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Abstract: Vinpocetine (VP) is distributed after oral and intravenous administration, and its uptake
in the thalamus, basal ganglia, and visual cortex. Due to poor bioavailability (~7%) and marked
first-pass effect (~75%), including a short half-life (2–3 h), oral administration of VP is limited. It
requires frequent administration of the drug to obtain a therapeutic effect. Attempts to overcome
these difficulties include the use of new drug delivery systems and/or alternative routes of drug
administration. One possibility is the common administration of lipid emulsion and drug using the
same catheter. However, this procedure is not recommended due to potential interaction and lack of
safety data. For this purpose, we checked the compatibility of VP solutions with eight commercially
available parenteral nutrition admixtures, i.e., Lipoflex special, Omegaflex special, Lipoflex peri,
Omegaflex peri, Kabiven, SmofKabiven, Kabiven Peripheral, and Olimel Peri N4E. Coadministration
is only possible if the stability of the drug and the lipid emulsion is confirmed. The available data
are scarce and only concern the incompatibility of VP with ibuprofen. Compatibility tests were
carried out in simulated administration through a Y-site connector using clinical flow rates. The
stability of the drug and lipid emulsion was assessed by visual inspection and measurement of
pH, osmolality, particle size as mean droplet diameter (MDD) and percentage of lipids residing in
globules larger than 5 µm (PFAT5), zeta potential, polydispersity index, and lipid-free parenteral
nutrition admixture(PNA) turbidity. The results of the compatibility of VP with eight commercial PN
admixtures showed that all lipid emulsions show different signs of destabilization. In the studied
samples, particles larger than 1000 nm, a significant increase in MDD, zeta potential, and loss of
homogeneity visible as an increase in the polydispersity index were observed. Most of the samples
had PFAT5 above the USP limit (0.05%). Taking into account the obtained data, VP should not be
administered with the studied lipid emulsions for parenteral nutrition.

Keywords: compatibility; vinpocetine; supportive drugs; parenteral nutrition; interaction; PFAT5

1. Introduction

Neurodegeneration, stroke, and other brain disorders are common causes of hos-
pitalization and deterioration of a patient’s condition, affecting both prognosis and life
quality [1]. In these cases, nootropic drugs like vinpocetine (VP) are often used. VP is a
semi-synthetic derivative of vincamine, a secondary metabolite derived from Vinca minor L.
belonging to the Apocynaceae plant family [2].

VP has many indications in neurodegeneration disorders, such as treatment of acute
cerebral ischemic states, including paroxysmal, transient ischemic attack (TIA), and is-
chemic stroke, as well as post-stroke conditions when parenteral treatment is necessary [3,4].
VP is also indicated for treating chronic circulatory disorders in the choroid and retina (e.g.,
thrombosis, occlusion of the central retinal artery or vein). The mechanism of action is
complex and includes phosphodiesterase inhibitor(PDE) inhibition. Due to its effect on
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improving cerebral circulation, it is used as a dietary supplement in some countries, but
in some, its use is limited only to physician prescriptions. Due to its wide range of effects,
VP is often used in hospital wards, constituting one of the components of drug regimens
used in patients who struggle with many health problems and require comprehensive
posology. These indications place VP as an important supporting drug during treatment
and convalescence in patients undergoing parenteral nutrition.

Nutritional support is an important element of the proper treatment process. A poor
nutritional status of a patient negatively affects their treatment and convalescence [5].
Clinical nutrition is an essential aspect of treatment as a drug administration. Clinical
nutrition may be determined depending on patients’ needs, contraindications, or route
of administration. Enteral nutrition may be oral nutrition supplements (ONS) or more
invasive, using percutaneous endoscopic gastrostomy (PEG) or jejunostomy [6]. Parenteral
nutrition is usually implemented only when enteral supply is insufficient or impossible.
Hence, parenteral nutrition, as a practice with the most significant risk, is used only in a
narrow group of patients where enteral nutrition is impossible [7]. An essential aspect of
the safety of therapy is to pay attention to possible drug interactions.

Drug administration directly by tubes is routine practice in patients receiving enteral
nutrition. Nevertheless, it is worth remembering that not every oral pharmaceutical form
can be administered this way. Modified-release medication or enteric-coated crushed tablets
administered through a gastric tube will not have the proper therapeutic effect. Modified-
release tablets may release the active substance faster and thus cause peak concentration in
plasma, and a destroyed enteric-coated drug coating, e.g., omeprazole, will cause a lack
of therapeutic effect due to the deactivation of the API in gastric acid. Other important
interactions are interaction with food (i.e., VP bioavailability can be influenced by food
intake, particularly a high-lipid meal that causes changes in serum concentration [2]), tube
obstruction, drug absorption on medical devices, and drug–drug interaction when adminis-
tered together [8]. However, taking several drugs together increases the risk of interactions
in the pharmaceutical, pharmacodynamic, or pharmacokinetic phase. Precipitation, color
change, reduction in drug concentration, or inactivation are drugs’ most common phar-
maceutical phenomena. Due to poor bioavailability and marked first-pass effect (~75%),
oral administration of VP is limited and requires frequent drug administration to obtain
a therapeutic effect [9]. Using lipid emulsion in polytherapy increases the incidence of
potential interactions during administering parenteral fluids. Working with emulsions
must be considered as they are thermodynamically unstable systems and may be separated
into two phases. The lipid emulsion, used as nutritional support or as a single source of
nutrient supply, is often introduced to malnourished, unconscious patients who cannot
take food enterally [7], mainly in critically ill or cancer patients.

