic po-
tential and was also associated with increased morbidity and mortality in breast cancer
patients. Following phosphorylation at ser25 and ser38, STMN1 binds to glucose-regulated
protein of molecular mass 78 (GRP78). GRP78 is an endoplasmic reticulum chaperone
and heat shock protein that is known to be involved in tumor proliferation, survival, and
metastasis. In contrast to phosphorylation at ser25 and ser38, phosphorylation at ser16
and ser63 of STMN1 led to improved morbidity and mortality. Researchers also noted
that inhibition of MEK kinase, which specifically phosphorylates ser25 and ser38, strongly
reduced GRP78 binding. This led the researchers to believe that tumor progression was
impacted by site-specific phosphorylation of STMN1 at ser25 and ser38 and subsequent
GRP78 binding [43]. In breast cancer tissue, one study found stathmin expression was
associated with tumor proliferation, p53 status, basal-like differentiation, BRCA1 genotype,
high-grade histology, tumor angiogenesis, immune response, and survival. Essentially,
linking stathmin expression to increased severity and worse outcomes in breast cancer [44].
Another study found that STMN1 can be used as a prognostic indicator, based on elevated
STMN1 leading to a worse prognosis in breast cancer patients [45].

STX7 is a member of the SNARE family of proteins, which are generally associated
with vesicle trafficking. Specifically, STX7 has been associated with the fusion of late
endosomes with lysosomes and the homotypic fusion of lysosomes as well as the fusion
of lysosomes with phagosomes [46]. Although little research exists on the role of STX7 in
breast cancer, a recent in vitro study highlighted the involvement of STX7 as a promoter
of invadopedia (i.e., matrix-degrading structures) formation during cancer cell invasion.
Thus, increased levels of STX7 are implicated as a major contributing factor in breast cancer
cell invasion [47].

Ubiquitin-conjugating enzymes (E2s) are involved in breast cancer progression and
are hypothesized to increase resistance in triple-negative breast cancer [48]. There are a
number of E2 enzymes that can contribute to breast cancer pathology, playing a myriad
of roles depending on the specific enzyme. Elevated UBE2E1 is an interesting finding
in BCS. Previously, UBE2E1 has been implicated in acute myelogenous leukemia (AML)
and pancreatic cancer. A study of UBE2E1 in AML found that patients with high UBE2E1
expression were non-responsive to chemotherapy and had worse prognoses while those
with lower UBE2E1 were more responsive and likely to enter complete remission [49].
UBE2E2 has been shown to promote cancer cell movement and invasion in breast cancer
cells through its action on ISG15 [50]. For a complete review of ubiquitin-conjugating
enzymes and their involvement in breast cancer, as well as many other cancers, see the
works of Du et al. [51] and Voutsadakis [52].
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4.4. Targeted Metabolomics
4.4.1. Acylcarnitines

Dysregulation in energy metabolism and associated obesity are well-established risk
factors for BrCa, especially in postmenopausal women [53]. Further, there is a known
link between metabolic disorders and aberrant acylcarnitine metabolism [54], which was
the impetus for assessing acylcarnitine in this study. Our results indicated that hexanoyl
carnitine was significantly higher and carnitine was significantly lower in the BCS cohort
compared to healthy controls. To our knowledge, this is the first study to analyze acylcar-
nitines in a cohort of breast cancer survivors. However, previous studies have assessed
acylcarnitine levels in breast cancer patients. A study published in 2013 by Shen et al. found
that hexanoyl carnitine levels were significantly higher in breast cancer patients compared
to controls [55]. The majority of our results suggest that BCS patients become more like
their healthy counterparts as time goes on. In this instance, however, the significantly
elevated hexanoyl carnitine levels from our study of BCS are consistent with the signifi-
cantly elevated hexanoyl carnitine levels of breast cancer patients found by Shen. Another
study found that serum carnitine levels were significantly lower in breast cancer patients
compared to controls [56]. This finding by Ozmen et al. shares similarities with our finding
of significantly decreased carnitine. However, the Ozmen group measured serum samples
and we analyzed plasma samples. Additionally, their group only analyzed patients who
had undergone radiotherapy. Therefore, only a general, and not a direct, comparison can
be made between the breast cancer patients of the Ozmen study and the BCS of our study.

