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Abstract: The association of thyroid function with essential and non-essential amino acids is under-
studied, despite their common metabolic roles. Thus, our aim was to evaluate the association of
thyroid function with the levels of branched-chain amino acids (BCAAs—leucine, isoleucine, and
valine) and of alanine in the general population. We utilized data from the São Paulo research center
of ELSA-Brasil, a longitudinal population-based cohort study. Thyroid parameters included thyroid
stimulating hormone (TSH), free T4 and free T3 levels, and the FT4:FT3 ratio. BCAAs and alanine
were analyzed on a fully automated NMR platform. The current analysis included euthyroid partici-
pants and participants with subclinical hyperthyroidism and hypothyroidism. We used Pearson’s
coefficient to quantify the correlation between thyroid-related parameters and amino acids. Linear
regression models were performed to analyze whether thyroid parameters were associated with
BCAAs and alanine levels. We included 4098 participants (51.3 ± 9.0 years old, 51.5% women) in this
study. In the most adjusted model, higher levels of TSH were associated with higher levels of alanine,
FT4 levels were inversely associated with isoleucine levels, FT3 levels were statistically significant
and positively associated with valine and leucine, and the T3:T4 ratio was positively associated
with all amino acids. We observed that subclinical hypothyroidism was positively associated with
isoleucine and alanine levels in all models, even after full adjustment. Our findings highlight the
association of subclinical hypothyroidism and thyroid-related parameters (including TSH, free T4,
free T3, and FT4:FT3 ratio) with BCAAs and alanine. Further studies are needed to explore the
mechanisms underlying this association. These insights contribute to our understanding of the
influence of thyroid-related parameters on BCAA and alanine metabolism.
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1. Introduction

Thyroid dysfunction plays a crucial role in elevating cardiometabolic risk through
its profound impact on metabolic processes [1,2]. Thyroid hormones, primarily thyroxine
(T4) and triiodothyronine (T3), regulate the basal metabolic rate, lipid metabolism, and
glucose homeostasis [3]. Amino acid metabolism also seems to be impaired by thyroid
dysfunctions; thus, branched-chain amino acids, including leucine, isoleucine, and valine,
and also alanine, could be interpreted as a potential risk biomarker for cardiometabolic
disease [4–8].

Branched-chain amino acids (BCAAs) are a group of essential amino acids that are not
synthetized in animals and must be obtained through diet [9]. Evidence has accumulated
recently that BCAAs are not only required for protein synthesis and nutrition but may also
have a critical role in intracellular metabolism, with consequences for insulin resistance
and mitochondrial dysfunction [4–11]. Also, it has been demonstrated that BCAAs and
other amino acids (tryptophan and lysine) are markers of non-alcoholic steatohepatitis [12].
A previous study from our group has demonstrated that higher levels of BCAAs are
associated with a worse cardiometabolic profile and with an increased incidence of type 2
diabetes after 4 years [13].

Alanine, on the other hand, is a non-essential amino acid that plays a crucial role
in various biological processes [14–16], especially in the metabolic pathway through the
glucose–alanine cycle (gluconeogenesis) [16–19]. Approximately 60% of alanine is derived
from BCAAs [20], so its levels are intimately associated with BCAA metabolism.

Disruptions in thyroid function can lead to imbalances in BCAAs and alanine, which
in turn exacerbate metabolic derangements, contributing to cardiovascular diseases [21–24].
In hypothyroidism, there is a downregulation of essential amino acid oxidation, especially
of leucine [24,25]. On the other hand, in hyperthyroidism, high levels of T3 increase
BCAA oxidation and positively regulate mechanistic target of rapamycin (mTOR) [26,27],
increasing thermogenesis [28,29]. There is also some evidence to suggest that BCAAs may
alter the levels of thyroid hormones in animal models, but this is not fully elucidated [30,31].
In human research, only a positive correlation between thyroid hormone (T4) and the levels
of BCAAs has been observed [32].

