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Abstract: The global prevalence of Type 2 Diabetes (T2D) poses significant public health challenges
due to its associated severe complications. Insulin resistance is central to T2D pathophysiology,
particularly affecting adipose tissue function. This cross-sectional observational study investigates
metabolic alterations in subcutaneous adipose tissue (SAT) associated with T2D to identify potential
therapeutic targets. We conducted a comprehensive metabolomic analysis of SAT from 40 participants
(20 T2D, 20 ND-T2D), matched for sex, age, and BMI (Body Mass Index). Metabolite quantification
was performed using GC/MS and LC/MS/MS platforms. Correlation analyses were conducted to
explore associations between metabolites and clinical parameters. We identified 378 metabolites,
including significant elevations in TCA cycle (tricarboxylic acid cycle) intermediates, branched-chain
amino acids (BCAAs), and carbohydrates, and a significant reduction in the nucleotide-related
metabolites in T2D subjects compared to those without T2D. Obesity exacerbated these alterations,
particularly in amino acid metabolism. Adipocyte size negatively correlated with BCAAs, while
adipocyte glucose uptake positively correlated with unsaturated fatty acids and glycerophospholipids.
Our findings reveal distinct metabolic dysregulation in adipose tissue in T2D, particularly in energy
metabolism, suggesting potential therapeutic targets for improving insulin sensitivity and metabolic
health. Future studies should validate these findings in larger cohorts and explore underlying
mechanisms to develop targeted interventions.
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1. Introduction

The global prevalence of Type 2 Diabetes (T2D) has reached pandemic proportions,
posing a significant public health challenge due to its association with severe complications
such as cardiovascular diseases, neuropathy, and nephropathy [1]. A pathophysiologi-
cal hallmark of T2D is insulin resistance, a metabolic derangement characterized by the
diminished ability of cells to respond to insulin, primarily affecting adipose tissue, liver,
and muscle [2]. The adipose tissue plays a critical role in regulating whole-body glucose
homeostasis by storing excess energy as triglycerides and releasing free fatty acids during
fasting periods. However, in T2D, the adipose tissue becomes dysfunctional, leading to
abnormal glucose and fat turnover [3,4].

Understanding the metabolic alterations within the adipose tissue in T2D is crucial
for developing novel therapeutic strategies. Metabolomics, a powerful technique for
analyzing small molecule profiles, offers a comprehensive view of cellular metabolism.
By investigating the biochemical alterations associated with T2D in adipose tissue, it
is possible to identify potential biomarkers for early diagnosis, elucidate mechanisms
underlying insulin resistance [5], and develop targeted drugs to tackle its development.

Insulin resistance is characterized by a specific metabolic signature featuring higher
levels of circulating branched-chain amino acids (BCAA) and disrupted acylcarnitine
metabolism during fasting [6,7]. Abnormal serum metabolome response to an oral glucose
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load is also evident in individuals with T2D [8], supporting the concept of metabolic inflex-
ibility in the insulin-resistant state. However, much less is known about the adipose tissue
metabolomic signature in T2D. BCAA and other amino acids were shown to be associated
with hyperglycemia in the visceral adipose tissue (VAT) metabolome of individuals with
T2D [9]. The subcutaneous adipose tissue (SAT) content of non-esterified fatty acid is
associated with in vivo glucose uptake of the VAT, as assessed by 18F-FDG-PET [10]. Inter-
estingly, the SAT metabolome does not differ between individuals with obesity and with
and without T2D, who are candidates for obesity surgery [11]. In a targeted metabolomic
study, ex vivo consumption of pyruvate and pyroglutamate was higher in individuals with
prediabetes and obesity compared to those without obesity, while acetate production was
lower in individuals with prediabetes and obesity compared to subjects without obesity [12].
To the best of our knowledge, no study has ever deployed an untargeted metabolomic
approach on the SAT to highlight differences between individuals with and without T2D
and obesity.

This exploratory study aimed to provide a detailed metabolomic analysis of SAT
from T2D patients compared to subjects without T2D, focusing on identifying metabolites
associated with adipocyte glucose uptake and cell size. By elucidating the metabolic
profile of adipose tissue in T2D, we hope to contribute to a better understanding of insulin
resistance and identify potential therapeutic targets.