4.4.2. Bile Acids

The role of bile acids in breast cancer (and cancer, in general) is complex and warrants
further investigation and clarification, as much is still unknown. Furthermore, contra-
dictory results make interpretation of the role of bile acids in breast cancer even more
difficult. Although assessments of bile acids in BCS vs. healthy controls have not been
previously conducted to our knowledge, bile acids have been studied in breast cancer as
well as many other cancer types. Our results showed that chenodeoxycholic acid (CDCA),
tauroursodeoxycholic acid (TUDCA), cholic acid (CA), glycodeoxycholic acid (GDCA),
glycochenodeoxycholic acid (GCDCA), deoxycholic acid (DCA), and ursodeoxycholic acid
(UDCA) were significantly lower in BCS patients compared to healthy controls.

CDCA, a major primary bile acid, generally induces oxidative stress, DNA damage,
and inflammation. CDCA has been implicated as a tumor promotor in several cancers,
however, it has been suggested that CDCA is a tumor suppressor in breast cancer [57]. One
study showed that CDCA inhibits the proliferation of cells in tamoxifen-resistant breast
cancers via FXR activation [58]. However, another team of researchers reported that the
activation of FXR is positively correlated with estrogen receptor expression and supports
cell proliferation [59]. Another study comparing the bile acid profiles in the serum of
breast cancer patients to patients with benign breast disorder (BBD) found that CDCA was
elevated in breast cancer patients [60].

A study by Costarelli and Sanders found that the mean concentration of DCA was
52% higher in breast cancer patients compared to controls, leading them to suggest that
DCA may be involved in the etiology of breast cancer, potentially as a tumor promoter [61].
A recent cell study showed that Clostridium-specific DCA plays a molecule-specific role in
breast cancer cell proliferation. The researchers found that DCA significantly promoted the
proliferation of HER2+ cells but did not affect triple-negative breast cancer cells [62].

Interestingly, UDCA, TUDCA, and GUDCA have been studied as potential treatments
for other types of cancer but not specifically for breast cancer. A study analyzing breast
tissue samples from breast cancer patients found that several bile acids, including DCA and
GCDCA, accumulate in breast tumors. This study also found that the accumulation of these
bile acids showed an inverse relationship with proliferation scores. Increased bile acids led
to decreased tumor cell proliferation, which led to improved prognostic outcomes [63].
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4.4.3. RBC Fatty Acids

In the current study, targeted analysis of RBC fatty acids in BCS patients revealed
significantly increased levels of arachidic acid, lignoceric acid, behenic acid, and Omega-3
Index as well as significantly lower levels of EPA, DHA, and DPA. Additionally, the AA:EPA
ratio was significantly higher in BCS patients. Significantly altered omega-3 fatty acids
may be a contributing factor in the etiology and progression of breast cancer. Furthermore,
depleted omega-3 fatty acids may increase susceptibility to the development of breast
cancer, impact the effectiveness of treatment, and play a role in survivorship. As such, fatty
acid supplementation may be an effective adjunct therapeutic intervention in breast cancer.

Previous studies have found changes in omega-3 fatty acid status in breast cancer
patients. For example, Cala et al. found significant changes in 10 fatty acids in their breast
cancer cohort of Colombian Hispanic women [64]. Pakiet et al. assessed the serum fatty
acid profiles of breast cancer survivors to examine if fatty acid levels normalized following
successful treatment. They found a lack of normalization of fatty acid profiles after breast
cancer resection, as well as significant differences in serum fatty acid levels before and at
12- and 24-month follow-ups. Interestingly, they found significantly increased levels of EPA
and DPA relative to control factors [65]. Shen et al. also found a significant increase in DPA
in patients with triple-negative breast tumors compared to the control factors [55]. DHA,
behenic acid, and arachidic acid were found to be significantly increased in breast cancer
patients with invasive ductal carcinoma [66].

Hidaka et al. looked at the relationship between fatty acid levels and cytologic atypia,
a condition that often leads to breast cancer. Their research team found that EPA and
DHA were significantly lower in women with cytologic atypia in multiple blood lipid
compartments. Additionally, they found that the EPA+DHA:AA ratio, the omega-3:6 ratio,
and DPA were all significantly lower in plasma triacylglycerides of women with atypia [67].

A recent review by Fabian et al. presented studies showing a high intake ratio of
marine omega-3 fatty acids EPA and DHA relative to the omega-6 fatty acid arachidonic acid
reduces the risk of breast cancer compared to those with low intake ratios [68]. Similarly,
other studies have shown that a higher dietary intake ratio of omega-3:omega-6 is associated
with a lower risk of breast cancer [69,70].