Emulsions are biphasic liquid systems where one liquid phase, known as the internal
or dispersed phase, is dispersed as small droplets through the second fluid phase, known as
the external or continuous phase. Lipid emulsion is a promising supporting drug delivery
vehicle [10]; compatibility was proved, for example, with linezolid or levetiracetam [11,12].
Drugs such as propofol, doxorubicin, daunorubicin, and amphotericin B have already been
introduced in these forms into clinical practice [13,14]. Many factors influence the stability
of the lipid emulsion, such as ion concentration, the presence of amino acids, solution
pH, and temperature. Hence, it is important to constantly update the current state of
knowledge and further develop science about potential drug–admixture interactions. Thus,
we decided to check the compatibility of VP solutions with eight commercially available
parenteral nutrition admixtures (PNAs). A physicochemical evaluation was performed
using simulated co-administration through a Y-site.

Compatibility assessment was carried out through a series of validated measure-
ments, i.e., visual inspection, pH measurement, osmolality, particle size expressed as mean
droplet diameter (MDD) using the dynamic light scattering(DLS) method, percentage of
lipids residing in globules larger than 5 µm (PFAT5) obtained using the light obscuration
method, non-lipid fraction turbidity, zeta potential, and polydispersity index. To the best
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of our knowledge, no study has extensively explored the potential interactions of such
combinations.

2. Materials and Methods
2.1. Materials: Vinpocetine Solutions and Parenteral Nutrition Admixtures

VP was used under the brand name Cavinton® as a concentrate for infusion at
5 mg/mL (Gedeon Richter, Budapest, Hungary) (EXP 03.2024, LOT A93002). Accord-
ing to the Summary of Product Characteristics (SmPC), Cavinton is administered in the
form of dilution in 500 mL of 5% glucose solution (5Gl) or 0.9% physiological saline solution
(NS). The maximum administration rate is 80 drops per minute (Vmax = 240 mL/h), and
the entire drug solution should be administered to the patient within 3 h of preparation
(Vmin = 167 mL/h). The average treatment duration is 10–14 days and the usual daily dose
for a patient weighing 70 kg is 50 mg/day (5 ampoules in 500 mL of solution for infusion).

The eight commercially available PNAs were analyzed in the study. The PNAs differ in
electrolyte content and injectable lipid emulsion (ILE) source. Lipoflex special and Lipoflex
peri are made of Lipofundin MCT/LCT® (B. Braun, Melsungen, Germany), which contains
refined soybean oil and medium-chain triglycerides. Omegaflex special and Omegaflex
peri are enriched with ω-3-acid triglycerides, which are components of Lipidem®(B. Braun,
Melsungen, Germany). Whereas Kabiven and Kabiven Peripheral PNAs are based on
Intralipid® (Frasenius Kabi AB, Uppsala, Sweden) 20%, which is made up of soybean oil,
egg yolk phospholipids, and glycerin, SmofKabiven(Frasenius Kabi AB, Uppsala, Sweden)
is based on SMOFlipid 20% (Frasenius Kabi AB, Uppsala, Sweden), which consists of a
mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil (rich in ω-3 fatty
acids). Olimel Peri N4E (Baxter, Warsaw, Poland) contains refined olive oil and refined
soybean oil. The summary of PNA compositions is presented in Table 1.

Table 1. Composition and energy value of the tested PNA per 1000 mL.

Ingredient Omegaflex
Special

Omegaflex
Peri

Lipoflex
Special Lipoflex Peri SmofKabiven Kabiven Kabiven

Peripheral
Olimel

Peri N4E

ILE Lipidem® Lipidem® Lipofundin® Lipofundin® SMOFlipid® Intralipid® Intralipid® ClinOleic®

Lipids [g] 40 40 40 40 38 39 35 30
MCT [g] 20 20 20 20 11 - - -

Soybean oil [g] 16 16 20 20 11 39 35 6
Fish oil [g] - - - - 5.7 - - -

Olive oil [g] - - - - 9.6 - - 24
ω-3 fatty acids [g] 4 4 - - - - - -

Glucose [g] 144 64 144 64 127 97 67 75
Amino acids [g] 56 32 56 32 50.8 33.1 23.6 25.3

Nitrogen [g] 8 4.6 8 4.6 8.1 5.3 3.8 4
Total energy [kcal] 1184 764 1184 764 1084 909 695 700

ILE—injectable lipid emulsion; MCT—medium-chain triglycerides.

After activation, each PNA was supplemented with vitamins and trace elements.
Lipoflex special, Lipoflex peri, Omegaflex special, and Omegaflex peri were supplemented
with Viantan as a vitamin source and Tracutil (both manufactured by B. Braun Melsungen
AG, Melsungen, Germany) as trace elements. One ampoule corresponds to the daily
requirement. The Soluvit N and Vitalipid N Adult (both manufactured by Fresenius Kabi
AB, Uppsala, Sweden) were added to Kabiven, Kabiven Peripheral, and SmofKabiven. The
source of trace elements was one ampoule of Addamel N (Fresenius Kabi AB, Uppsala,
Sweden). To Olimel Peri N4E was added Cernevit (Baxter, Warsaw, Poland) and one
ampoule of Tracutil. Such a wide and varied selection of the PNA composition is intended
to review potential drug: admixture interactions.

2.2. Methods: Compatibility Evaluation

The VP solution and PNAs ratios were calculated based on maximum and minimum
flows. The two extreme ratios were used in the study. The third ratio, 5:5, is often out of clin-
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ical use but was added to compare the result and is often used by previous authors [15–19].
The drug:PNA ratio mimics a clinical scenario when the drug has direct contact with other
fluids in a common line of Y-site catheter. The study was conducted in a static way, i.e., the
drug solution and PNA were mixed in a plastic tube in a calculated ratio and immediately
analyzed at the first endpoint (t0h) and after four hours (t4h). This procedure allows you to
capture interactions that have progressed over time. The samples were stored at 21 ± 2 ◦C,
with light access during the test. The choice of the second endpoint (t4h) as the final mea-
suring point is consistent with the methodology presented by other researchers [20–23].
The time of 4 h is beyond clinical justification because the contact between the drug and the
mixture is much shorter. Still, it allows for detecting certain signs of incompatibility that
develop over time, e.g., precipitation of calcium or phosphates [24].

