A Comparative Study on the Muscle and Gut Microbiota of Opsariichthys bidens from Rice Field and Pond Culture Breeding Modes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation
2.3. Proximate Composition Analysis
2.4. Texture Properties Analysis
2.5. Volatile Compound Analysis
OAV (Odor Activity Value) Analysis
2.6. Fatty Acids Analysis
2.7. Free Amino Acid (FAA) Analysis
2.8. Gut Microbe Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Proximate Compositions
3.2. Volatile Compound Composition
3.3. OAVs of Volatile Compounds
3.4. Texture Properties
3.5. Fatty Acids Composition
3.6. Free Amino Acid (FAA) Composition
3.7. Gut Microbial Community Analysis
3.7.1. Analysis of Intestinal Flora Composition
3.7.2. Sample Clustering Analysis
3.7.3. Core Gut Microbiota Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, A.; Ran, C.; Wang, Y.; Zhang, Z.; Ding, Q.; Yang, Y.; Olsen, R.E.; Ringø, E.; Bindelle, J.; Zhou, Z. Use of probiotics in aquaculture of China—A review of the past decade. Fish Shellfish. Immunol. 2019, 86, 734–755. [Google Scholar] [CrossRef] [PubMed]
- Frei, M.; Becker, K. Integrated rice–fish production and methane emission under greenhouse conditions. Agric. Ecosyst. Environ. 2005, 107, 51–56. [Google Scholar] [CrossRef]
- Hu, L.; Tang, J.; Wu, X.; Li, N.; Yuan, Y.; Yang, H.; Zhang, J.; Luo, S.; Chen, X.; Xie, J. Ecological mechanisms underlying the sustainability of the agricultural heritage rice–fish coculture system. Proc. Natl. Acad. Sci. USA 2011, 108, E1381–E1387. [Google Scholar]
- Ahmed, N.; Turchini, G.M. The evolution of the blue-green revolution of rice-fish cultivation for sustainable food production. Sustain. Sci. 2021, 16, 1375–1390. [Google Scholar] [CrossRef]
- Hu, Y.; Cai, M.; Chu, W.; Hu, Y. Dysbiosis of Gut Microbiota and Lipidomics of Content Induced by Dietary Methionine Restriction in Rice Field Eel (Monopterus albus). Front. Microbiol. 2022, 13, 917051. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ye, J.; Ji, Z.; Tang, J.-J.; Bai, K.; Zheng, S.; Hu, L.; Chen, X.; Guo, L. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems. eLife 2022, 11, 20210403444. [Google Scholar]
- Hu, L.; Ren, W.; Tang, J.; Li, N.; Zhang, J.; Chen, X. The productivity of traditional rice–fish co-culture can be increased without increasing nitrogen loss to the environment. Agric. Ecosyst. Environ. 2013, 177, 28–34. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, L.; Ren, W.; Guo, L.; Tang, J.; Shu, M.; Chen, X. Rice-soft shell turtle coculture effects on yield and its environment. Agric. Ecosyst. Environ. 2016, 224, 116–122. [Google Scholar] [CrossRef]
- Du, J.; Luo, J.; Zhou, Y.; Long, Y.; Xu, G.; Zhao, L.; Du, Z.; Yan, T.; Yang, S. Effects of different diets on the intestinal microbiota and immunity of common carp (Cyprinus carpio). J. Appl. Microbiol. 2019, 127, 1327–1338. [Google Scholar]
- Li, J.; Ni, J.; Li, J.; Wang, C.; Li, X.; Wu, S.; Zhang, T.; Yu, Y.; Yan, Q. Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. J. Appl. Microbiol. 2014, 117, 1750–1760. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Gooneratne, R.; Lai, R.; Zeng, C.; Zhan, F.; Wang, W. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 2016, 6, 24340. [Google Scholar] [CrossRef]