2. Materials and Methods
2.1. Study Participants

This study utilized a cross-sectional observational design to investigate the metabolic
alterations in SAT in subjects with and without T2D. Forty participants were recruited
between 2013 and 2014 from the outpatient clinical research unit at Uppsala University
Hospital. The participants were divided into two groups: 20 with T2D and 20 without T2D
(ND), matched for sex, age, and body mass index (BMI). Each group was further subdi-
vided based on obesity status (with and without obesity), as detailed in Supplementary
Table S1. T2D diagnosis was confirmed according to the American Diabetes Association
(ADA) criteria. All participants with T2D had been receiving metformin treatment for at
least 3 months prior to the study, with dosages ranging from 500 mg to 2500 mg as per
clinical guidelines. Detailed participant characteristics and glucose uptake data in isolated
adipocytes have been previously reported [4] and are summarized in Table 1.

Table 1. Clinical characteristics of study participants.

Without T2D (n = 20) T2D (n = 20)

N (women/men) 10/10 10/10
Age (years) 58 ± 11 58 ± 9

BMI (kg/m2) 30.8 ± 4.6 30.7 ± 4.9
WHR 0.96 ± 0.07 0.99 ± 0.05

Fasting plasma glucose (mmol/L) 6.0 ± 0.7 8.2 ± 1.5 ***
HbA1c (mmol/mol) 37.3 ± 3.7 48.8 ± 8.6 ***

Serum insulin (mIU/L) 11.5 ± 5.2 15.5 ± 7.0 *
HOMA-IR 3.08 ± 1.58 5.26 ± 2.86 **

Matsuda index 4.04 ± 2.11 2.65 ± 1.38 *
Adipocyte glucose uptake, basal (fL/cell/s) 37.1 ± 20.7 24.1 ± 9.3 *

Adipocyte glucose uptake, 1000 µU/mL insulin (fL/cell/s) 72.8 ± 44.8 41.2 ± 21.1 *
Maximal Glucose Uptake (fold change) a 1.94 ± 0.55 1.72 ± 0.51

Adipocyte size (µm) 109 ± 10 106 ± 11
AUC OGTT glucose (mmol/L × min) 1416 ± 340 2493 ± 522 ***
AUC OGTT insulin (mIU/L × min) 10,654 ± 6276 8072 ± 3981
AUC OGTT FFA (µmol/L × min) 23,947 ± 5644 31,236 ± 8558 **

Data are presented as mean ± SD. * p < 0.05; ** p < 0.01; *** p < 0.001 relative to subjects without T2D (Mann-
Whitney U test). BMI, Body Mass Index; WHR, Waist-to-Hip Ratio; HbA1c, glycated hemoglobin; HOMA-IR,
homeostasis index of insulin resistance. a Maximal glucose uptake capacity was calculated by dividing the glucose
uptake at 1000 µU/mL insulin by the basal glucose uptake.
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The study protocol was approved by the Regional Ethics Review Board in Uppsala
(Dnr 2013/183 and 2013/494). All participants provided written informed consent.

2.2. Study Procedures

After an overnight fast, a medical assessment was initially performed, and detailed
anthropometric measurements were obtained. Then, fasting blood samples were collected
and analyzed for plasma glucose levels, lipid profile, serum insulin levels, and C-peptide
concentrations by the hospital’s Department of Clinical Chemistry. Next, an adipose tissue
needle biopsy was performed on the lower abdominal SAT after local anesthesia with
lidocaine (Xylocaine; AstraZeneca, Södertälje, Sweden). Portions of the adipose tissue
were rapidly frozen in liquid nitrogen for subsequent metabolomic analyses, and part
was transported to the laboratory for isolation of adipocytes and ex vivo measurement
of glucose uptake. To assess glucose tolerance, participants underwent an oral glucose
tolerance test (OGTT) by ingesting a 75 g glucose solution. Blood samples were drawn
throughout the OGTT to measure plasma glucose and fatty acids (FFA) and serum insulin
levels. The area under the curve (AUC) was calculated using the trapezoidal rule.