While more research is needed to fully elucidate the role of omega-3 fatty acids in
breast cancer and breast cancer survivorship, this study adds to a growing body of evi-
dence implicating omega-3 fatty acids as an important contributing factor in breast cancer
progression. Based on our results, we believe it is pertinent for all breast cancer patients to
have their omega-3 fatty acid status assessed. Furthermore, we believe that omega-3 fatty
acids have potential as an adjunct therapeutic intervention for breast cancer patients.

4.5. Untargeted Metabolomics

Our findings from the untargeted plasma metabolomics analysis showed several
three-amino acid sequences that were significantly decreased in breast cancer patients
compared to healthy controls (i.e., Asp-Pro-Thr and Ser-Ser-His). Recently, an interesting
review highlighted research findings that specific amino acids are altered by 10–15% in
breast cancers [71]. Lai et al. showed that alanine (Ala), histidine (His), threonine (Thr),
arginine (Arg), proline (Pro), glutamate (Glu), and glycine (Gly) are six times more likely
to be decreased than increased in cancer patients [72]. An interesting meta-analysis of
metabolomics in the diagnosis of breast cancer highlighted the frequency of specific amino
acids mentioned in the literature. They reviewed diagnosis-related studies that noted either
increased or decreased amino acids in various tissue samples (saliva, blood, urine, and
breast tissue). Seven studies found changes in His (3 up and 4 down). However, only one
of the seven studies showed a decrease in His in plasma. Six studies found changes in
Pro (3 up and 3 down), six studies found changes in Ser (5 up and 1 down), five studies
found changes in Thr (2 up and 3 down), and four studies found changes in Asp (3 up and
1 down) [73]. Jobard et al. found that in premenopausal women Ser was associated with a
decreased breast cancer risk [74]. As for Asp, results show that it both increases [75] and
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decreases [76] with the risk of breast cancer. Studies have shown that increased levels of
both His and Thr increase the risk of developing breast cancer [77].

Glycylproline (Gly-Pro), a dipeptide that is typically an end-product of collagen
metabolism, was significantly decreased in BCS vs HC. As noted, Gly and Pro have a
high likelihood of being decreased in cancer patients. Alternatively, some neoplasia have
reported increased proline content [78,79]. In the context of breast cancer, a study by
Zareba et al. in MCF-7 breast cancer cells suggested that Gly-Pro and Gly-Pro-derived
proline, along with the level of activity of the enzymes that cleave it (e.g., proline dehydro-
genase/proline oxidase and prolidase) may play an intricate role in the balance between
apoptosis, autophagy, and the growth of neoplastic cells [80]. Furthermore, in breast cancer,
estrogen increases prolidase activity and collagen biosynthesis [81].

Variable importance plots (VIP) provide an estimation of the importance of each
variable in the overall effect. The VIP plots for the untargeted plasma metabolomics
showed that the Gly-Pro dipeptide was a highly important metabolite. The remaining
metabolites found in the untargeted plasma metabolomics analysis, 8-hydroxyalanylclavam,
and 12Z-Tetradecenyl acetate, have not previously been associated with cancer. The PCA
results from both the untargeted urine and stool metabolomics showed a high overlap
between the BCS and HC cohorts. No metabolites were significantly higher or lower in
stool or urine samples when controlling for breast cancer type, age, and menopause status
using multivariate modeling.

In the untargeted urinary metabolomics analysis, Model C showed that, in the sub-
cohort of the BCS group who had received chemotherapy treatment, there was a set of
48 identifiable metabolites that were significantly lower (q < 0.1). Upon review of the avail-
able literature, we found only a small number of studies in breast cancer that have investi-
gated urinary metabolomics and even fewer have included untargeted measures [82–93].
However, to our knowledge at the time of submission, this is the first of its kind study to
investigate the untargeted urinary metabolome in a breast cancer survivor cohort that had
received chemotherapy treatment. Given this fact, there are no datasets to compare the
findings with and, thus, these findings warrant further investigation in a larger BCS cohort.
This analysis was limited by the lack of power due to the small sample size (n: 10, 20% of
BCS cohort).

4.6. Metagenomics

The microbiome sequencing put forth in this study provides valuable insight into
the microbial composition of a BCS cohort. This gut microbial sequencing gives us the
opportunity to assess the landscape of the gut metagenome of a relatively unassessed
microbial population.