Thyroid dysfunctions and BCAAs are pivotal players in the complex interplay of
metabolic processes that influence cardiovascular health. However, the associations be-
tween subclinical thyroid disease and essential and non-essential amino acids are not well
investigated. Thus, we aimed to investigate the association of TSH, free T4 and free T3
levels, and the FT4:FT3 ratio with BCAAs and alanine levels in ELSA-Brasil participants
with both subclinical thyroid diseases and with normal thyroid function.

2. Materials and Methods
2.1. Participants

The ELSA-Brasil is a large, multicenter and prospective cohort study that has been
following a population of middle-aged and older Brazilian adults for 15 years. The baseline
data collection occurred between 2008 and 2010 with a widely comprehensive health assess-
ment, which included laboratory and imaging tests. The design and detailed information
about ELSA-Brasil have been published elsewhere [33–36]. In the current analysis, we
included the participants from the São Paulo research center of ELSA-Brasil [35] with
nuclear magnetic resonance (NMR) data available at baseline (n = 5026). Then, we excluded
(1) those with overt thyroid dysfunction or using medication to treat thyroid diseases
(thiamazole, propylthiouracil, and levothyroxine)—n = 437; (2) those that were taking
medication that interfere with thyroid function (amiodarone, biotin, carbamazepine, car-
bidopa, furosemide, haloperidol, heparin, levodopa, lithium, metoclopramide, phenytoin,
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propranolol, primidone, rifampicin, systemic steroids, and valproic acid)—n = 158; and
(3) those with missing data in any independent variable or covariate—n = 333. The total
number of participants analyzed was 4098 and it included those with subclinical thyroid
diseases and with normal thyroid function (Figure 1). The institutional ethics committee
approved this study, and written informed consent was obtained from all participants.
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Figure 1. Flowchart of participants.

2.2. Thyroid-Related Parameters

Venous blood samples were drawn in the morning after a 12 h overnight fast (6.30 a.m.
to 9.00 a.m.). TSH (normal range: 0.40–4.00 mIU/L), FT4 (0.93–1.70 ng/dL), and FT3
(0.20–0.44 ng/dL) were determined by a third-generation immunoenzymatic assay (Roche
Diagnostic, Mannheim, Germany). The analysis included euthyroid participants (TSH
levels from 0.40 to 4.00 mIU/L with no history of levothyroxine or anti-thyroid drugs use),
participants with subclinical hyperthyroidism (TSH levels lower than 0.40 mIU/L and FT4
levels between 0.93 and 1.70 ng/dL), and subclinical hypothyroidism (TSH > 4.00 mIU/L
with FT4 0.93 to 1.70 ng/dL).

2.3. Amino Acids Evaluation

Blood was drawn into lavender-top EDTA collection tubes. Blood samples were
promptly centrifuged (at 3000 rpm for 10 to 15 min at room temperature) and the separated
plasma was refrigerated immediately. Refrigerated plasma specimens may be stored for up
to 7 days without affecting NMR results [37].

Aliquots were frozen at −80 ◦C for further determinations of BCAAs (valine, leucine,
isoleucine) and alanine, performed by proton nuclear magnetic resonance (1H NMR) spec-
troscopy. NMR LipoProfile analyses of fasting EDTA plasma samples using the NMR
Profiler platform at LipoScience (now Labcorp, Morrisville, NC, USA) with the LP4 algo-
rithm were performed [38]. The methyl signals from the three BCAAs and alanine in the
1H NMR spectrum produce distinct patterns which can then be used for quantification of
isoleucine, leucine, and valine, as well as alanine.



Metabolites 2024, 14, 437 4 of 11

2.4. Other Baseline Variables

Body mass index (BMI) and waist circumference were measured using standard
techniques.

