Content Determination and Chemical Clustering Analysis of Tanshinone and Salvianolic Acid in Salvia spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Preparation of Standard Solutions
2.2.2. Preparation of Sample Solutions
2.2.3. Standard Injections
2.2.4. Determination of Major Component Content
2.2.5. Statistical Analysis of Data
3. Results
3.1. Standard Curve Preparation
3.2. Quantitative Analysis of Phenolic Acids in the Roots of Salvia spp.
3.3. Quantitative Analysis of Tanshinones in the Roots of Salvia spp.
3.4. Cluster Analysis of Phenolic Acids in Salvia spp. Roots
3.5. Cluster Analysis of Tanshinones in Roots of Salvia spp.
3.6. Cluster Analysis of Major Components in the Roots of Salvia spp.
3.7. Quantitative Analysis of Phenolic Acids in Salvia spp. Leaves
3.8. Cluster Analysis of Phenolic Acids in Leaves of Salvia spp.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.B.; Ni, Z.Y.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.C.; Cong, B. Constituents from Salvia species and their biological activities. Chem. Rev. 2012, 112, 5967–6026. [Google Scholar] [CrossRef]
- Hafez, G.S.; Taktaz, F.; Mozafari, A.A.; Tuncturk, M.; Sekeroglu, N.; Kijjoa, A. Uncommon Terpenoids from Salvia Species: Chemistry, Biosynthesis and Biological Activities. Molecules 2022, 27, 1128. [Google Scholar] [CrossRef]
- Li, M.H.; Chen, J.M.; Peng, Y.; Xiao, P.G. Distribution of Phenolic Acids in Chinese Salvia Plants. World Sci. Technol. 2008, 10, 46–52. [Google Scholar]
- Wei, B.Y.; Sun, C.T.; Wan, H.T.; Shou, Q.Y.; Han, B.; Sheng, M.M.; Li, L.Q.; Kai, G.Y. Bioactive components and molecular mechanisms of Salvia miltiorrhiza in promoting blood circulation to remove blood stasis. J. Ethnopharmacol. 2023, 317, 116697. [Google Scholar] [CrossRef]
- Kasimu, R.; Wang, X.L.; Wang, X.M.; Hu, J.P.; Wang, X.Q.; Mu, Y.M. Antithrombotic effects and related mechanisms of Salvia deserta Schang root EtOAc extracts. Sci. Rep. 2018, 8, 17753. [Google Scholar] [CrossRef]
- Nhoek, P.; Chae, H.S.; Kim, Y.M.; Pel, P.; Huh, J.; Kim, H.W.; Choi, Y.H.; Lee, K.; Chin, Y.W. Sesquiterpenoids from the Aerial Parts of Salvia plebeia with Inhibitory Activities on Proprotein Convertase Subtilisin/Kexin Type 9 Expression. J. Nat. Prod. 2021, 84, 220–229. [Google Scholar] [CrossRef]
- Meim, X.D.; Cao, Y.F.; Che, Y.Y.; Li, J.; Shang, Z.P.; Zhao, W.J.; Qiao, Y.J.; Zhang, J.Y. Danshen: A phytochemical and pharmacological overview. Chin. J. Nat. Med. 2019, 17, 59–80. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Q.; Gao, W.; Huang, L.Q. Tanshinones, Critical Pharmacological Components in Salvia miltiorrhiza. Front. Pharmacol. 2019, 10, 202. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Wan, X.H.; Niu, F.J.; Xie, S.M.; Guo, H.; Yang, Y.Y.; Guo, L.Y.; Zhou, C.Z. Salvia plebeia R. Br.: An overview about its traditional uses, chemical constituents, pharmacology and modern applications. Biomed. Pharmacother. 2020, 121, 109589. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.F.; Liu, D.F.; Yang, H.; Zhou, C.H.; Deng, S.B.; Xu, N.S.; He, X.M.; Liu, Y.Q.; Shao, M.; Yu, L.Z.; et al. Salvianolic acids from Salvia miltiorrhiza Bunge and their anti-inflammatory effects through the activation of α7nAchR signaling. J. Ethnopharmacol. 2023, 317, 116743. [Google Scholar] [CrossRef]