2.3. Glucose Uptake in Isolated Adipocytes, Ex Vivo

Adipocytes were isolated and glucose uptake was measured, as previously reported [4].
In brief, adipose tissue samples were digested in a collagenase solution to isolate adipocytes.
These adipocytes were then washed in a glucose-free Krebs-Ringer bicarbonate medium.
For glucose uptake measurements, adipocytes were incubated in this medium at 37 ◦C,
both without insulin (basal) and with 25 or 1000 µU/mL of insulin. After incubation with
D-(U-14C) glucose, the cells were separated from the media by centrifugation and the
radioactivity was measured to assess basal and insulin-stimulated glucose uptake. The
capacity of glucose uptake in adipocytes was assessed by calculating two distinct ratios:
the glucose uptake at 1000 µU/mL insulin (representing the maximal response) divided by
the basal (no insulin), and the glucose uptake at 25 µU/mL insulin (representing insulin
sensitivity) divided by basal glucose uptake.

2.4. Adipose Tissue Metabolomics

Metabolite quantification in adipose tissue was carried out using Metabolon Inc.’s True-
Vision™ (Durham, NC, USA) analysis, which encompasses the global mVision platform,
as previously described [4,8]. The analyses utilize GC/MS and LC/MS/MS platforms for
comprehensive profiling. Metabolite levels were expressed in arbitrary units. Metabolites
that were missing in more than 20% of the samples within both the subjects without T2D
and T2D groups were excluded from the analyses (modified 80% rule) [13] (Supplemen-
tary Figure S1). For the remaining metabolites that did not reach the detection threshold,
missing values were imputed using the minimum observed value for that metabolite.

2.5. Statistical and Enrichment Analyses

No formal power analyses were performed as this was an exploratory study. Clinical
characteristics were compared between subjects with and without T2D using the Mann-
Whitney U test. Principal Component Analysis (PCA) was used to explore the clustering
patterns of metabolites within the adipose tissue samples. PCA was conducted using
the PCA function in Python from the sci-kit-learn library, specifying two principal compo-
nents to capture the maximum variance in a two-dimensional space. The distributions of
metabolite concentrations between the subjects with and without T2D were compared with
Mann-Whitney using the dplyr [14], and stats [15] packages in R version 4.2.3. Metabolites
with p-values less than 0.05 were further examined in enrichment and pathway analyses.
Spearman correlations with adipocyte size and adipocyte insulin-stimulated glucose uptake
were conducted in R with a custom function. Correlated metabolites were visualized with
bar plots in GraphPad Prism version 10.2.2 for Windows (GraphPad Software, Boston, MA,
USA), to examine the direction and strength of correlations and the category type of the
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correlated metabolites. Enrichment and pathway analysis were performed with R package
MetaboAnalystR 4.0 [16]. These tests were based on the global test [17] and the metabolite
library used was the Relational database of Metabolomic Pathways (RaMP_DB) that in-
cludes 3694 metabolites from multiple sources such as KEGG and Reactome to provide
detailed annotations and enrichment analyses for proteins, and metabolites queries [18].

3. Results
3.1. Overview of the Analysed Metabolite Panel

The metabolomic analyses from both subjects with and without T2D revealed the
presence of 378 analytes in SAT, including various metabolic classes such as lipids, amino
acids, peptides, carbohydrates, nucleotides, cofactors and vitamins, energy metabolites,
and xenobiotics (Figure 1a).

Principal Component Analysis (PCA) revealed notable overlap among the metabolite
groups (Figure 1b). However, PCA analyses for specific metabolic classes showed similar
overlap patterns across most metabolite groups, except for the energy metabolites, which
exhibited clear differentiation based on T2D status (see Supplementary Figure S2).
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Figure 1. Principal Component Analysis (PCA) in Adipose Tissue annotated with T2D and Obesity 
Status. (a) Number of metabolites used for PCA analyses in each metabolic class in SAT from sub-
jects with and without T2D. (b) PCA plot reveals the clustering of adipose tissue samples from sub-
jects with or without T2D (ND) and with or without obesity (+/− OB). Each point represents an in-
dividual sample, with color coding based on T2D status (red for subjects with T2D, grey without 
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3.2. Metabolic Alterations in Adipose Tissue in Subjects with and without T2D and Obesity 

Figure 1. Principal Component Analysis (PCA) in Adipose Tissue annotated with T2D and Obesity
Status. (a) Number of metabolites used for PCA analyses in each metabolic class in SAT from subjects
with and without T2D. (b) PCA plot reveals the clustering of adipose tissue samples from subjects
with or without T2D (ND) and with or without obesity (+/− OB). Each point represents an individual
sample, with color coding based on T2D status (red for subjects with T2D, grey without T2D) and
different shades indicating obesity status (darker for individuals with obesity, lighter for individuals
without obesity). The axes represent the first two principal components (PC1 and PC2), accounting
for the highest percentage of variance.