There was little association that could be drawn between our findings and those of
other studies in the literature. This was mainly due to the depth of microbial analysis
conducted in the present study and the scarcity of research in similar BCS cohorts. A study
conducted by Smith et al. on the fecal microbial composition of BCS and their quality of
life found that physical function, vitality, and mental health were negatively associated
with Ruminococcus and Dorea. Additionally, they found that non-obese BCS had higher
relative abundance of Ruminococcus, Streptococcus, Roseburia, and Dorea [12]. The present
study found a slight increase in Roseburia and a decrease in Streptococcus lutetiensis, while
the other results were not replicated.

BrCa patients who undergo chemotherapy treatment are at increased risk of develop-
ing metabolic disease and weight gain. This can potentially lead to increased morbidity
and reduced quality of life in BCS. A study in BrCa patients with early-stage breast cancer
compared the metagenome of patients who underwent adjuvant chemotherapy, adjuvant
endocrine therapy, or both. They found that patients treated with chemotherapy only
experienced clinically and statistically significant weight gain and fat distribution. Colonic
inflammatory markers were also observed to have increased two-fold. Additionally, the
researchers noted that these changes were accompanied by a reduction in the abundance
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and variety of microbial species in the gut microbiome [16]. The present study did not
replicate this finding and, by most metrics, the cohorts were similar in terms of abundance
and variety at a high level, with reported genus and species level differences.

In the study presented here, a simple analysis comparing BCS to HC showed multiple
differences on each of the levels (species, genus, family, etc.) we investigated. This specific
set of findings casts a wide net and can be leveraged in future research for translations
into interventions that can be applied to breast cancer survivors. When controlling for age
and menopause status as well as grouping by BrCa stage at diagnosis and BrCa subtype, a
second, more resolved set of findings was illuminated, giving further resolution to these
differential findings and their potential generalizability. Similarly, multiple correlations
were found with other diseases known to affect the microbiome (such as irritable bowel
syndrome, Parkinson’s disease, colorectal cancer, etc.). Utilizing these correlations could
further open avenues to understanding significant changes in microbiome community
structure and lead to novel interventions.

5. Conclusions, Future Directions, and Limitations

The present study was established as a hypothesis-seeking and hypothesis-generating
investigation. When such multiomics studies are conducted, patterns of variance frequently
emerge from the high dimensional data. These novel patterns of variance then form the
basis of new hypotheses that can be followed up by future investigations. It is these novel
hypotheses that frequently lead to treatment innovations.

It was acknowledged at the outset of the present study that treatment effects would
be a confounding factor in the interpretation of how the biochemical characteristics being
measured may be associated with disease development or treatment outcome. This is
because treatment and time will naturally change the biochemical landscape. Nevertheless,
this study has revealed several future research questions and has laid the groundwork
for specific investigations. These can be considered for both newly diagnosed and breast
cancer survivors.

First, this deep phenotyping study has led to a data set that can live as a molecular
atlas of breast cancer survivors. This can serve as a frame of reference for future multiomics
studies in a larger cohort of BCS, where the study will be more strongly powered by larger
subject numbers. This may lead to the ability to detect signals that did not emerge from the
current cohort size.

Second, the finding of altered omega-3 fatty acids warrants the exploration of fully
quantitative omega-3 fatty acid status in the newly diagnosed and in BCS as a research
effort. Since omega-3 status is clinically actionable, there is merit in examining omega-3
fatty acids status in the clinic. The provision of omega-3 dietary supplements could become
a clinically justifiable intervention.

Third, examination of bile acids in the newly diagnosed and in a larger cohort of BCS is
warranted. In particular, secondary bile acids are products of bioconversion by gut bacteria.
When bile acids are released from the gut and distributed systemically, secondary bile acids
may have clinical effects in tissues like the breast. Since secondary bile acids are modifiable
by dietary inputs, such as prebiotics and probiotics, this path of investigation may one day
lead to prophylactic or therapeutic food or dietary supplement interventions (primary or
adjunctive). A future investigation of bile acids in the newly diagnosed would be justified.

Fourth, acylcarnitines were altered in this BCS cohort. In the BCS group, total carnitine
was lower. Carnitine is a carrier molecule that transports fatty acids throughout the body.
Variations in the types of fatty acids bound to carnitine can be highly informative as to how
metabolism is changing. Moreover, carnitine also transports fatty acids across the mito-
chondrial membrane so they can be oxidized as an energy source via beta-oxidation. Thus,
low total carnitine may be of clinical import in BCS, as it may adversely impact the ability
to use fatty acids as an energy substrate necessary for the generation of ATP. Future work
should investigate the acylcarnitine signature in the newly diagnosed to explore how this
molecular class might influence disease progression and treatment outcomes. Additionally,
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carnitine status should be examined, as carnitine supplementation is widely used and can
favorably impact energy metabolism. Further research should also explore whether this
carnitine deficit is a result of declining endogenous carnitine synthesis, increased carnitine
degradation, or reduced carnitine intake.