- Shi, M.; Huang, F.F.; Deng, C.P.; Wang, Y.; Kai, G.Y. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza. Crit. Rev. Food Sci. 2019, 59, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Huang, X.M.; Li, S.G.; Wu, Y.J.; Lin, X.H.; Shi, P.Y. Simultaneous Determination of Eight Phenolic Acids, Five Saponins and Four Tanshinones for Quality Control of Compound Preparations Containing Danshen-Sanqi Herb-pair by HPLC-DAD. Pharmacogn. Mag. 2017, 13, 64–75. [Google Scholar] [PubMed]
- Hu, G.L.; Lei, L.; Wang, X.R.; Lee, F.S.C.; Zhang, J.K. Determination of Tanshinones in Salvia Miltiorrhiza Bunge by High Performance Liquid Chromatography. Anal. Sci. Suppl. 2001, 17, a471–a473. [Google Scholar]
- Hu, W.C.; Wang, M.H. Comparsion the Content of Tanshinone IIA and Salvianolic Acid in Salvia miltiorrhiz Bunge with Different Extraction Way. Spring Gen. Meet. Conf. 2009, 2009, 250. [Google Scholar]
- Tavan, M.; Azizi, A.; Sarikhani, H.; Mirjalili, M.H.; Rigano, M.M. Phenolics diversity among wild populations of Salvia multicaulis: As a precious source for antimicrobial and antioxidant applications. Nat. Prod. Res. 2020, 36, 1332–1336. [Google Scholar] [CrossRef] [PubMed]
- Xing, B.C.; Liang, L.J.; Liu, L.; Hou, Z.N.; Yang, D.F.; Yan, K.J.; Zhang, X.M.; Liang, Z.S. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots. Plant Cell Rep. 2018, 37, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Fang, X.; Zhao, Y.; Cao, R.Z.; Dong, J.N.; Ma, P.D. The SmMYB36-SmERF6/SmERF115 module regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza hairy roots. Hortic. Res. 2023, 10, uhac238. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.H.; Ma, Y.; Tang, J.F.; He, Y.L.; Liu, Y.C.; Ma, X.J.; Shen, Y.; Cui, G.H.; Lin, H.X.; Rong, Q.X.; et al. The Biosynthetic Pathways of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. Molecules 2015, 20, 16235–16254. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Zhang, J.J.; Sun, C.T.; Yang, R.W.; Sheng, M.M.; Hu, J.N.; Kai, G.Y.; Han, B. Adjuvant role of Salvia miltiorrhiza Bunge in cancer chemotherapy: A review of its bioactive components, health-promotion effect and mechanisms. J. Ethnopharmacol. 2023, 318, 117022. [Google Scholar] [CrossRef]
- Karolak, I.G.; Krzemińska, M.; Grąbkowska, R.; Gomulski, J.; Żekanowski, C.; Walerych, K.G. Accumulation of Polyphenols and Associated Gene Expression in Hairy Roots of Salvia viridis Exposed to Methyl Jasmonate. Int. J. Mol. Sci. 2024, 25, 764. [Google Scholar] [CrossRef]
- Yang, D.F.; Yang, S.S.; Zhang, Y.J.; Liu, Y.H.; Meng, X.H.; Liang, Z.S. Metabolic profiles of three related Salvia species. Fitoterapia 2009, 80, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.M.; Hou, Z.N.; Zhang, X.D.; Yang, D.F.; Liang, Z.S. Diverse specialized metabolism and their responses to lactalbumin hydrolysate in hairy root cultures of Salvia miltiorrhiza Bunge and Salvia castanea Diels f. tomentosa Stib. Biochem. Eng. J. 2018, 131, 58–69. [Google Scholar] [CrossRef]