3.2. Metabolic Alterations in Adipose Tissue in Subjects with and without T2D and Obesity

We examined differences in the concentration distributions of these 378 SAT metabo-
lites among the study groups, pooled by metabolic class (Figure 2). Subjects with both T2D
and obesity showed the most significant alterations (Figure 2, red), with elevated levels
of amino acids, peptides, and carbohydrates, compared to all other groups. Additionally,
subjects with T2D and obesity had significantly higher energy-related and lipid levels
compared to subjects without T2D. Subjects with T2D but without obesity also showed
higher amino acid levels and peptides compared to subjects without T2D, regardless of
obesity status.
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3.3. Comparison of Adipose Tissue Metabolites between Subjects with and without T2D

Thirty-eight metabolites were significantly different in individuals with T2D com-
pared to those without T2D (Figure 3 and Supplementary Table S2). Individuals with T2D
exhibited significantly higher levels of metabolites involved in the TCA cycle, such as
alpha-ketoglutarate, gluconate, and malate. Several amino acids also showed significant
differences between the groups, with higher levels of isoleucine, leucine, lysine, methionine,
N-acetylaspartate, serine, hydroxyproline, and 2-aminoadipate in individuals with T2D.
Glucose levels were also significantly increased in the adipose tissue of individuals with
T2D, consistent with the known metabolic characteristics of the disease. Other notable
changes included elevated levels of mannose, glycerate, and phosphoenolpyruvate, and
decreased levels of the nucleotide-related metabolites including adenine, adenosine, adeno-
sine monophosphate (AMP), and cytidine monophosphate (CMP) in SAT in individuals
with T2D compared to those without T2D. Lipids showed minimal changes, with ele-
vated levels of oleamide and 1-arachidonoyl-GPI (20:4) and reduced levels of myristoleic
acid in individuals with T2D compared to those without T2D. Metformin levels were
notably higher in individuals with T2D, reflecting its therapeutic use and accumulation in
adipose tissue.

We also wanted to elucidate whether distinct patterns would emerge when subdivid-
ing the subjects by obesity status (Figure 3 and Supplementary Table S3).

(i) Amino Acids and Peptides: T2D individuals, particularly those with obesity,
exhibited higher levels of specific amino acids and peptides compared to subjects without
T2D. (ii) Carbohydrates and Energy Metabolites: Subjects with T2D, regardless of obesity
status, showed elevated levels of glucose, glycerate, mannose, phosphoenolpyruvate
(PEP), and key TCA cycle intermediates like alpha-ketoglutarate and malate, indicating
significant disruptions in carbohydrate and energy metabolism. (iii) Lipids: Significant
changes in lipid profiles were observed, with T2D individuals, especially those with
obesity, showing elevated levels of specific lipids such as 1-arachidonoyl-GPI (20:4) and
oleamide. (iv) Cofactors and Vitamins: Higher levels of gamma-tocopherol and alpha-
tocopherol were found in T2D subjects, particularly in those with obesity. (v) Nucleotides:
Adenosine levels were lower in T2D without obesity compared to subjects without
T2D and without obesity, indicating potential disruptions in nucleotide metabolism.
(vi) Xenobiotics: Elevated levels of gluconate were found in T2D individuals with obesity,
reflecting increased oxidative stress.
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Figure 3. Differential metabolite levels in Adipose Tissue in Subjects with and without T2D and
Obesity. Heatmap representing the relative abundance (fold change) of the 38 significantly different
metabolites identified in a comparison of subjects with and without T2D and ND individuals and
sub-group analyses between four groups defined by both T2D and obesity status: subjects without
T2D and obesity, ND (−OB); individuals without T2D and with obesity, ND (+OB); individuals
with T2D and without obesity, T2D (−OB); and individuals with both T2D and obesity, T2D (+OB).
Metabolites are grouped and colored according to their category type: lipids, amino acids, peptides,
carbohydrates, nucleotides, cofactors and vitamins, energy-related metabolites, and xenobiotics, with
color-coded sections indicating these classes. The color scale indicates the fold change in metabolite
levels, with red indicating an increase and blue indicating a decrease between groups.
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3.4. Correlation Analyses between Metabolites in Adipose Tissue and Clinical Characteristics