Fifth, the present study showed a strong genetic component of individual risk, evi-
denced by the divergence of polygenic risk scores between the HC and BCS cohorts. A
future study in the newly diagnosed will have the ability to associate molecular charac-
teristics with disease emergence and progression. Additionally, deep phenotyping study
(using multiomics) in those with genetic risk (PRS), including asymptomatically, may reveal
very early metabolic signatures (in those with genetic risk) that can lead to new treatment
targets and preventive approaches. What this means is that molecular features like the
transcriptome, proteome, metabolome, and microbiome (measured in this study) may
reveal early metabolic signatures that influence the genetic risk to become manifest as a
clinical disease.

Sixth, this study in BCS has allowed for the refinement of methods in multiomics
sample collection, preanalytical processing, analysis, and interpretation. This refinement of
multiomic methods in BCS is of notable value that can be deployed in larger studies of the
newly diagnosed. A prospective multiomic study of the newly diagnosed can be a very
important next step since this level of deep phenotyping has not been conducted in the
newly diagnosed as of this writing. This would include assessment at the time of diagnosis
and longitudinally during treatment, a study which has not to date been completed in a
large cohort.

Seventh, it bears noting that a rudimentary analysis was performed on the time
from treatment in this BCS cohort. In short, we looked for potential divergent signals
between those who most recently completed treatment and those who were further out from
completion of treatment. A limitation of this approach is that we did not have molecular
data at the various time points in the time from treatment analysis. Future studies would
seek to examine patients during the course of treatment in the newly diagnosed and follow
them with multiomics analytics for a select number of years after treatment. This type of
analysis would provide multiomic data at a time proximal to the time of diagnosis, during
treatment, and post-treatment.

Eighth, the current study included a deep statistical analysis of the gut metagenome.
However, due to the extensive amount of metagenomic data, future studies could expand
the statistical analysis of the metagenome data from the existing study to examine additional
signals. This may further clarify the biological meaning of the BCS cohort findings.

Finally, future investigations should pay careful attention to comorbidities, as the molec-
ular and clinical phenotypes may stratify differently in accordance with these comorbidities.
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Appendix B

Table A1. Most Significant BrCa-specific PRS.

PGSa Wilcox.p.Value lm.Estimate lm.p.Value Wilcox.q.Value lm.q.Value Reported.Trait Mapped.Trait.s...EFO.Label.

PGS000511 1.3 × 10−7 0.136170 3.4 × 10−7 4.7 × 10−6 4.9 × 10−5 Breast cancer
(female) breast carcinoma

PGS000512 2.4 × 10−7 0.503786 1.7 × 10−7 7.0 × 10−8 4.9 × 10−5 Breast cancer
(female) breast carcinoma

PGS000510 2.0 × 10−7 0.624025 6.3 × 10−7 5.8 × 10−6 6.0 × 10−5 Breast cancer
(female) breast carcinoma

PGS000507 4.7 × 10−7 0.144283 1.5 × 10−6 1.2 × 10−5 1.1 × 10−4 Breast cancer
(female) breast carcinoma

PGS000008 5.6 × 10−7 0.220445 8.7 × 10−6 1.3 × 10−5 5.0 × 10−4 ER-positive Breast
Cancer

estrogen-receptor positive
breast cancer

PGS000504 3.1 × 10−8 0.570125 1.2 × 10−5 1.5 × 10−6 5.9 × 10−4 Breast cancer
(female) breast carcinoma

PGS000007 3.6 × 10−6 0.199725 1.8 × 10−5 6.5 × 10−5 7.4 × 10−4 Breast Cancer breast carcinoma

PGS000536 7.4 × 10−9 0.065889 2.4 × 10−5 5.3 × 10−7 8.6 × 10−4 Breast cancer
(female) breast carcinoma

PGS003398 1.2 × 10−9 0.197326 3.0 × 10−5 1.7 × 10−7 9.7 × 10−4 Breast Cancer breast carcinoma

PGS000531 9.2 × 10−8 0.263083 3.7 × 10−5 3.7 × 10−6 1.0 × 10−3 Breast cancer
(female) breast carcinoma