- Zheng, X.H.; Chen, D.; Chen, B.H.; Liang, L.M.; Huang, Z.; Fan, W.F.; Chen, J.N.; He, W.J.; Chen, H.B.; Huang, L.Q.; et al. Insights into salvianolic acid B biosynthesis from chromosome-scale assembly of the Salvia bowleyana genome. J. Integr. Plant Biol. 2021, 63, 1309–1323. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.M.; Liang, Z.S.; Liu, Y.; Liu, F.H.; Zhu, J.G. [Effects of ABA and its biosynthetic inhibitor fluridone on accumulation of penolic acids and activity of PAL and TAT in hairy root of Salvia miltiorrhiza]. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Medica 2012, 37, 754–759. [Google Scholar]
- Xiao, Y.; Zhang, L.; Gao, S.H.; Saechao, S.K.; Peng, D.; Chen, J.F.; Chen, W.S. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS ONE 2011, 6, e29713. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.J.; Hu, Z.B.; Liu, D.; Leung, F.C.C. Two Divergent Members of 4-Coumarate: Coenzyme A Ligase from Salvia miltiorrhiza Bunge: cDNA Cloning and Functional Study. J. Integr. Plant Biol. 2006, 48, 1355–1364. [Google Scholar] [CrossRef]
- Zhang, C.L.; Yang, D.F.; Liang, Z.S.; Liu, J.L.; Yan, K.J.; Zhu, Y.H.; Yang, S.S. Climatic factors control the geospatial distribution of active ingredients in Salvia miltiorrhiza Bunge in China. Sci. Rep. 2019, 9, 904. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Babotă, M.; Pop, A.; Fizeșan, I.; Diuzheva, A.; Locatelli, M.; Carradori, S.; Campestre, C.; Menghini, L.; Sisea, C.R.; et al. Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur. Antioxidants 2020, 9, 480. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.D.; Pei, Y.F.; Cui, N.; Zhao, G.P.; Hou, M.M.; Chen, Y.Y.; Chen, J.L.; Li, X.W. Comparative and phylogenetic analysis of complete chloroplast genome sequences of Salvia regarding its worldwide distribution. Sci. Rep. 2023, 13, 14268. [Google Scholar] [CrossRef]
- Baldomero, E.; Celia, B.B.; Mariano, S.C.; Antonio, N.C.; Teresa, R.A.; Pedro, J.N.; Leovigildo, Q. Structure, Absolute Configuration, and Antiproliferative Activity of Abietane and Icetexane Diterpenoids from Salvia ballotiflora. Molecules 2017, 22, 1690. [Google Scholar] [CrossRef]
- Hegazy, M.F.; Hamed, A.R.; El-Halawany, A.M.; Hussien, T.A.; Abdelfatah, S.; Ohta, S.; Paré, P.W.; Abdel-Sattar, E.; Efferth, T. Cytotoxicity of abietane diterpenoids from Salvia multicaulis towards multidrug-resistant cancer cells. Fitoterapia 2018, 130, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hu, Z.Q.; Li, X.X.; Wang, A.L.; Wu, H.; Liu, J.; Cao, S.G.; Liu, Q.S. Salviachinensines A-F, Antiproliferative Phenolic Derivatives from the Chinese Medicinal Plant Salvia chinensis. J. Nat. Prod. 2018, 81, 2531–2538. [Google Scholar] [CrossRef] [PubMed]
- Li, L.N.; Zhou, M.M.; Xue, G.M.; Wang, W.L.; Zhou, X.W.; Wang, X.B.; Kong, L.Y.; Luo, J.G. Bioactive seco -Abietane Rearranged Diterpenoids from the aerial parts of Salvia prionitis. Bioorg. Chem. 2018, 81, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Yang, J.; Wang, Y.Y.; Peng, L.Y.; Yang, X.W.; Pan, Z.H.; Liu, E.D.; Li, Y.; Zhao, Q.S. Diterpenoid constituents of the roots of Salvia digitaloides. J. Agric. Food Chem. 2010, 58, 12157–12161. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shao, Y.; Li, J.; Zhu, N.; Rangarajan, M.; Lavoie, E.J.; Ho, C.T. Antioxidative phenolic glycosides from sage (Salvia officinalis). J. Nat. Prod. 1999, 62, 454–456. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Huang, Q.; Wu, X.; Zhou, Z.W.; Ding, M.Q.; Shi, M.; Huang, F.F.; Li, S.; Wang, Y.; Kai, G.Y. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci. Rep. 2017, 7, 10554. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, N.; Yu, S.Q.; Zhou, J.W. Enhancing caffeic acid production in Escherichia coli by engineering the biosynthesis pathway and transporter. Bioresour. Technol. 2022, 368, 128320. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.B.; Sytsma, K.J.; Treutlein, J.; Wink, M. Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am. J. Bot. 2004, 91, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Agata, L.; Cezary, P.; Laura, P.; David, F.P.; Magdalena, K.; Marta, H.; Witold, D.; Michel, R.; Jarosław, P.; Ewa, S. Divergent contribution of the MVA and MEP pathways to the formation of polyprenols and dolichols in Arabidopsis. Biochem. J. 2023, 480, 495–520. [Google Scholar]
- Liu, L.; Yang, D.F.; Liang, T.Y.; Zhang, H.H.; He, Z.G.; Liang, Z.S. Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots. Plant Cell Rep. 2016, 35, 1933–1942. [Google Scholar] [CrossRef]
- Mei, X.G.; Wang, S.Q.; Zhang, L.; Gu, S.B.; Wei, L.; Li, J.; Wang, J.H. Widely targeted metabolomics analysis revealed components change regularity of Salvia miltiorrhiza Bunge after post-harvest drying under different temperature. Ind. Crops Prod. 2022, 188, 495–520. [Google Scholar] [CrossRef]
- Pharmacy Committee, Ministry of Health China. Chinese Pharmacopoeia; The Medicine Science and Technology Press of China: Beijing, China, 2020; p. 77. [Google Scholar]
- Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 2004; p. 141. [Google Scholar]
- Hu, G.X.; Liu, E.D.; Zhang, T.; Jie, C.; Xiang, C.L. Salvia luteistriata (lamiaceae), a new species from northeastern Sichuan, China. Phytotaxa 2017, 314, 123–128. [Google Scholar] [CrossRef]
Serial Number | Number | Species (Scientific Name) |
---|---|---|
1 | S0123 | Salvia scapiformis |
2 | S0146 | Salvia miltiorrhiza |
3 | S0171 | Salvia chinensis |
4 | S0175 | Salvia sinica |
5 | S0271 | Salvia meiliensis |
6 | S0297 | Salvia daiguii. |
7 | S0304 | Salvia japonica |
8 | S0348 | Salvia baimaensis |
9 | S0356 | Salvia honania |
10 | S0362 | Salvia miltiorrhiza |
11 | S0460 | Salvia plectranthoides |
12 | S0484 | Salvia nanchuanensis |
13 | S0491 | Salvia paramiltiorrhiza |
14 | S0517 | Salvia nanchuanensis |
15 | S0603 | Salvia bowleyana |
16 | S0671 | Salvia adiantifolia |
17 | S0761 | Salvia cavaleriei |
18 | S0804 | Salvia grandifolia |
19 | S0940 | Salvia filicifolia |
20 | S0994 | Salvia cavaleriei |
21 | S0477 | Salvia substolonifera |
22 | S0742 | Salvia nipponica |
23 | S0747 | Salvia liguliloba |
24 | S0837 | Salvia deserta |
25 | S1094 | Salvia chienii |
26 | S1127 | Salvia kiangsiensis |
27 | S0318 | Salvia coccinea |
28 | S1097 | Salvia prionitis |
29 | S1044 | Salvia horminum |
30 | S1002 | Salvia officinalis |
31 | S1062 | Salvia splendens |