- Guan, W.; Xu, X.; Zhan, W.; Niu, B.; Lou, B. Induction of gynogenesis with ultra-violet irradiated Koi carp (Cyprinus carpio haematopterus) sperm demonstrates the XX/XY sex determination system in Opsariichthys bidens. Aquac. Rep. 2022, 26, 101286. [Google Scholar] [CrossRef]
- Xu, X.; Guan, W.; Niu, B.; Guo, D.; Xie, Q.-P.; Zhan, W.; Yi, S.; Lou, B. Chromosome-Level Assembly of the Chinese Hooksnout Carp (Opsariichthys bidens) Genome Using PacBio Sequencing and Hi-C Technology. Front. Genet. 2022, 12, 788547. [Google Scholar] [CrossRef]
- Dhanasiri, A.K.; Brunvold, L.; Brinchmann, M.F.; Korsnes, K.; Bergh, Ø.; Kiron, V. Changes in the Intestinal Microbiota of Wild Atlantic cod Gadus morhua L. Upon Captive Rearing. Microb. Ecol. 2010, 61, 20–30. [Google Scholar] [CrossRef]
- Dehler, C.E.; Secombes, C.J.; Martin, S.A. Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (Salmo salar L.). Aquaculture 2017, 467, 149–157. [Google Scholar] [CrossRef]
- Rawls, J.F.; Mahowald, M.A.; Ley, R.E.; Gordon, J.I. Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection. Cell 2006, 127, 423–433. [Google Scholar] [CrossRef]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef]
- Llewellyn, M.S.; Boutin, S.; Hoseinifar, S.H.; Derome, N. Teleost microbiomes: The state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 2014, 5, 207. [Google Scholar] [CrossRef]
- Wang, A.R.; Ran, C.; Ringø, E.; Zhou, Z.G. Progress in fish gastrointestinal microbiota research. Rev. Aquac. 2017, 10, 626–640. [Google Scholar] [CrossRef]
- Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 2017, 279, 70–89. [Google Scholar] [CrossRef]
- Fraune, S.; Bosch, T.C.G. Why bacteria matter in animal development and evolution. Bioessays 2010, 32, 571–580. [Google Scholar] [CrossRef]
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.-L.; et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Chen, L.; Chen, L.; Zhou, C.; Hong, P.; Deng, C. Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment. Food Chem. 2021, 340, 128139. [Google Scholar] [CrossRef]
- Muralidharan, N.; Shakila, R.J.; Sukumar, D.; Jeyasekaran, G. Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J. Food Sci. Technol. 2011, 50, 1106–1113. [Google Scholar] [CrossRef]
- Chinese National Standard GB5009.3-2016; National Food Safety Standard: Determination of Moisture in Foods. Standards Press of China: Beijing, China, 2016. (In Chinese)
- Chinese National Standard GB5009.4-2016; National Food Safety Standard: Determination of Ash Content in Foods. Standards Press of China: Beijing, China, 2016. (In Chinese)
- Chinese National Standard GB5009.5-2016; National Food Safety Standard: Determination of Protein in Foods. Standards Press of China: Beijing, China, 2016. (In Chinese)
- Chinese National Standard GB5009.6-2016; National Food Safety Standard: Determination of Lipid in Foods. Standards Press of China: Beijing, China, 2016. (In Chinese)
- Unal, K.; Babaoğlu, A.S.; Erdem, N.; Dilek, N.M. The effect of pumpkin powder on the physicochemical, emulsification, and textural properties of beef. J. Food Process. Preserv. 2022, 46, e16728. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Wang, Z.; Cai, S.; Zhu, B.; Dong, X. Recent advances in fishy odour in aquatic fish products, from formation to control. Int. J. Food Sci. Technol. 2021, 56, 4959–4969. [Google Scholar] [CrossRef]