Dyslipidemia was defined as a low-density lipoprotein (LDL) cholesterol level
≥130 mg/dL or the use of lipid- lowering medication. Total cholesterol, high-density
lipoprotein (HDL) cholesterol, and triglycerides (glycerol phosphate peroxidase) were
measured by enzymatic colorimetric assay (Siemens, Deerfield, MA, USA); LDL choles-
terol was calculated using the Friedewald equation, except for cases with triglycerides
>400 mg/dL, when an enzymatic colorimetric assay (ADVIA 1200, Siemens, Deerfield, MA,
USA) was used.

Questionnaires addressed age, educational attainment (less than high school, high
school and some college, complete college or higher); average monthly net family income
in USD (<1245, 1245–3319, ≥3320) (at baseline, USD 1 = BRL 2); self-reported race (white,
mixed, black, Asian, and indigenous); private health insurance plan (yes/no); and smoking
and alcohol status (never, past, or current). Physical activity at leisure was assessed by the
International Physical Activity Questionnaire and categorized as inactive, insufficiently
active, and active [39,40]. All participants reported medication use in the two weeks prior
to the interview.

2.5. Data Analyses

Data were presented as counts (n) and percentages (%) or means and standard devia-
tions (SDs). Because the distribution of thyroid hormone levels and ratios were skewed and
had excess kurtosis, a natural log transformation (ln) was performed (ln [original value + 1]).
The comparison of the amino acids’ levels (leucine, isoleucine, valine, and alanine) accord-
ing to the presence of subclinical hypothyroidism (reference category: euthyroidism) was
performed using independent samples t tests and Levene’s test for equality variances. Uni-
variate and multivariate Generalized Linear Models were performed to analyze whether the
thyroid parameters and subclinical hypothyroidism were associated with the amino acid
levels. Beta (β) and 95% confidence interval (95%CI) were presented for the following mod-
els: Model 1: crude analysis; Model 2: adjusted for sociodemographic variables (age, race,
sex, educational level); and Model 3: adjusted for sociodemographic variables and health
conditions (BMI, physical activity, diabetes, and smoking). We also performed a fourth
model adding a quadratic term of each log-transformed thyroid function-related value
(TSH, FT4, FT3, and the T3:T4 ratio) to verify whether there were non-linear associations.
The Bayesian information criteria and likelihood ratio were analyzed. Sensitivity analyses
were performed stratifying the participants by sex (female/male), age (<50/≥50 years old),
presence of diabetes, and by restricting for euthyroid individuals. All the analyses were
carried out using IBM SPSS v.26 software, adopting a significance level of 5% (p < 0.05).

3. Results

We included 4098 participants (51.3 ± 9.0 years old, 51.5% women, BMI of 27.3 ± 4.9)
in this study (Figure 1). Subclinical hypothyroidism was prevalent in 9.3% and subclinical
hyperthyroidism in 0.6% of the study population. The demographic data of participants
according to thyroid function are described in Table 1. Only self-reported race presented
a statistically significant difference between euthyroid and subclinical hypothyroidism
participants (p = 0.014).

Figure 2 shows the distribution of valine, leucine, isoleucine, and alanine levels according
to thyroid function. When compared to euthyroid participants, participants with subclinical
hypothyroidism showed higher mean values of isoleucine (50.7 vs. 48.6; p = 0.024) and alanine
(353.1 vs. 339.5; p = 0.002). All other comparison were not significant (p > 0.05).
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Table 1. Descriptive characteristics of the participants according to thyroid function.