Correlation analyses between the identified metabolites and clinical markers of adipos-
ity, hyperglycemia, and insulin resistance were performed (Supplementary Table S4) and
the significant associations are presented in Figure 4. No specific patterns of correlations
could be found between metabolite categories and clinical variables. Lipids such as choles-
terol and 2-myristoylglycerol (14:0) were positively correlated with BMI. In contrast, specific
fatty acids such as FA18:3n3 (a-Linolenic acid) and FA20:5n3 (Eicosapentaenoic acid) were
negatively correlated with BMI and WHR (Waist-to-Hip Ratio). Additionally, FA18:3n3
negatively correlated to plasma insulin and OGTT AUC insulin and positively with the
insulin sensitivity index Matsuda. The specific lipid metabolite oleate (18:1n9) showed a
positive correlation with HbA1c and OGTT AUC for FFA. Amino acids including isoleucine
and leucine showed a positive correlation with WHR. Some amino acids, like leucine,
serine, and tryptophan negatively correlated with OGTT AUC insulin. The peptides like
tryptophylglycine and tyrosylglutamate were negatively correlated with BMI. Looking into
the carbohydrates category, glucose and mannose were positively correlated with multiple
markers of hyperglycemia and insulin resistance, such as fasting plasma glucose, HbA1C,
serum insulin, OGTT AUC glucose, HOMA-IR (Homeostatic Model Assessment for Insulin
Resistance), and WHR. Alpha-tocopherol and energy metabolites like alpha-ketoglutarate
and gluconate showed positive correlations with markers of hyperglycemia (fasting plasma
glucose and HbA1c and OGTT AUC glucose). Alpha-tocopherol also correlated with
markers of insulin resistance including HOMA-IR and serum insulin.
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Figure 4. Correlation of Metabolites with Clinical Markers of Adiposity and Insulin Resistance.
This heatmap presents the Spearman correlation coefficients (rho-values) between metabolites and
clinical markers of adiposity and insulin resistance in this cohort of subjects with and without Type 2
Diabetes (T2D). Clinical markers include BMI (Body Mass Index), WHR (Waist-to-Hip Ratio), blood
glucose levels, HbA1c (glycated hemoglobin), blood insulin levels, HOMA-IR (Homeostatic Model
Assessment for Insulin Resistance), Matsuda Index for insulin sensitivity, and OGTT AUC (Oral
Glucose Tolerance Test Area Under the Curve) for glucose, insulin, and free fatty acids. Positive
correlations are indicated in red, negative correlations in blue, and non-significant correlations are
indicated in white. Metabolites are categorized into lipids, amino acids, peptides, carbohydrates,
nucleotides, cofactors and vitamins, energy, and xenobiotics, with corresponding background colors.
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3.5. Associations between Adipose Tissue Metabolites and Adipocyte Size

The correlation analysis between adipose tissue metabolites and adipocyte size re-
vealed 118 significant associations across different metabolite classes (Figure 5a and Sup-
plementary Table S5). Lipids and amino acids exhibited the highest number of correlations,
with 19 and 54 metabolites, respectively. Most lipids, amino acids, and peptides demon-
strated negative correlations with adipocyte size, indicating lower levels in subjects with
larger adipocytes. A few positive correlations were observed (n = 6) within the lipids,
amino acids, and xenobiotics categories. Specifically, amino acids such as serine, threo-
nine, and valine, along with lipids like dehydroisoandrosterone sulfate (DHEA-S) and
glycerol 3-phosphate (G3P), showed negative correlations with adipocyte size. Conversely,
lipids such as FA14:1n5 (myristoleic acid) and FA18:1n7 (vaccenic acid) exhibited positive
correlations. Additionally, carbohydrates like glucose, phosphoenolpyruvate (PEP), glycer-
ate, and 3-phosphoglycerate, as well as energy metabolites including malate, acetylphos-
phate, alpha-ketoglutarate, and succinate, displayed negative correlations with adipocyte
size. Over-representation analysis revealed these correlated metabolites are involved in
pathways related to valine, leucine, and isoleucine biosynthesis, alanine, aspartate, and
glutamate metabolism, and arginine biosynthesis (Figure 5b).
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3.6. Associations between Adipose Tissue Metabolites and Adipocyte Glucose Uptake