- Fuentes, A.; Fernández-Segovia, I.; Escriche, I.; Serra, J.A. Comparison of physico-chemical parameters and composition of mussels (Mytilus galloprovincialis Lmk.) from different Spanish origins. Food Chem. 2009, 112, 295–302. [Google Scholar] [CrossRef]
- Zhou, X.; Chong, Y.; Ding, Y.; Gu, S.; Liu, L. Determination of the effects of different washing processes on aroma characteristics in silver carp mince by MMSE–GC–MS, e-nose and sensory evaluation. Food Chem. 2016, 207, 205–213. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X.; Jin, M.; Jiao, L.; Sun, P.; Betancor, M.B.; Tocher, D.R.; Zhou, Q. Modification of nutritional values and flavor qualities of muscle of swimming crab (Portunus trituberculatus): Application of a dietary lipid nutrition strategy. Food Chem. 2020, 308, 125607. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, Y.U.; Wang, Y.; Tao, N.; Wu, X.; Wang, X.; Qiu, W.; Ma, M. Comparison of flavour qualities of three sourced Eriocheir sinensis. Food Chem. 2016, 200, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Gu, S.; Tao, N.; Wang, X.; Ji, S. Characterization of Important Odorants in Steamed Male Chinese Mitten Crab (Eriocheir sinensis) using Gas Chromatography-Mass Spectrometry-Olfactometry. J. Food Sci. 2014, 79, C1250–C1259. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.; Osako, K.; Ohshima, T. Effects of hypobaric and temperature-dependent storage on headspace aroma-active volatiles in common squid miso. Food Res. Int. 2011, 44, 739–747. [Google Scholar] [CrossRef]
- Pu, D.; Shan, Y.; Zhang, L.; Sun, B.; Zhang, Y. Identification and Inhibition of the Key Off-Odorants in Duck Broth by Means of the Sensomics Approach and Binary Odor Mixture. J. Agric. Food Chem. 2022, 70, 13367–13378. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, T.-T.; Guo, R.-R.; Ye, Q.; Zhao, H.-L.; Huang, X.-H. The regulation of key flavor of traditional fermented food by microbial metabolism: A review. Food Chem. X 2023, 19, 100871. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Tang, N.; Liu, R.; Gong, M.; Wang, Z.; Guo, Y.; Wang, Y.; Zhang, Y.; Chang, M. The relationship between flavor formation, lipid metabolism, and microorganisms in fermented fish products. Food Funct. 2021, 12, 5685–5702. [Google Scholar] [CrossRef] [PubMed]
- Sales-Campos, H.; Reis de Souza, P.; Crema Peghini, B.; Santana da Silva, J.; Ribeiro Cardoso, C. An Overview of the Modulatory Effects of Oleic Acid in Health and Disease. Mini-Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar] [PubMed]
- Darwesh, A.M.; Bassiouni, W.; Sosnowski, D.K.; Seubert, J.M. Can N-3 polyunsaturated fatty acids be considered a potential adjuvant therapy for COVID-19-associated cardiovascular complications? Pharmacol. Ther. 2021, 219, 107703. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Wang, Y.; Liu, P.; Chen, J.; Zhang, C. Uncovering the Nutritive Profiles of Adult Male Chinese Mitten Crab (E. sinensis) Harvested from the Pond and Natural Water Area of Qin Lake Based on Metabolomics. Foods 2023, 12, 2178. [Google Scholar] [CrossRef]