PGS000503 6.9 × 10−6 0.157900 5.0 × 10−5 9.0 × 10−5 1.3 × 10−3 Breast cancer
(female) breast carcinoma

PGS000539 1.5 × 10−7 0.059395 5.4 × 10−5 4.7 × 10−6 1.3 × 10−3 Breast cancer
(female) breast carcinoma

PGS000509 5.9 × 10−7 0.624194 6.9 × 10−5 1.3 × 10−5 1.4 × 10−3 Breast cancer
(female) breast carcinoma

PGS000528 1.8 × 10−6 0.081497 6.8 × 10−5 3.8 × 10−5 1.4 × 10−3 Breast cancer
(female) breast carcinoma

PGS000508 6.0 × 10−6 0.149773 7.4 × 10−5 9.0 × 10−5 1.4 × 10−3 Breast cancer
(female) breast carcinoma

PGS000873 1.8 × 10−9 0.193709 1.0 × 10−4 1.7 × 10−7 1.8 × 10−3 Breast cancer breast carcinoma

PGS000052 1.6 × 10−8 0.201100 2.4 × 10−4 9.3 × 10−7 4.2 × 10−3 Breast cancer breast carcinoma

PGS000535 9.8 × 10−5 0.061701 3.5 × 10−4 7.6 × 10−4 5.4 × 10−3 Breast cancer
(female) breast carcinoma

PGS003380 1.7 × 10−5 0.389549 3.4 × 10−4 2.0 × 10−4 5.4 × 10−3 Breast cancer breast carcinoma

PGS000527 3.1 × 10−5 0.078368 3.8 × 10−4 3.5 × 10−4 5.5 × 10−3 Breast cancer
(female) breast carcinoma

PGS000214 3.0 × 10−6 0.269912 5.9 × 10−4 5.9 × 10−5 7.8 × 10−3

Breast cancer
intrinsic-like
subtype (luminal
B-like)

luminal B breast carcinoma

PGS000497 6.2 × 10−5 0.321878 7.0 × 10−4 5.5 × 10−4 7.8 × 10−3 Breast cancer
(female) breast carcinoma

PGS000498 6.2 × 10−5 0.321878 7.0 × 10−4 5.5 × 10−4 7.8 × 10−3 Breast cancer
(female) breast carcinoma

PGS000502 8.0 × 10−5 0.489076 6.6 × 10−4 6.6 × 10−4 7.8 × 10−3 Breast cancer
(female) breast carcinoma

PGS000505 4.1 × 10−6 0.383257 7.0 × 10−4 6.6 × 10−5 7.8 × 10−3 Breast cancer
(female) breast carcinoma

PGS000506 4.1 × 10−6 0.383257 7.0 × 10−4 6.6 × 10−5 7.8 × 10−3 Breast cancer
(female) breast carcinoma

PGS000472 3.7 × 10−4 0.007524 7.5 × 10−4 2.3 × 10−3 8.0 × 10−3 Breast cancer
(female) breast carcinoma

PGS000335 1.0 × 10−5 0.148391 8.3 × 10−4 1.2 × 10−4 8.5 × 10−3 Breast cancer breast carcinoma

PGS000499 6.9 × 10−5 0.163507 1.2 × 10−3 6.0 × 10−4 0.011942 Breast cancer
(female) breast carcinoma

PGS000501 5.7 × 10−5 0.491264 1.2 × 10−3 5.5 × 10−4 0.011942 Breast cancer
(female) breast carcinoma
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PGSa Wilcox.p.Value lm.Estimate lm.p.Value Wilcox.q.Value lm.q.Value Reported.Trait Mapped.Trait.s...EFO.Label.

PGS000002 6.8 × 10−6 0.141149 1.3 × 10−3 9.0 × 10−5 0.012108 ER-positive Breast
Cancer

estrogen-receptor positive
breast cancer

PGS000540 1.2 × 10−5 0.030463 1.3 × 10−3 1.4 × 10−4 0.012108 Breast cancer
(female) breast carcinoma

PGS000212 7.8 × 10−5 0.267451 1.3 × 10−3 6.6 × 10−4 0.012123

Breast cancer
intrinsic-like
subtype (luminal
A-like)

luminal A breast carcinoma

PGS000213 6.3 × 10−6 0.217897 2.0 × 10−3 9.0 × 10−5 0.017031

Breast cancer
intrinsic-like
subtype (luminal
B/HER2-negative-
like)

HER2-negative breast
carcinoma

PGS000001 4.2 × 10−4 0.128408 2.3 × 10−3 2.5 × 10−3 0.017187 Breast Cancer breast carcinoma