Due to the very complex structure and the multitude of potential interactions, it
is necessary to carry out various measurements analyzing individual parameters of the
complex matrix. Each measurement was performed in triplicate (n = 3) and expressed as a
mean with a standard deviation

2.2.1. Visual Control

The visual control was performed based on the procedure described in European
Pharmacopoeia [25]. Two independent investigators analyzed the samples. This is the
first stage of the PNA analysis. Its purpose is to capture with the unaided eye sign of
destabilization, i.e., color change, delamination, sedimentation, gas formation, or other
aging processes.

2.2.2. The pH Measurement

Before starting the measurements, the instrument (Mettler Toledo Seven Compact
pH/Ion S 220 pH meter, Mettler Toledo, Columbus, OH, USA) was calibrated using three
standards. The pH meter electrode was placed directly in the investigated sample. The
electrode was rinsed with distilled water between each measurement.

2.2.3. Osmolality Measurement

Osmolality was measured on the osmometer 800CLG (TridentMed, Warsaw, Poland).
A volume of 100.0 µL of the sample was pipetted to the Osmo-Krio vials. The instrument
was calibrated before starting the series of measurements with Osmometer Calibration
Solution 800 cL, 0 mOsm/kg H2O, Cat. Yes. 800.02 (TridentMed, Warsaw, Poland). This
measurement was based on the freezing point depression method. One mole of a non-
dissociating substance dissolved in 1 kg of water decreases the freezing point of the resultant
solution by 1.86 ◦C. One Osm corresponds to 1 mole of a chemical compound exhibiting
osmotic activity dissolved in 1 kg of water.

2.2.4. Measurement of Turbidity

Turbidity measurement was performed on a TU52000 Laboratory Laser Turbidimeter
(Hach Company, Loveland, CO, USA). Method specification requires a transparent sample.
Instead of three, only two chambers of RTU bags were activated. Then, water for injection
was added to an equal volume of lipid emulsion and supplemented with trace elements
(see point 2.1). The drug:lipid-free PNA ratios remain the same. Turbidity was measured
using 10 mL of sample in special cuvettes placed in a turbidimeter cell.

2.2.5. Measurement of Droplet Size, PDI, and Zeta Potential

The solutions, prepared by mixing 1 mL of sample with 9 mL of distilled water, were
transferred to the U-shape cuvette. All three parameters were analyzed in parallel with
the ZetaSizer Nano ZS apparatus (Malvern Instruments Ltd., Malver, UK). The size was
measured using the DLS method and expressed as MDD mean particle size (based on their
diameter in nm) and polydispersity index (PDI). The zeta potential was expressed in mV.
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2.2.6. Particle Size Measurements (LO)

The lipid emulsion sample was diluted in a ratio of 1:2000 using water for injection and
then analyzed by the PAMAS particle counter (PAMAS Partikelmess- und Analysesysteme
GmbH, Rutesheim, Germany). This instrument utilizes the light obscuration method, which
allows the counting and sizing of subvisible particles on a specific level. The percentage
of lipids residing in globules larger than 5 µm (PFAT5) was calculated based on previous
descriptions [26].

2.2.7. Statistical Analysis

The results were expressed as averages of 3 separate measurements with standard
deviation. To statistically evaluate the obtained results, one-way ANOVA followed by
Tukey’s post hoc test was applied (Statistica 12 software, StatSoft Polska, Cracow, Poland).
A value of α = 0.05 was considered statistically significant [27].

3. Results
3.1. Characterization of Total Parenteral Nutrition Admixtures without Drug Solutions

The PNAs were activated according to the manufacturer’s procedure, and all passed
the visual control. Their pH ranged from 5.48 up to 6.40 for Omegaflex peri and Olimel
Peri N4E, respectively. The route of administration defined osmolality. The osmolality
of PNA for central access was from 1153 ± 8 to 2008 ± 6 (Kabiven and Lipoflex special,
respectively), and the osmolality of PNAs for peripheral access was lower than 1000 mOsm
(795 ± 2-Kabiven Peripheral and 921 ± 4 Omegaflex peri). When it comes to particle
size characterization, samples showed droplet sizes well below the limit of acceptance
criteria of stable PNA emulsions. The size was in the narrow range in all lipid emulsions,
with a minimum value of 243.4 ± 3.7 and a maximum of 281.7 ± 0.3 (SmofKabiven and
Kabiven, respectively). These differences show the impact of this parameter on lipid
sources. Both PNAs were produced by Fresenius Kabi but differ in an injectable lipid
emulsion. Kabiven contains soybean oil with the lowest value, and SmofKabiven contains a
mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil, which affects the
biggest lipid droplet. Zeta potential was negative for all PNAs and lower for the peripheral
route of administration. The lipid-free samples were clear, and turbidity was low, below
0.45 NTU. Table 2 summarizes the properties of fluids used in the study: parenteral fluids,
drug solutions, and PNA without drug addition.

Table 2. Summary of parameters of used fluids.