All (n = 4098)
Thyroid Function

Euthyroid
(n = 3693)

Subclinical Hyper
(n = 23)

Subclinical Hypo
(n = 382)

n (%) n (%) n (%) n (%)

Gender
Men 1988 (48.5%) 1796 (48.6%) 7 (30.4%) 185 (48.4%)
Women 2110 (51.5%) 1897 (51.4%) 16 (69.6%) 197 (51.6%)

Education
Up to some college 2316 (56.5%) 2091 (56.6%) 12 (52.2%) 213 (55.8%)
Completed college or more 1782 (43.5%) 1602 (43.4%) 11 (47.8%) 169 (44.2%)

Self-reported race a

Non-white 1725 (42.1%) 1574 (42.6%) 13 (56.5%) 138 (36.1%)
White 2373 (57.9%) 2119 (57.4%) 10(43.5%) 244 (63.9%)

Physical activity
Inactive 2703 (66.0%) 2430 (65.8%) 13 (56.5%) 260 (68.1%)
Insufficiently active 459 (11.2%) 412 (11.2%) 2 (8.7%) 45 (11.8%)
Active 936 (22.8%) 851 (23.0%) 8 (34.8%) 77 (20.2%)

Smoking
Never smoked 2170 (53.0%) 1940 (52.5%) 11 (47.8%) 219 (57.3%)
Past or current smoker 1928 (47.0%) 1753 (47.5%) 12 (52.2%) 163 (42.7%)

Diabetes mellitus
No 3384 (82.6%) 3041 (82.3%) 19 (82.6%) 324 (84.8%)
Yes 714 (17.4%) 652 (17.7%) 4 (17.4%) 58 (15.2%)

a Statistically significant difference between euthyroid and subclinical hypothyroidism participants.
Metabolites 2024, 14, x    6  of  12 
 

 

 

Figure 2. Comparison of valine, leucine, isoleucine, and alanine level distribution according to thy-

roid function. When compared to euthyroid participants, participants with subclinical hypothyroid-

ism showed higher mean values of isoleucine (50.7 vs. 48.6; p = 0.024) and alanine (353.1 vs. 339.5; p 

= 0.002). All other comparisons were not significant (p > 0.05). 

Univariate and multivariate linear regression models were applied to analyze the as-

sociation between thyroid parameters and amino acids in all participants (Table 2). Log-

transformed  levels of TSH, FT3, and  the T3:T4 ratio were positively associated with all 

amino acids in the univariate analysis, while FT4 levels were only associated with leucine. 

After the adjustment for sociodemographic factors and health conditions, TSH remained 

associated with alanine levels (β: 14.44, 95% CI: 7.89; 20.99, p < 0.001). Log-transformed 

FT4 levels became negatively associated with isoleucine levels (β: −8.75, 95% CI: −15.05; 

−2.45, p = 0.006). Log-transformed FT3 levels remained positively associated with valine 

(β: 61.75, 95% CI: 25.87; 97.64, p < 0.001) and  leucine  (ꞵ: 43.39, 95% CI: 16.05; 70.73, p = 
0.002). Finally, the T3:T4 ratio was positively associated with all amino acids in the final 

model (β range from 33.55 to 104.32; all p < 0.01).   

   

Figure 2. Comparison of valine, leucine, isoleucine, and alanine level distribution according to thyroid
function. When compared to euthyroid participants, participants with subclinical hypothyroidism
showed higher mean values of isoleucine (50.7 vs. 48.6; p = 0.024) and alanine (353.1 vs. 339.5;
p = 0.002). All other comparisons were not significant (p > 0.05).
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Univariate and multivariate linear regression models were applied to analyze the
association between thyroid parameters and amino acids in all participants (Table 2). Log-
transformed levels of TSH, FT3, and the T3:T4 ratio were positively associated with all
amino acids in the univariate analysis, while FT4 levels were only associated with leucine.
After the adjustment for sociodemographic factors and health conditions, TSH remained
associated with alanine levels (β: 14.44, 95% CI: 7.89; 20.99, p < 0.001). Log-transformed
FT4 levels became negatively associated with isoleucine levels (β: −8.75, 95% CI: −15.05;
−2.45, p = 0.006). Log-transformed FT3 levels remained positively associated with valine
(β: 61.75, 95% CI: 25.87; 97.64, p < 0.001) and leucine (β: 43.39, 95% CI: 16.05; 70.73,
p = 0.002). Finally, the T3:T4 ratio was positively associated with all amino acids in the final
model (β range from 33.55 to 104.32; all p < 0.01).