PGS000004 2.9 × 10−3 0.192750 2.5 × 10−3 1.4 × 10−2 0.017187 Breast Cancer breast carcinoma

PGS000005 2.0 × 10−3 0.204576 2.2 × 10−3 1.0 × 10−2 0.017187 ER-positive Breast
Cancer

estrogen-receptor positive
breast cancer

PGS000332 4.3 × 10−4 0.136928 2.1 × 10−3 2.5 × 10−3 0.017187 Breast cancer breast carcinoma

PGS000344 5.8 × 10−5 0.190588 2.5 × 10−3 5.5 × 10−4 0.017187 Breast cancer breast carcinoma

PGS000473 1.2 × 10−4 0.038474 2.5 × 10−3 9.3 × 10−4 0.017187 Breast cancer
(female) breast carcinoma

PGS000480 1.0 × 10−3 0.007254 2.5 × 10−3 5.5 × 10−3 0.017187 Breast cancer
(female) breast carcinoma

PGS000533 5.1 × 10−5 0.200274 2.3 × 10−3 5.3 × 10−4 0.017187 Breast cancer
(female) breast carcinoma

PGS000534 5.1 × 10−5 0.200274 2.3 × 10−3 5.3 × 10−4 0.017187 Breast cancer
(female) breast carcinoma

PGS000347 1.5 × 10−4 0.197233 2.6 × 10−3 1.1 × 10−3 0.017434
Estrogen
receptor-positive
breast cancer

estrogen-receptor positive
breast cancer

PGS000009 4.4 × 10−4 0.143606 2.8 × 10−3 2.5 × 10−3 0.018270 ER-negative Breast
Cancer

estrogen-receptor-negative
breast cancer

PGS000538 1.3 × 10−4 0.182262 2.9 × 10−3 1.0 × 10−3 0.018555 Breast cancer
(female) breast carcinoma

PGS000500 2.4 × 10−4 0.172722 3.8 × 10−3 1.6 × 10−3 0.023371 Breast cancer
(female) breast carcinoma

PGS000046 8.0 × 10−4 0.132093 5.6 × 10−3 4.5 × 10−3 0.033573
Estrogen receptor
[ER]-positive breast
cancer

estrogen-receptor positive
breast cancer

PGS000045 1.8 × 10−4 0.117902 6.0 × 10−3 1.2 × 10−3 0.034689 Breast cancer breast carcinoma

PGS003399 2.1 × 10−4 0.192520 6.0 × 10−3 1.4 × 10−3 0.034689 Breast Cancer breast carcinoma
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Appendix F

Table A2. Metabolite Findings in Model C, variable TxChemo. Controlled for ~BrCa + Age +
Menopause + TxTamoxifen + TxChemo + TxEndo + TxRadio.

Metabolite (MS Mode) Variable Estimate p.Value Qval

Lys Pro (C18+) TxChemoY −1.466 2.11 × 10−06 0.0189

L-Methionine S-oxide (hilic+) TxChemoY −1.145 4.43 × 10−06 0.0199

Chlorfenprop-methyl (hilic−) TxChemoY −1.028 1.06 × 10−05 0.0237

Maleamic acid (C18−) TxChemoY −1.123 1.67 × 10−05 0.0299

Homocysteinesulfinic acid (C18+) TxChemoY −0.739 2.72 × 10−05 0.0349

N-Feruloylglycine (hilic−) TxChemoY −3.114 2.75 × 10−05 0.0349

AG-041R (hilic−) TxChemoY −2.777 5.92 × 10−05 0.0497

4-methylthiazole-5-acetic-acid (hilic+) TxChemoY −2.145 6.09 × 10−05 0.0497

4-Sulfobenzoate (C18−) TxChemoY −1.236 8.45 × 10−05 0.0566

Caprylic acid (C18−) TxChemoY −1.347 9.57 × 10−05 0.0566

SC-58125 (C18−) TxChemoY −2.573 1.02 × 10−04 0.0566

N-Methyl-2-oxoglutaramate (C18−) TxChemoY −0.363 1.17 × 10−04 0.0566

Lewis a trisaccharide (C18−) TxChemoY −0.367 1.18 × 10−04 0.0566

Lovastatin (hilic+) TxChemoY −2.541 1.24 × 10−04 0.0566

N-Acetylneuraminic Acid (hilic−) TxChemoY −2.248 1.28 × 10−04 0.0566

3-Keto-scyllo-inosamine (C18+) TxChemoY −0.676 1.31 × 10−04 0.0566

Carboxymethyloxysuccinate (C18+) TxChemoY −0.831 1.36 × 10−04 0.0566

4-(Trimethylammonio)but-2-enoate (hilic+) TxChemoY −0.500 1.39 × 10−04 0.0566

9alpha-Fluoro-6alpha-methylprednisolone 21-acetate
(C18+) TxChemoY −2.617 1.65 × 10−04 0.0599