Sample pH ± SD Osmolality ± SD
(mOsm/kgH2O)

Turbidity ± SD
(NTU) ZP ± SD (mV) PDI ± SD MDD ± SD

(nm)

parenteral fluids

0.9% NaCl 6.60 ± 0.01 289 ± 1 0.093 ± 0.007 N/A N/A N/A
5% glucose 4.85 ± 0.01 291 ± 1 0.160 ± 0.004 N/A N/A N/A

drug solution

VP+ 0.9% NaCl 3.48 ± 0.02 296 ± 1 0.168 ± 0.012 N/A N/A N/A
VP + 5% glucose 3.71 ± 0.04 301 ± 2 0.174 ± 0.003 N/A N/A N/A

parenteral nutrition admixtures

Omegaflex special 5.57 ± 0.01 1932 ± 6 0.186 ± 0.004 −9.5 ± 0.2 0.111 ± 0.020 251.2 ± 1.8
Omegaflex peri 5.48 ± 0.00 921 ± 4 0.133 ± 0.015 −14.3 ± 0.5 0.095 ± 0.014 249.9 ± 5.3
Lipoflex special 5.51 ± 0.01 2008 ± 6 0.134 ± 0.002 −8.35 ± 0.6 0.102 ± 0.024 267.3 ± 3.8

Lipoflex peri 5.74 ± 0.00 909 ± 1 0.121 ± 0.004 −11.2 ± 0.1 0.116 ± 0.008 256.5 ± 1.7
SmofKabiven 5.47 ± 0.00 1582 ± 14 0.220 ± 0.002 −11.6 ± 0.3 0.119 ± 0.013 243.4 ± 3.7

Kabiven 5.51 ± 0.01 1153 ± 8 0.441 ± 0.014 −10.8 ± 0.5 0.133 ± 0.028 281.7 ± 0.3
Kabiven Peripheral 5.58 ± 0.00 795 ± 2 0.223 ± 0.002 −15.0 ± 0.5 0.130 ± 0.023 267.2 ± 3.0

Olimel Peri N4E 6.40 ± 0.00 850 ± 1 0.209 ± 0.021 −17.2 ± 0.4 0.113 ± 0.018 256.5 ± 1.5

VP—vinpocetine; NTU—nephelometric turbidity unit; N/A—not applicable; PDI—polydispersity index;
ZP—zeta potential; MDD—mean droplet diameter.
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3.2. Compatibility Test Assessment

The eight commercially available, ready-to-use PNAs were used in the compatibility
study with two VP solutions. Preparing a VP solution in a 5% glucose and saline solution
lowers their pH value. All tested samples were homogeneous, free of crystals, gas, and
other signs of destabilization, and unaffected by time (0–4 h).

Adding an acidifying drug solution lowers the pH value of all PNAs, but the buffer
capacity (electrolytes, amino acids) remains at a safe level. No significant changes (p < 0.05)
were observed during the evaluation period. A maximum increase of 0.07 was observed
for the Lipoflex special sample mixed with VP in NS in a ratio of 8:2. A drug solution with
low osmolality causes a significant decrease in these parameters in mixed samples, most of
them below 1000 mOsm, which is due to the high content of drug solution in the mixture.
After 4 h, no significant changes were observed, but the largest for the Kabiven admixture
was an increase in RSD of 2.4%, which is significantly below the acceptability criterion
(RSD > 5%). The analyzed turbidity of lipid-free admixtures with the drug did not show
changes greater than +0.5 NTU during the test, which indicates the lack of precipitation of
the drug or insoluble salts [28]. The results of pH, osmolality, and turbidity are presented
in Table 3.

Mixing the drug solution did not significantly affect the average size of the lipid
emulsion droplets, which at two measurement end-points were within the USP limit, i.e.,
below 500 nm [29]. However, mixing the VP glucose solution with Omegaflex special
resulted in a significant increase in MDD by as much as 99.4 nm (38%), and reducing the
share of the drug solution in glucose to 6:4 resulted in an increase in MDD by 19.7 nm (the
second largest observed increase) (Figure 1). The presence of the second fraction of particles
larger than 1000 nm was noted in all PNAs, regardless of the type of lipid emulsion. The
light obscuration method used for particle size measurements confirmed the above data.
All samples containing a second fraction of particles larger than 1000 nm were also outside
the limit for PFAT5. However, the LO method allows the capturing of more incompatible
samples. A total of 29 out of the 46 samples had PFAT5 larger than the criteria of 0.05% [29].

The loss of sample homogeneity resulting from the significant increase of lipid droplets
was observed in the change in PDI values after 4 h, which reached values of 0.429 ± 0.031
and 0.269 ± 0.031 (Figure 2). This is indicative of a wide-size distribution, which is desirable
in connection with emulsion instability. Lack of homogeneity and aggregation of lipid
droplets are visible in the intensity graph by shifting the graph to the right, tailing it
(Figure 3, left side), or by visible additional intensity peaks (Figure 3, right side). Changes
related to the destabilization of the lipid emulsion were also observed in the zeta potential
assessment. While the storage time did not have a significant effect, the addition of drug
solutions shifted it to the value of 0 mV, i.e., the point at which the forces of the dispersion
system disappear. The greatest change to 0 mV value was also observed for Lipoflex special
and VP 5Gl in a ratio of 8:2 (+6.44 mV) (Figure 4).
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Table 3. Results of pH, osmolality, and turbidity measurements from compatibility study.