Correlation analyses with glucose uptake after incubation with 1000 µU/mL of insulin,
reflecting the maximal insulin response relative to basal levels, revealed 25 significantly
correlated metabolites (Figure 6a and Supplementary Table S6). Higher levels of certain
amino acids, including 3-methylglutaconate, 3-indoxyl sulfate, isobutyrylcarnitine (C4),
and gamma-glutamylglutamine, were negatively associated with maximal glucose uptake,
while only creatine showed a positive correlation. Among the lipids category, several
metabolites, such as FA18:3n3 (a-Linolenic acid), FA18:2n6 (Linoleic acid), and various glyc-
erophospholipids including 1-linoleoyl-GPC (18:2) and 2-linoleoyl-GPE (18:2), exhibited
positive correlations with maximal glucose uptake, whereas 2-arachidonoyl-GPC (20:4)
had a negative correlation. Peptides like gamma-glutamyl glutamine and tyrosylvaline
also showed negative correlations with glucose uptake. No significant correlations were
observed for carbohydrates, cofactors, nucleotides, and xenobiotics. Pathway enrichment
analyses highlighted key metabolic pathways associated with maximal glucose uptake, in-
cluding the biosynthesis of unsaturated fatty acids, linoleic acid metabolism, alpha-linolenic
acid metabolism, ether lipid metabolism, and glycerophospholipid metabolism (Figure 6b).
Notably, 20 of these correlations were consistent with glucose uptake after incubation with
25 µU/mL of insulin (Supplementary Table S6).
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Figure 6. Correlation Analysis of Adipose Tissue Metabolites with Adipocyte Glucose Uptake
(1000 µU/mL). (a) A heatmap displaying the correlation coefficients (rho-values) of individual
metabolites significantly correlated with maximum adipocyte glucose uptake capacity (1000 µU/mL
of insulin. relative to basal) (b) A bar graph showing the enrichment ratio of the top metabolic
pathways significantly associated with adipocyte glucose uptake.
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4. Discussion

In this study, we present the metabolic signature of T2D in the SAT, and its associations
with clinical markers of insulin resistance, adipocyte size, and glucose uptake. Notably,
subjects with T2D—especially those with obesity—displayed elevated levels of amino acids,
including branched-chain amino acids (BCAAs) like leucine and isoleucine, peptides, and
carbohydrates. These findings corroborate our prior research documenting similar T2D
metabolomic signatures in plasma [8]. We also observed significant associations between
this metabolic signature and markers of adiposity and glucose homeostasis, alongside
correlations with SAT adipocyte size and glucose uptake. Elevated lipids and BCAAs
were linked to higher adiposity, while anti-inflammatory fatty acids and certain peptides
showed negative correlations. Interestingly, larger adipocytes exhibited lower amino acid
levels, suggesting an increased catabolic rate. Crucially, pathways such as unsaturated fatty
acid biosynthesis were positively associated with adipocyte insulin-stimulated glucose
uptake. Our study provides novel metabolic profiling of SAT, which has been less studied
compared to plasma or VAT, and contributes to new knowledge in the field, particularly
regarding the metabolic alterations in SAT associated with T2D.

4.1. Metabolomic Distinctions in Adipose Tissue between Subjects with and without T2D

The PCA plot revealed an overlap between T2D and ND groups, indicating fewer
metabolic differences in adipose tissue compared to plasma-based studies [19,20]. Notably,
energy metabolites in SAT demonstrate a clearer distinction based on T2D status, empha-
sizing disruptions in energy metabolism in adipose tissue as a key characteristic of T2D.
This assumption aligns with previous studies noting altered levels of energy metabolites,
including increased glycolytic intermediates, in T2D [21,22].