5-Ethyl-5-(1-methyl-3-carboxypropyl)barbituric acid
(hilic+) TxChemoY −0.283 1.68 × 10−04 0.0599

Pivalic acid (C18−) TxChemoY −0.758 1.91 × 10−04 0.0604

Lys-Trp-OH (C18−) TxChemoY −0.758 1.99 × 10−04 0.0604
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Metabolite (MS Mode) Variable Estimate p.Value Qval

4-Sulfobenzoate (hilic−) TxChemoY −0.263 2.02 × 10−04 0.0604

Aldosterone 18-glucuronide (C18+) TxChemoY −2.057 2.20 × 10−04 0.0636

L-Glutamic acid n-butyl ester (C18−) TxChemoY −1.897 2.63 × 10−04 0.0700

Dopamine 3-O-sulfate (C18−) TxChemoY −0.790 2.65 × 10−04 0.0700

Homolanthionine (hilic−) TxChemoY −1.997 3.03 × 10−04 0.0777

N-Acetylvanilalanine (C18−) TxChemoY −1.691 3.32 × 10−04 0.0782

5-aminosalicyluric acid (hilic−) TxChemoY −1.017 3.37 × 10−04 0.0782

a-hydroxyisovalerate (C18−) TxChemoY −1.734 3.51 × 10−04 0.0782

Propanoic acid,
2-hydroxy-3-[(4-hydroxy-1-naphthalenyl)oxy]- (C18−) TxChemoY −0.763 3.62 × 10−04 0.0782

8-Hydroxyondansetron glucuronide (hilic+) TxChemoY −0.724 3.64 × 10−04 0.0782

2-Amino-5-oxohexanoate (C18+) TxChemoY −1.639 4.07 × 10−04 0.0837

Octanoic acid, 3-amino-, (1)- (C18+) TxChemoY −1.664 4.30 × 10−04 0.0837

Cardiogenol C (hilic+) TxChemoY −0.238 4.36 × 10−04 0.0837

Betaine (hilic+) TxChemoY −0.234 4.37 × 10−04 0.0837

2,4-Dichlorophenoxybutyric Acid (C18−) TxChemoY −0.353 4.39 × 10−04 0.0837

2-Napthyloxyacetic acid (hilic−) TxChemoY −0.687 4.51 × 10−04 0.0843

Ripazepam (C18+) TxChemoY −0.809 4.64 × 10−04 0.0850

L-glycyl-L-hydroxyproline (hilic+) TxChemoY −0.641 5.25 × 10−04 0.0942

2,3-Dihydroxynaphthalene (C18+) TxChemoY −0.809 5.52 × 10−04 0.0968

Clitidine (hilic+) TxChemoY −0.221 5.62 × 10−04 0.0968

N2-Acetyl-L-aminoadipate (hilic+) TxChemoY −0.738 5.90 × 10−04 0.0968

(2S,3S)-2-hydroxytridecane-1,2,3-tricarboxylic acid
(hilic+) TxChemoY −2.588 5.93 × 10−04 0.0968

Ursodeoxycholic acid 3-sulfate (C18−) TxChemoY −1.143 6.04 × 10−04 0.0968

beta-Hydroxyacteoside (C18−) TxChemoY −1.497 6.13 × 10−04 0.0968

L-prolyl-L-proline (C18+) TxChemoY −0.471 6.21 × 10−04 0.0968

Tyr Val Trp (hilic−) TxChemoY −2.168 6.36 × 10−04 0.0968

4-Sulfobenzoate (C18−) TxChemoY −1.522 6.37 × 10−04 0.0968

DL-Cycloserine (hilic+) TxChemoY −0.248 6.50 × 10−04 0.0971
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Figure A5. Additional Gut Microbiome Volcano Plots. (a) Species Richness between cohorts,
(b) Volcano Plot by Microbial Family, (c) Volcano Plot by Microbial Order, (d) Volcano Plot by
Microbial Class, (e) Volcano Plot by Microbial Phylum.
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