32 | S1031 | Salvia glutinosa |
33 | S1073 | Salvia grahamii |
34 | S1071 | Salvia curviflora |
35 | S1072 | Salvia fallax (Salvia roscida) |
36 | S1068 | Salvia adenophora |
37 | S1082 | Salvia tubifera |
38 | S1074 | Salvia greggii |
39 | S1089 | Salvia karwinskii |
40 | S1078 | Salvia miniata |
41 | S1030 | Salvia ringens |
42 | S1032 | Salvia pratensis (meadow clary) |
43 | S1174 | Salvia maximowicziana |
44 | S1153 | Salvia flava |
45 | S1151 | Salvia yunnanensis |
46 | S1164 | Salvia trijuga |
47 | S1170 | Salvia aerea |
48 | S1161 | Salvia przewalskii |
49 | S1169 | Salvia castanea |
50 | S1167 | Salvia mekongensis |
51 | S1155 | Salvia hylocharis |
52 | S1171 | Salvia cyclostegia |
53 | S1173 | Salvia digitaloides |
54 | S0421 | Salvia umbratica |
55 | S1329 | Salvia plebeia |
56 | S1233 | Salvia roborowskii |
57 | S1162 | Salvia brachyloma |
58 | S1300 | Salvia cavaleriei |
Standards | Standard Equations | R2 | Linear Range (µg) |
---|---|---|---|
Danshensu | Y = 456,192.9651X + 8898.3984 | 0.999 | 0.02~2 |
Protocatechualdehyde | Y = 3,417,750.4961X − 51,858.7541 | 0.998 | 0.04~4 |
Protocatechuic Acid | Y = 2,124,173.3198X + 14,233.8764 | 1 | 0.02~2 |
caffeic acid | Y = 5,472,992.9477X − 3794.4223 | 1 | 0.02~2 |
Ferulic Acid | Y = 3,813,787.9790X − 4677.0069 | 0.999 | 0.02~2 |
Isoferulic Acid | Y = 3,145,231.4942X + 9488.3242 | 1 | 0.02~2 |
Rosmarinic acid | Y = 1,939,973.1010X + 239.4423 | 0.999 | 0.02~2 |
Salvianolic Acids A | Y = 2,115,905.1152X + 7393.8267 | 0.999 | 0.02~2 |
Salvianolic Acids B | Y = 960,469X − 63,957 | 0.999 | 0.10~20 |
lithospermic acid | Y = 111,687X − 8406.9 | 0.998 | 0.04~4 |
Miltirone | Y = 6,351,910.6757X − 181,582.1524 | 0.994 | 0.03~3 |
Cryptotanshinone | Y = 55,262,695.8020X + 85,722.7420 | 0.999 | 0.04~4 |
Tanshinone II A | Y = 5,128,785.8760X − 58,317.4739 | 0.999 | 0.04~4 |
Tanshinone I | Y = 3,724,065.1501X − 86,580.8597 | 0.999 | 0.04~4 |
Dihydrotanshinone I | Y = 2,660,639.5600X + 23,027.7527 | 0.999 | 0.04~4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Bao, Y.; Yang, F.; Yuan, L.; Han, X.; Huang, Y.; Wei, Y.; Zhang, L.; Yang, Z.; Yang, D. Content Determination and Chemical Clustering Analysis of Tanshinone and Salvianolic Acid in Salvia spp. Metabolites 2024, 14, 441. https://doi.org/10.3390/metabo14080441
Wang F, Bao Y, Yang F, Yuan L, Han X, Huang Y, Wei Y, Zhang L, Yang Z, Yang D. Content Determination and Chemical Clustering Analysis of Tanshinone and Salvianolic Acid in Salvia spp. Metabolites. 2024; 14(8):441. https://doi.org/10.3390/metabo14080441
Chicago/Turabian StyleWang, Feiyan, Yufeng Bao, Furui Yang, Lu Yuan, Xinchun Han, Yanbo Huang, Yukun Wei, Lei Zhang, Zongqi Yang, and Dongfeng Yang. 2024. "Content Determination and Chemical Clustering Analysis of Tanshinone and Salvianolic Acid in Salvia spp." Metabolites 14, no. 8: 441. https://doi.org/10.3390/metabo14080441
APA StyleWang, F., Bao, Y., Yang, F., Yuan, L., Han, X., Huang, Y., Wei, Y., Zhang, L., Yang, Z., & Yang, D. (2024). Content Determination and Chemical Clustering Analysis of Tanshinone and Salvianolic Acid in Salvia spp. Metabolites, 14(8), 441. https://doi.org/10.3390/metabo14080441