Table 2. Crude and adjusted linear association between thyroid hormones and amino acids to all
participants.

Valine Leucine Isoleucine Alanine

β (CI 95%) p β (CI 95%) p β (CI 95%) p β (CI 95%) p

Model 1—Crude

TSH a 4.31 (0.56; 8.07) 0.024 2.96 (0.26; 5.67) 0.032 1.87 (0.38; 3.36) 0.014 19.46 (12.60;
26.32) <0.001

FT4 a 13.04 (−5.08;
31.16) 0.158 16.09 (3.04;

29.14) 0.016 1.02 (−6.17;
8.21) 0.781 −16.31

(−49.53; 16.91) 0.336

FT3 a 243.27 (201.49;
285.04) <0.001 170.53 (140.40;

200.66) <0.001 76.35 (59.68;
93.01) <0.001 148.73 (71.03;

226.39) <0.001

T3:T4 ratio a 158.34 (119.96;
196.72) <0.001 98.31 (70.59;

126.02) <0.001 55.61 (40.37;
70.86) <0.001 148.60 (77.83;

219.37) <0.001

Model 2—Adjusted for sociodemographic variables (age, race, sex, educational level)

TSH a 2.89 (−0.47;
6.25) 0.092 2.41 (−0.06;

4.87) 0.055 1.53 (0.17; 2.89) 0.028 15.89 (9.16;
22.62) <0.001

FT4 a
−30.81

(−47.11;
−14.50)

<0.001 −11.87
(−23.83; 0.10) 0.052 −14.45

(−21.05; −7.85) <0.001
−51.25

(−84.00;
−18.50)

0.002

FT3 a 79.07 (39.61;
118.54) <0.001 52.88 (23.95;

81.81) <0.001 11.84 (−4.17;
27.84) 0.147 82.01 (3.69;

162.34) 0.040

T3:T4 ratio a 111.54 (76.91;
146.18) <0.001 59.04 (33.60;

84.48) <0.001 35.14 (21.09;
49.19) <0.001 157.26 (87.56;

226.95) <0.001

Model 3—Adjusted for model 2 + health conditions (BMI, physical activity, diabetes, and smoking)

TSH a 1.41 (−1.65;
4.47) 0.367 2.00 (−0.34;

4.33) 0.094 1.10 (−0.19;
2.40) 0.095 14.44 (7.89;

20.99) <0.001

FT4 a −11.30
(−26.23; 3.63) 0.138 −2.00 (−13.38;

9.37) 0.730 −8.75 (−15.05;
−2.45) 0.006 −7.72 (−39.72;

28.29) 0.637

FT3 a 61.75 (25.87;
97.64) 0.001 43.39 (16.05;

70.73) 0.002 6.58 (−8.59;
21.75) 0.396 64.98 (−11.99;

141.95) 0.098

T3:T4 ratio a 62.17 (30.20;
94.13) <0.001 33.55 (9.18;

57.92) 0.007 20.46 (6.95;
33.97) 0.003 104.32 (35.78;

172.86) 0.003

Note: a log-transformed variables. β represents the slope coefficient of the regression line in sensitivity analyses.

Adding a quadratic term to the models did not show consistent associations, nor
did it improve overall model performance. Although significant associations between
quadratic lnFT3 and lnT3:T4 appeared in some models, we detected that this result was
due to an influential point with outlier T3 values. When this observation was excluded,
the significant associations with quadratic terms vanished while the linear models did not
change significantly.

Subclinical hypothyroidism was associated with higher levels of isoleucine and alanine
in all models, even after full adjustment (isoleucine (β: 1.97, 95% CI: 0.36; 3.57, p = 0.017)
and alanine (β: 10.18, 95% CI: 2.05; 18.30, p = 0.014)) (Figure S1—Supplementary Materials).
The number of cases of subclinical hyperthyroidism was too small to be analyzed.