Subjects with both T2D and obesity exhibited significant metabolic alterations in adi-
pose tissue, highlighted by elevated levels of amino acids (including BCAAs like leucine,
and isoleucine), peptides, carbohydrates (e.g., glucose, mannose), and energy-related
metabolites (e.g., alpha-ketoglutarate, malate, gluconate). These findings are in line with
earlier studies in plasma that have identified increased levels of BCAAs, aromatic amino
acids, and disrupted lipid metabolism, alongside elevated glycolytic intermediates and TCA
cycle metabolites [23–25]. The association of elevated BCAAs with diabetes and insulin re-
sistance in plasma and skeletal muscle has been well-documented for decades [6,7,9,21,26],
typically linked to impaired catabolism. Previous studies in VAT and SAT have also shown
elevated levels of amino acids including BCAAs, tryptophan, and serine in subjects with
hyperglycemia and T2D [9,10,27].

Interestingly, some metabolic signatures found in SAT in this study are novel, such
as elevated levels of TCA intermediates (alpha-ketoglutarate, malate, and gluconate) and
reduced nucleotide metabolites (adenine, adenosine, AMP, and CMP), which have not
been reported in previous adipose tissue metabolomics studies in T2D subjects. Changes
in these metabolites can impact energy metabolism [28,29], and contribute to metabolic
dysregulation observed in T2D.

The presence of elevated metformin levels in T2D individuals reflects its therapeutic
use and accumulation in adipose tissue. Notably, all subjects with T2D in this study were
taking metformin, which has been shown to impact the levels of various metabolites,
including those involved in the TCA cycle, glucose metabolism, and lipid metabolism [30].
Therefore, it is important to consider that the observed metabolic differences may be
influenced by both the presence of T2D and the effects of metformin therapy, making it
challenging to separate the impact of the disease from the effects of the treatment.

4.2. Associations with Clinical Parameters

The positive association of BCAAs like isoleucine and leucine with central adiposity is
consistent with studies implicating these amino acids in obesity and metabolic syndrome
through their roles in protein synthesis and energy metabolism [24,31]. Elevated levels of
specific lipids, such as certain fatty acids, have been shown to induce adipocyte hypertrophy
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and insulin resistance [32]. Elevated specific lipids with hyperglycemia, such as oleate, have
been associated with lipotoxicity, contributing to insulin resistance by impairing insulin
signaling pathways [33]. Conversely, negative correlations of fatty acids like a-linolenic acid
and eicosapentaenoic acid with BMI and WHR align with their known anti-inflammatory
and lipid-lowering effects, which may protect against fat accumulation [34,35].

The strong positive correlations of glucose, mannose, alpha-ketoglutarate, and glu-
conate with markers of hyperglycemia and insulin resistance underscore the central role
of carbohydrates in metabolic dysregulation in diabetes. Elevated glucose and mannose
levels are direct indicators of impaired glucose metabolism, a hallmark of T2D [19]. Alpha
and gamma-tocopherol, the major isomers of Vitamin E, were positively correlated with
several markers of hyperglycemia and insulin resistance. The reasons for higher levels of
these metabolites with higher insulin resistance are unknown but might indicate higher
dietary intake, as the major site for alpha-tocopherol storage is in adipose tissue [36].

4.3. Adipocyte Size and Glucose Uptake in Relation to Metabolomics

Our findings reveal a significant negative correlation between adipocyte size and
several amino acids, particularly those involved in the biosynthesis of valine, leucine, and
isoleucine, as well as alanine, aspartate, and glutamate metabolism. This result appears
counterintuitive since amino acids are typically elevated in T2D and obesity, conditions
often characterized by larger adipocytes. One possible explanation is that the catabolism
of BCAAs drives adipogenesis, potentially leading to the recruitment of new adipocytes
for differentiation [37]. Interestingly, a study demonstrated that mice with adipose tissue
knockout of the enzyme that catabolizes BCAAs to brain-chain keto acids, are resistant
to high-fat-induced obesity, and have reduced adipose tissue and smaller adipocytes,
indicating a critical role of BCAA catabolism in regulating adipocyte size and function [38].
Future studies should investigate the enzymes involved in BCAA metabolism in human
adipose tissue and whether changes in those impact adipocyte metabolism. Additionally, it
is important to note that our T2D group tended to have smaller adipocytes compared to
the ND group; therefore, these findings should be validated in larger cohorts to confirm
their generalizability. The negative correlations of key energy metabolites like alpha-
ketoglutarate and malate with adipocyte size suggest that smaller adipocytes might rely
more on efficient energy production pathways. Larger adipocytes might be less efficient
in utilizing and synthesizing amino acids, contributing to systemic metabolic imbalances.
Mechanisms underlying the negative correlation between adipocyte size and amino acid
levels may involve alterations in metabolic pathways regulated by insulin and nutrient
signaling, such as mTOR signaling [39].