PNA
Drug

Solution
VP:PNA

Ratio

pH Osmolality, mOsm/kg H2O Turbidity, NTU

Average ± SD
∆ (t4h − t0h)

Average ± SD ∆% Average ± SD
∆ (t4h − t0h)

t0h t4h t0h t4h t0h t4h

Omegaflex
special

VP + NS
8:2 5.29 ± 0.00 5.23 ± 0.01 −0.06 559.5 ± 2.1 559.0 ± 4.2 −0.5 0.112 ± 0.002 0.112 ± 0.002 −0.109
6:4 5.46 ± 0.00 5.41 ± 0.01 −0.05 857.5 ± 0.7 860.5 ± 0.7 3.0 0.228 ± 0.004 0.145 ± 0.040 −0.083
5:5 5.48 ± 0.00 5.47 ± 0.01 −0.01 998 ± 0.0 998.5 ± 0.7 0.5 0.198 ± 0.006 0.150 ± 0.053 −0.048

VP + 5Gl
8:2 5.41 ± 0.00 5.39 ± 0.01 −0.02 610.5 ± 0.7 609.0 ± 0.0 −1.5 0.181 ± 0.003 0.180 ± 0.012 −0.001
6:4 5.49 ± 0.00 5.48 ± 0.00 −0.01 850.5 ± 0.7 843.0 ± 5.7 −7.5 0.247 ± 0.006 0.165 ± 0.006 −0.081
5:5 5.51 ± 0.01 5.51 ± 0.00 0.00 985 ± 2.8 980.5 ± 2.1 −4.5 0.207 ± 0.014 0.138 ± 0.006 −0.069

Lipoflex
special

VP + NS
8:2 5.13 ± 0.01 5.20 ± 0.00 0.07 498.5 ± 3.5 509.0 ± 1.4 10.5 0.330 ± 0.044 0.233 ± 0.015 −0.097
6:4 5.39 ± 0.01 5.41 ± 0.01 0.02 818 ± 2.8 817.0 ± 5.7 −1.0 0.268 ± 0.002 0.28 ± 0.045 0.012
5:5 5.44 ± 0.00 5.45 ± 0.00 0.01 936.5 ± 2.1 938.5 ± 3.5 2.0 0.436 ± 0.037 0.393 ± 0.002 −0.043

VP + 5Gl
8:2 5.33 ± 0.00 5.36 ± 0.01 0.03 549.5 ± 3.5 554.5 ± 3.5 5.0 0.265 ± 0.019 0.231 ± 0.005 −0.034
6:4 5.46 ± 0.01 5.46 ± 0.01 0.01 855 ± 1.4 856.0 ± 2.8 1.0 0.372 ± 0.004 0.334 ± 0.001 −0.038
5:5 5.48 ± 0.00 5.49 ± 0.00 0.01 1003.5 ± 2.1 1018.5 ± 10.6 15.0 0.310 ± 0.006 0.267 ± 0.034 −0.043

Kabiven

VP + NS
7:3 5.35 ± 0.01 5.36 ± 0.00 0.01 510.5 ± 3.5 522.5 ± 2.1 12.0 0.245 ± 0.002 0.207 ± 0.004 −0.038
6:4 5.40 ± 0.01 5.41 ± 0.00 0.01 583.5 ± 3.5 594.5 ± 0.7 11.0 0.249 ± 0.006 0.263 ± 0.008 0.014
5:5 5.46 ± 0.01 5.45 ± 0.00 −0.01 666.5 ± 0.7 679.0 ± 1.4 12.5 0.252 ± 0.001 0.270 ± 0.001 0.018

VP + 5Gl
7:3 5.39 ± 0.00 5.38 ± 0.00 −0.01 510.5 ± 0.7 522.5 ± 0.7 12.0 0.203 ± 0.007 0.194 ± 0.005 −0.009
6:4 5.44 ± 0.00 5.45 ± 0.00 0.01 604 ± 0.0 614.5 ± 0.7 10.5 0.241 ± 0.004 0.252 ± 0.001 0.010
5:5 5.48 ± 0.00 5.48 ± 0.01 0.00 699 ± 0.0 704.0 ± 1.4 5.0 0.259 ± 0.002 0.276 ± 0.007 0.017

SmofKabiven
VP + NS

7:3 5.38 ± 0.01 5.38 ± 0.01 0.01 644.5 ± 0.7 647 ± 1.4 2.5 1.723 ± 0.006 1.520 ± 0.000 −0.203
5:5 5.45 ± 0.00 5.46 ± 0.02 0.01 928 ± 2.8 928.5 ± 2.1 0.5 1.347 ± 0.147 1.183 ± 0.006 −0.163

VP + 5Gl
7:3 5.41 ± 0.01 5.45 ± 0.01 0.04 642 ± 7.1 638.5 ± 2.1 −3.5 0.182 ± 0.002 0.169 ± 0.001 −0.012
5:5 5.47 ± 0.00 5.48 ± 0.00 0.01 927 ± 0.0 926.5 ± 4.9 −0.5 0.247 ± 0.002 0.224 ± 0.003 −0.022

Kabiven
Peripheral

VP + NS
7:3 5.28 ± 0.00 5.30 ± 0.00 0.02 471.5 ± 71.4 478 ± 69.3 6.5 0.215 ± 0.002 0.209 ± 0.019 −0.006
5:5 5.45 ± 0.00 5.47 ± 0.01 0.02 516.5 ± 3.5 522.5 ± 0.7 6.0 0.225 ± 0.001 0.220 ± 0.006 −0.006
3:7 5.54 ± 0.00 5.56 ± 0.00 0.02 620 ± 0.0 628.0 ± 0.0 8.0 0.221 ± 0.001 0.213 ± 0.012 −0.008

VP + 5Gl
7:3 5.36 ± 0.00 5.35 ± 0.00 −0.01 433.5 ± 0.7 439.5 ± 2.1 6.0 0.154 ± 0.002 0.153 ± 0.004 −0.001
5:5 5.48 ± 0.00 5.48 ± 0.00 0.00 530.5 ± 0.7 537.5 ± 0.7 7.0 0.178 ± 0.002 0.221 ± 0.010 0.044
3:7 5.55 ± 0.00 5.56 ± 0.00 0.01 635.5 ± 2.1 642.5 ± 0.7 7.0 0.424 ± 0.012 0.539 ± 0.005 0.115
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Table 3. Cont.