In the sensitivity analyses (Supplementary Tables S1–S4), we observed that log-
transformed TSH levels remained positively associated with alanine in both sex and age
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groups, in those without diabetes, and in euthyroid individuals. The negative association
between log-transformed FT4 levels and isoleucine was statistically significant in women,
the younger group, those without diabetes, and euthyroid participants. FT4 levels were
also negatively associated with valine in the younger group and in those without dia-
betes and with alanine levels in those without diabetes. Conversely, participants with
diabetes showed a positive association between FT4 levels and those of valine, leucine,
and isoleucine. There were positive associations between log-transformed FT3 levels and
valine and leucine levels in women, the younger group, and in euthyroid individuals. FT3
values were also positively associated with valine in men and older adults and with all
amino acids in participants without diabetes. The log-transformed T3:T4 ratio lost some
associations after stratifying the analyses; however, we observed consistent associations
with most of the amino acids in both sex and age groups, participants without diabetes,
and euthyroid individuals. Subclinical hypothyroidism remained positively associated
with alanine in the younger group and those without diabetes and with isoleucine only in
older adults.

4. Discussion

To our knowledge, this is the largest study to address potential associations between
subclinical thyroid dysfunction and thyroid-related parameters with BCAAs. In this study,
we found associations between thyroid-related parameters and branched-chain amino
acids and alanine. In the main analysis, TSH levels was positively associated with alanine.
Free T3 levels were positively associated with valine and leucine levels, while free T4 levels
was only negatively associated with isoleucine levels. Higher levels of the conversion ratio
of FT4 to FT3 had a marked association with all analyzed amino acids (valine, leucine,
isoleucine, and alanine). Younger age, the female sex, and the absence of diabetes were
important determinants in the relationship of thyroid parameters and amino acids after
sensitivity analyses.

A strict homeostasis between protein consumption and protein synthesis is needed to
maintain balance in the tissue pools of BCAAs, as the principal source of these nutrients is the
diet. Low levels of BCAAs have been correlated with malnutrition and increased mortality in
cardiovascular disease [41,42], while excess BCAAs have been correlated with increased risk
of insulin resistance, diabetes mellitus, and cardiovascular disease [5,6,8,13,21,43]. Thyroid
hormones increase BCCA oxidation before altering energetic expenditure, glucose, and lipid
metabolism [44–46].

Most of the studies have evaluated associations with leucine levels. Van der Boom
et al. have shown that, in patients thyroidectomized for thyroid cancer, mild hyperthy-
roidism accelerates BCAA oxidation, increasing leucine flux, while hypothyroidism impairs
endogenous rates of leucine appearance, its oxidation, and its non-oxidative disposal [24].
Thus, thyroid status directly regulates protein metabolism by reducing protein breakdown
in hypothyroidism and increasing it in hyperthyroidism [47]. It is also known that leucine
regulates mTOR, which is one of the main regulators of thermogenesis [7,21,29]. T3 also has
direct effects on mTOR phosphorylation in brown adipose tissue (BAT) and is needed for
the activation of thermogenesis in BAT [48], as well as for the browning of white adipose
tissue [49–51]. Hyperthyroidism reduces intracellular BAT levels of leucine and arginine by
stimulating oxidation [29] and leading to mitochondrial autophagy, activity, and turnover
in BAT, which are essential for thermogenesis [29,52]. Our study shows that higher FT3
levels and T3:T4 ratio are correlated with higher leucine and valine levels, confirming such
a relationship, which would probably lead to thermogenesis. However, isoleucine showed
an opposite direction in our study, with a negative association with FT4. This could be due
to the usual opposite behavior between serum T4 and T3 in disease status [53,54].