In turn, several lipids positively correlated with glucose uptake, such as FA18:3n3
(a-Linolenic acid), FA18:2n6 (Linoleic acid), and various glycerophosphocholines (GPCs)
and glycerophosphoethanolamines (GPEs). These lipids may enhance membrane fluidity
and facilitate insulin signaling, consistent with studies showing that polyunsaturated fatty
acids and glycerophospholipids maintain insulin sensitivity and metabolic health [40].
These results also seem to be consistent with a previous study that identified that glyc-
erophosphatidylcholines were a predictor to identify “insulin-sensitive obesity” in VAT [41].
Adipocyte glucose uptake was also positively correlated with creatine. Evidence has sug-
gested that creatine supplementation may improve glucose metabolism [42] and one of the
proposed mechanisms is suggested to be by increasing GLUT4 expression [34]. Negative
correlations of certain amino acids, such as 3-methylglutaconate, 3-indoxyl sulfate, and
isobutyrylcarnitine, with maximal glucose uptake may reflect alterations in aminoacid-
mediated signaling pathways that negatively affect glucose metabolism. For example,
3-indoxyl sulfate has been associated with mitochondrial dysfunction, oxidative stress, and
impaired energy metabolism [43]. Similarly, elevated tyrosylvaline might contribute to
insulin resistance by affecting insulin signaling pathways [5].
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4.4. Future Studies

Future research should focus on longitudinal studies to establish causal relationships
between specific metabolic changes in adipose tissue and the progression of T2D. Investi-
gating the mechanistic pathways underlying the observed associations between metabolites
and clinical parameters will be crucial. Additionally, expanding the metabolomic analysis
to include other tissues and fluids, such as muscle and blood, could provide a more com-
prehensive understanding of systemic metabolic changes in T2D. Integrating multi-omics
approaches, including genomics, proteomics, and metabolomics, will offer deeper insights
into the complex metabolic networks involved in T2D and obesity. Lastly, exploring the
therapeutic potential of targeting key metabolic pathways identified in this study, such
as unsaturated fatty acid biosynthesis, glycerophospholipid metabolism, and nucleotide-
related metabolites could lead to novel treatments for improving insulin sensitivity and
metabolic health in T2D.

4.5. Limitations

This study has several limitations. First, the cross-sectional and descriptive design lim-
its the ability to infer causality between metabolic alterations and T2D. Second, the sample
size, though adequate for an explorative approach, may not capture the full heterogeneity
of metabolic responses in a diverse population. Third, the reliance on adipose tissue biop-
sies from a specific anatomical location (SAT) may not reflect the metabolic state of other
fat depots such as VAT. Additionally, the study did not account for potential confounding
factors such as diet, physical activity, and medication use other than metformin.

5. Conclusions

In conclusion, our study reveals distinct metabolic alterations in adipose tissue as-
sociated with T2D, particularly in energy metabolism. Elevated levels of TCA cycle in-
termediates such as alpha-ketoglutarate, fumarate, and malate, along with BCAAs and
carbohydrates, and reduced nucleotide-related metabolites indicate extensive metabolic
dysregulation in SAT of T2D subjects. Obesity further exacerbates these changes, especially
in amino acid metabolism. Adipocyte size is negatively associated with several BCAAs,
while adipocyte glucose uptake is primarily positively associated with unsaturated fatty
acid biosynthesis and glycerophospholipid metabolism. Identifying these key metabolic
pathways suggests potential therapeutic targets for improving insulin sensitivity and over-
all metabolic health in T2D and obesity. Future research should validate these findings
in larger and more diverse cohorts, elucidate underlying mechanisms, and explore the
therapeutic potential of modulating specific metabolic pathways.
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