PNA
Drug

Solution
VP:PNA

Ratio

pH Osmolality, mOsm/kg H2O Turbidity, NTU

Average ± SD
∆ (t4h − t0h)

Average ± SD ∆% Average ± SD
∆ (t4h − t0h)

t0h t4h t0h t4h t0h t4h

Lipoflex peri

VP + NS
7:3 5.24 ± 0.01 5.26 ± 0.00 0.02 455.5 ± 0.7 458.5 ± 0.7 3.0 1.187 ± 0.012 1.083 ± 0.006 −0.103
6:4 5.32 ± 0.01 5.32 ± 0.01 0.00 508.5 ± 7.8 517.0 ± 0.0 8.5 1.020 ± 0.010 1.057 ± 0.021 0.037
5:5 5.38 ± 0.00 5.83 ± 0.01 0.00 576 ± 2.8 577.0 ± 2.8 1.0 0.860 ± 0.001 0.835 ± 0.001 −0.025

VP + 5Gl
7:3 5.31 ± 0.00 5.31 ± 0.01 0.00 467.5 ± 2.1 472.5 ± 0.7 5.0 0.486 ± 0.048 0.354 ± 0.001 −0.132
6:4 5.35 ± 0.00 5.34 ± 0.00 −0.01 528.5 ± 0.7 530.0 ± 1.4 1.5 0.415 ± 0.025 0.52 ± 0.018 0.105
5:5 5.39 ± 0.00 5.38 ± 0.00 −0.01 582 ± 4.2 587.0 ± 1.4 5.0 0.330 ± 0.002 0.362 ± 0.006 0.032

Omega flex
peri

VP + NS
7:3 5.28 ± 0.00 5.30 ± 0.00 0.02 472 ± 2.8 473.0 ± 2.8 1.0 1.797 ± 0.064 1.543 ± 0.006 −0.253
6:4 5.34 ± 0.01 5.36 ± 0.00 0.02 529.5 ± 0.7 529.5 ± 3.5 0.0 2.227 ± 0.012 2.063 ± 0.050 −0.163
5:5 5.38 ± 0.00 5.40 ± 0.00 0.02 589.5 ± 0.7 582.5 ± 4.9 −7.0 2.670 ± 0.010 2.39 ± 0.010 −0.280

VP + 5Gl
7:3 5.22 ± 0.00 5.21 ± 0.01 −0.01 461 ± 0.0 455.5 ± 0.7 −5.5 1.887 ± 0.035 1.553 ± 0.006 −0.333
6:4 5.25 ± 0.00 5.31 ± 0.00 0.06 520 ± 0.0 520.5 ± 2.1 0.5 2.367 ± 0.035 2.117 ± 0.006 −0.250
5:5 5.31 ± 0.00 5.37 ± 0.00 0.06 572.5 ± 3.5 580.0 ± 4.2 7.5 2.770 ± 0.010 2.440 ± 0.000 −0.330

Olimel Peri

VP + NS
7:3 6.01 ± 0.02 6.07 ± 0.01 0.06 445 ± 0.0 445.5 ± 0.7 0.5 0.275 ± 0.012 0.200 ± 0.002 −0.075
6:4 6.13 ± 0.01 6.16 ± 0.00 0.03 493 ± 1.4 494.5 ± 0.7 1.5 0.428 ± 0.020 0.289 ± 0.003 −0.139
5:5 6.23 ± 0.00 6.24 ± 0.00 0.01 553 ± 0.0 551.5 ± 2.1 −1.5 0.457 ± 0.046 0.227 ± 0.002 −0.230

VP + 5Gl
7:3 6.05 ± 0.01 6.07 ± 0.01 0.02 440.5 ± 2.1 440.0 ± 0.0 −0.5 0.321 ± 0.003 0.220 ± 0.021 −0.101
6:4 6.20 ± 0.00 6.21 ± 0.00 0.01 502.5 ± 0.7 503.0 ± 1.4 0.5 0.285 ± 0.004 0.246 ± 0.014 −0.039
5:5 6.26 ± 0.00 6.26 ± 0.01 0.00 549 ± 1.4 550.5 ± 0.7 1.5 0.215 ± 0.005 0.186 ± 0.014 −0.030

X ± SD—average ± standard deviation; ∆—∆ (t4h − t0h)—difference between the value from the second endpoint (t = 4 h) and the first one (t = 0 h); ∆%—(RSDt4h − RSDt0h)—difference
between the relative standard deviation value from the second endpoint (t = 4 h) and the first one (t = 0 h); VP—vinpocetine, NS—normal saline, 0.9% sodium chloride solution; 5Gl—5%
glucose solutions.
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4. Discussion