Regarding alanine, it is a non-essential amino acid that plays a crucial role in protein
synthesis and energy metabolism and is intimately linked to leucine levels. The secretion
of alanine from skeletal muscle depends on the amination of pyruvate, which occurs with
20% of the nitrogen coming from leucine [9]. Alanine also serves as a precursor for hepatic
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gluconeogenesis [9,17,19,55]. However, previous studies have shown contradictory results
with alanine; it is associated with both hypo- and hyperthyroidism [44–46,56]. Our study
revealed associations between TSH, T3:T4 ratio, subclinical hypothyroidism, and alanine
levels. The positive association between TSH, the T3:T4 ratio, and alanine levels may
reflect complex interactions between thyroid function, metabolic processes, and the body’s
response to stress or illness.

Indeed, our study is the first to evaluate the T3:T4 ratio and its association with
BCCAs and alanine. The T3:T4 ratio is used to evaluate the rate of T4 to T3 conversion,
reflecting the peripheral sensitivity of thyroid hormones. An increase in the T3:T4 ratio
represents a consequence of an adaptation to adverse metabolic conditions, which enhances
the activity of type 2 deiodinase (DIO2) [57,58]. It could be considered an early marker of
thyroid function’s effects on metabolic parameters such as obesity or non-alcoholic fatty
liver disease [59] and even cardiovascular mortality prediction [60]. The association of this
ratio with all amino acids analyzed substantiate the role of the conversion ratio as an early
marker of thyroid impairment possibly affecting metabolic parameters [54,55].

This study has some strengths and limitations. The well-designed cohort, which
was followed up for 15 years with uniform collection, storage, and analyses of serum
samples using a highly reproducible method such as NMR spectroscopy, denotes the main
strength of our study. This study is also innovative and could shed light into the role
of thyroid dysfunction in overall metabolic health in future investigations because, as a
cross-sectional analysis, we cannot establish causality. The small number of individuals
with subclinical hyperthyroidism did not enable us to focus on this particular group of
participants. Nevertheless, by using TSH, FT4, and FT3 as continuous variables, we were
able to gain insight to the association of thyroid function in general with BCAAs and
alanine. Even though ELSA-Brasil includes a sample with higher education and net family
income compared to the general Brazilian population, this study presents a high social and
ethnic diversity that is similar to the heterogeneous populations living in the metropolitan
areas in Brazil. This implies that our external validity may extend to urban centers of similar
characteristics both within and outside Brazil. Particularly in this analysis, we cannot know
if a high educational level could influence nutrition and therefore serum amino acid levels
because there are no data available about it in the general Brazilian population, which has,
on average, a lower educational level and lower income. In addition, there are several
similarities in the prevalence of behavioral risk factors and chronic conditions selected for
assessment with similar procedures in ELSA-Brasil and in VIGITEL, an annually performed
telephone-based behavioral risk factor survey producing representative data for adults
living in Brazil’s 27 state capitals and Federal District [61].

5. Conclusions

In conclusion, our findings highlight the association between thyroid-related parame-
ters, including thyroid hormones, TSH, and T3:T4 ratio and BCAA and alanine levels.

It was demonstrated that, after adjustment for demographic factors and comorbidities,
low thyroid function, represented by high levels of TSH, low levels of FT4, high serum
levels of FT3, and a higher T3:T4 ratio, was associated with higher levels of BCAAs and
alanine, which could serve as a biomarker for higher cardiometabolic risk and insulin resis-
tance. Further prospective studies are needed to explore the causality and the mechanisms
underlying this association.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo14080437/s1, Figure S1: Forest plots showing crude
and adjusted linear association between subclinical hypothyroidism and amino acids; Table S1: Crude
and adjusted linear association between thyroid parameters, subclinical hypothyroidism, and amino
acids according to sex; Table S2: Crude and adjusted linear association between thyroid parameters,
subclinical hypothyroidism, and amino acids according to age group; Table S3: Crude and adjusted
linear association between thyroid parameters, subclinical hypothyroidism, and amino acids accord-
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ing to the presence of diabetes; Table S4: Crude and adjusted linear association between thyroid
parameters and amino acids for euthyroid participants exclusively.
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