The VP is distributed after both oral and intravenous administration, and its uptake in
the thalamus, basal ganglia, and visual cortex [3]. Due to poor bioavailability (~7%) and
marked first-pass effect (~75%), including a short half-life (2–3 h), oral administration of VP
is limited and requires frequent administration of the drug to obtain a therapeutic effect [9].
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An attempt to overcome these difficulties seems to be the use of nanoformulations as drug
delivery systems and/or alternative routes of drug administration. Congcong Lin et al.
proposed the development of a new oral delivery system for VP based on the preparation of
vinpocetine–cyclodextrin–tartaric acid complexes and loading them into lipid nanocarriers
(NLCs) to improve bioavailability. The improvement was achieved for the nanocomplex in
the range of 592% compared with vinpocetine suspension and 92% higher than vinpocetine–
NLC [30]. Interestingly, Shuangshuang Song et al. reported that proniosome formulation
with vinpocetine showed significantly improved bioavailability compared to vinpocetine
suspension in vivo study in rabbits. The incorporation of vinpocetine into niosomes im-
proved the absorption of the drug. The area under the concentration versus time curve AUC
(0−∞) F2 and F3 was approximately 4.0 and 4.9 times higher, respectively, than for the free
vinpocetine suspension. Those results may prove that proniosomes improve the absorption
after oral administration of poorly water-soluble drugs [31]. Transdermal drug delivery
is an important alternative way for substances that are problematic when administered
orally due to their low bioavailability and poor solubility [32]. Recent research focuses
on transdermal administration as an alternative approach also for infusion. Praveen K
Srivastava et al. demonstrated a liposomal fast-dissolving microneedle patch of vinpocetine.
An in vivo study in rats showed a three-fold increase in relative bioavailability compared
to oral administration [33]. Moreover, Sumaia Abdulbari Ahmed Ali Hard et al. proposed
intranasal administration of vinpocetine-loaded chitosan nanoparticles (VP-CH-NP) to
minimize systemic exposure. Intranasal administration of the in situ gel in an in vivo study
in rats demonstrated a two-fold increase in Cmax (p < 0.05) and AUC0-t (p < 0.05) in the
brain in comparison to oral administration. Moreover, histopathological examination of
the nasal mucosa did not show any cytotoxic effect of the tested nanoformulation [34]. In
another study, Ahmed et al. made lipid-based nanocarriers loaded with vinpocetine in the
in situ gel system (ISG), among which nanomicelles VPN-D-α-tocopherol and polyethylene
glycol 1000 (TPGS) were characterized by the smallest particle size (13 ± 2 nm) and the
highest encapsulation efficiency (100%). In an in vivo study on rats, vinpocetine-loaded
TPGS-ISG micelles showed a higher drug concentration in the brain tissue in intranasal
administration compared to ISG micelles and a commercial drug [35].

The presented new delivery solution states the question of whether PNA can be used
as a drug vehicle. The utilization of lipid emulsion as a supporting drug administration is
possible and used in clinical practice. It increases bioavailability, improves the pharmacoki-
netic parameters of the drug, and reduces costs [10,13]. However, the co-administration of
two drugs through a common venous access may be risky to the patient’s health and life.
Interactions resulting from such a common supply have been reported, i.e., ondansetron
destabilized lipid emulsion with oiling out [15], precipitation of ciprofloxacin [17], the oc-
currence of larger lipid droplets after mixing with vancomycin [36], sodium valproate [37],
or ibuprofen [38]. The supply of an admixture containing larger particles is a serious threat
to life resulting from the blockage of small blood vessels in the brain, liver, or eye [39–41].
Due to the high risk of this procedure, it is necessary to carefully check whether it is possible.
The current regulations clearly state that the addition of a drug to a PNA is only possible if
the physicochemical compatibility and stability, as well as clinical effectiveness data, con-
firm the expected therapeutic effect of the drug [42]. If available data are insufficient, each
fluid has to be administered via a separate catheter or flush drain between administrations.
So far, there are no data describing the compatibility of VP with PNAs; scarce and limited
data are available about the incompatibility of VP with some drugs, such as ibuprofen in
doses of 400 and 600 mg [38]. This lack of specific knowledge highlights the importance of
expanding research and filling the knowledge gap, especially concerning different types
of PNA. Therefore, this study aims to provide evidence on whether coadministration is
possible. To assess compatibility, it is crucial to establish acceptance criteria. Thus far, there
are no external guidelines or procedures for testing the compatibility of PNA with drugs,
so it is important to test many parameters of the PNAs.
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The visual control aims to determine at the first stage whether the admixture shows no
signs of aging or dangerous interactions visible by the unaided eye. The pH measurement
provides information about ongoing aging processes, such as the rancidity of lipids, as a
result of which free fatty acids are released, lowering the pH of the admixture. The pH
value of PNA depends on many ingredients, including glucose increases acidity, while
amino acids and electrolytes create a buffer capacity that maintains a constant pH of the
admixture. Too low or high pH destabilizes the stability of the lipid emulsion. Most drug
substances are weak acids or bases, so their solubility depends on the pH value. If there is
a large difference in the solubility of the dissociated salt form to the free undissociated base
or acid, even a small change in the pH of the solution may cause interaction, which is very
dangerous. There may be a parallel influence: the patient is subjected to ineffective therapy
and receives subtherapeutic doses, and in addition, too large particles that enter the venous
system may cause an embolism. Cases of drug incompatibility have been reported when
combined with a low-pH PNA (ampicillin and fosphenytoin precipitate when mixed with
Numeta) [43]. It was assumed that a value of 5.5 or lower increases the sensitivity to the
breakdown of the lipid emulsion [44]. Of the tested mixtures, only Olimel Peri N4E had a
higher pH in the range of 6.01–6.26. However, pH changes greater than 0.2 units during
analysis (4 h) were considered as an indication of incompatibility. The tested samples
met this requirement because the largest change was only +0.07. A significant decrease in
sample osmolality over time may also be related to drug precipitation. As a result of the
tests, the observed changes in osmolality ranged from −1.2 to 2.4% and were lower than the
accepted limit of RSD < 5%. Turbidity measurement is another analytical method to ensure
the reliability and detection of sediment in solution. Turbidity, a measure of the opacity of
a liquid, is considered and simple indicator of quality; among others, injectable drugs or
drinking water whose value is less than 1 NTU (nephelometric turbidity unit). According
to the WHO, “crystal clear” water has a turbidity of <1 NTU; at 4 NTU and above the water
becomes noticeably cloudy. The larger the amount that allows access to the sample, the
greater the scattering of the incident rays and the greater the turbidity [45]. An increase in
turbidity greater than 0.5 NTU during analysis indicates incompatibility. Measurements so
far do not provide data on the precipitation of VP when mixed with PNA. The maximum
increase of turbidity was captured for the Kabiven Peripheral sample mixed in the ratio 3:7
with VP in 5% glucose and was only +0.115 NTU. However, the key parameter remains
the size of the lipid emulsion particles measured as MDD, as well as the presence of the
so-called second fraction of particles larger than 1000 nm. The USP defines the upper
limit for MDD as 500 nm [29]. Throughout the study, no sample exceeded the USP limit,
although a significant increase of as much as 99 nm in MDD was observed for the VP in the
5% glucose sample with Lipoflex special in a ratio of 8:2. Despite the average particle size
being within the limit, the presence of a second fraction was observed for most of the PNAs
mixed with VP. A total of 29 of the 46 investigated samples were above the PFAT5 limit
(>0.05%), which also proved aggregation of lipid droplets and incompatibilities. These
changes were also well observed through the increase in PDI. These results prove that the
mixing of VP and PNA does not affect the precipitation of the drug, but it does negatively
affect the stability of the lipid emulsion, which aggregates into larger particles and thus
loses its homogeneity. The zeta potential measurements also capture these changes, and
aggregation of lipid droplets leads to a decrease in interaction forces, and we observe the
changes zeta potential values, which drives further fusion of particles [46]. A summary of
the compatibility study is presented in Table 4.
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Table 4. Comparison of compatibility results.

PNA
Drug

Solution
VP:PNA

Ratio
Measurements

pH Osmolality Turbidity ZP PDI MDD PFAT5

Omegaflex special

VP + NS
8:2 C C C C C C I
6:4 C C C C C C C
5:5 C C C C C C C

VP + 5Gl
8:2 C C C C C I I
6:4 C C C C C C C
5:5 C C C C C C C

Lipoflex special

VP + NS
8:2 C C C C C I I
6:4 C C C C C I I
5:5 C C C C C I I

VP + 5Gl
8:2 C C C C C I I
6:4 C C C C C I I
5:5 C C C C C C I

Kabiven

VP + NS
7:3 C C C C C I I
6:4 C C C C C C C
5:5 C C C C C C C

VP + 5Gl
7:3 C C C C C I I
6:4 C C C C C I I
5:5 C C C C C I I

SmofKabiven
VP + NS

7:3 C C C C C I I
5:5 C C C C C C C

VP + 5Gl
7:3 C C C C C C C
5:5 C C C C C I I

Kabiven Peripheral

VP + NS
7:3 C C C C C I I
5:5 C C C C C I I
3:7 C C C C C C C

VP + 5Gl
7:3 C C C C C I I
5:5 C C C C C I I
3:7 C C C C C C C

Lipoflex peri

VP + NS
7:3 C C C C C C I
6:4 C C C C C C C
5:5 C C C C C C C

VP + 5Gl
7:3 C C C C C I I
6:4 C C C C C I I
5:5 C C C C C C C

Omegaflex peri

VP + NS
7:3 C C C C C I I
6:4 C C C C C C I
5:5 C C C C C C I

VP + 5Gl
7:3 C C C C C I I
6:4 C C C C C C C
5:5 C C C C C C C

Olimel Peri

VP + NS
7:3 C C C C C C I
6:4 C C C C C C I
5:5 C C C C C C C

VP + 5Gl
7:3 C C C C C I I
6:4 C C C C C C I
5:5 C C C C C C C

VP—vinpocetine, NS—normal saline, 0.9% sodium chloride solution; 5Gl—5% glucose solutions, ZP—zeta
potential, PDI—polydispersity index, MDD—particle size as mean droplet diameter, PFAT5—percentage of lipids
residing in globules larger than 5 µm, C—compatible, I—incompatible.
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5. Conclusions

The compatibility study of VP solution in 0.9% normal saline or 5% glucose with
eight parenteral nutrition admixtures (Lipoflex special, Omegaflex special, Lipoflex peri,
Omegaflex peri, Kabiven, SmofKabiven, Kabiven Peripheral, and Olimel Peri N4E) proved
the occurrence of interactions. Despite the lack of precipitation of the drug, the signs of
breakdown of the lipid emulsion were observed, i.e., an increase in PDI and zeta potential,
or the presence of the second fraction of particles larger than 1000 nm for most PNAs
samples, which disqualifies the tested lipid emulsions as a base for the administration of
vinpocetine parenteral solutions.
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32. Kováčik, A.; Kopečná, M.; Vávrová, K. Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin.
Drug Deliv. 2020, 17, 145–155. [CrossRef]

33. Srivastava, P.K.; Thakkar, H.P. Vinpocetine loaded ultradeformable liposomes as fast dissolving microneedle patch: Tackling
treatment challenges of dementia. Eur. J. Pharm. Biopharm. 2020, 156, 176–190. [CrossRef]

34. Hard, S.A.A.A.; Shivakumar, H.N.; Redhwan, M.A.M. Development and optimization of in-situ gel containing chitosan nanopar-
ticles for possible nose-to-brain delivery of vinpocetine. Int. J. Biol. Macromol. 2023, 253, 127217. [CrossRef]

35. Ahmed, T.A.; El-Say, K.M.; Ahmed, O.A.; Aljaeid, B.M. Superiority of TPGS-loaded micelles in the brain delivery of vinpocetine
via administration of thermosensitive intranasal gel. Int. J. Nanomed. 2019, 14, 5555–5567. [CrossRef]
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