- Calder, P.C. Very long chain omega-3 (n-3) fatty acids and human health. Eur. J. Lipid Sci. Technol. 2014, 116, 1280–1300. [Google Scholar] [CrossRef]
- Sushchik, N.N.; Gladyshev, M.I.; Kalachova, G.S. Seasonal dynamics of fatty acid content of a common food fish from the Yenisei river, Siberian grayling, Thymallus arcticus. Food Chem. 2007, 104, 1353–1358. [Google Scholar] [CrossRef]
- Tu, L.; Wu, X.; Wang, X.; Shi, W. Effects of fish oil replacement by blending vegetable oils in fattening diets on nonvolatile taste substances of swimming crab (Portunus trituberculatus). J. Food Biochem. 2020, 44, e13345. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, H.; Cao, W.; Chen, Z.; Gao, J.; Zheng, H.; Lin, H.; Qin, X. Effect of Drying Process on the Formation of the Characteristic Flavor of Oyster (Crassostrea hongkongensis). Foods 2023, 12, 2136. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Zhu, Y.J.; Yan, Q.Y.; Ringø, E.; Yang, D.G. Do the intestinal microbiotas differ between paddlefish (Polyodon spathala) and bighead carp (Aristichthys nobilis) reared in the same pond? J. Appl. Microbiol. 2014, 117, 1245–1252. [Google Scholar] [CrossRef]
- Navarrete, P.; Magne, F.; Araneda, C.; Fuentes, P.; Barros, L.; Opazo, R.; Espejo, R.; Romero, J. PCR-TTGE Analysis of 16S rRNA from Rainbow Trout (Oncorhynchus mykiss) Gut Microbiota Reveals Host-Specific Communities of Active Bacteria. PLoS ONE 2012, 7, e31335. [Google Scholar] [CrossRef]
- Nayak, S.K. Role of gastrointestinal microbiota in fish. Aquac. Res. 2010, 41, 1553–1573. [Google Scholar] [CrossRef]
- Xu, W.-T.; Nie, Y.-Z.; Yang, Z.; Lu, N.-H. The crosstalk between gut microbiota and obesity and related metabolic disorders. Future Microbiol. 2016, 11, 825–836. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Huang, F.Q.; Lao, X.; Lu, Y.; Gao, X.; Alolga, R.N.; Yin, K.; Zhou, X.; Wang, Y.; Liu, B.; et al. Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. Npj Biofilms Microbiomes 2022, 8, 11. [Google Scholar] [CrossRef]
- Givens, C.E.; Ransom, B.; Bano, N.; Hollibaugh, J.T. Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar. Ecol. Prog. 2015, 518, 209–223. [Google Scholar] [CrossRef]
Samples | Moisture (%) | Protein (%) | Fat (%) | Ash (%) |
---|---|---|---|---|
PB | 77.65 ± 0.05 a | 15.99 ± 1.63 a | 2.81 ± 0.27 a | 1.05 ± 0.04 a |
PT | 77.85 ± 0.72 a | 16.21 ± 1.16 a | 2.86 ± 0.01 a | 1.38 ± 0.02 a |
PS | 61.85 ± 0.57 c | 18.50 ± 2.27 b | 3.34 ± 0.25 b | 1.06 ± 0.03 a |
RFB | 78.16 ± 0.91 a | 17.60 ± 1.62 a | 1.57 ± 0.04 a | 1.13 ± 0.06 a |
RFT | 78.11 ± 0.17 a | 17.84 ± 1.67 a | 1.67 ± 0.29 a | 1.20 ± 0.03 a |
RFS | 64.50 ± 0.03 b | 19.70 ± 2.25 b | 3.50 ± 0.08 b | 1.12 ± 0.01 a |
NO. | Volatile Compound | CAS | Formula | Molecular Weight | Odor Threshold (ng/g) | OAV | |
---|---|---|---|---|---|---|---|
PD | RF | ||||||
Aldehydes | |||||||
1 | Benzaldehyde | 100-52-7 | C7H6O | 106.120 | 41.7 | >1 | >1 |
2 | Undecylaldehyde | 112-44-7 | C11H22O | 170.300 | 140 | >1 | >1 |
3 | Dodecanal | 112-54-9 | C12H24O | 184.318 | 10 | >1 | >1 |
4 | E-2-hexenal | 6728-26-3 | C6H10O | 98.140 | 19.2 | N.D. | >1 |
5 | 4-ethylbenzaldehyde | 4748-78-1 | C9H10O | 134.180 | 123.23 | N.D. | >1 |
6 | (E,E)-2,4-heptane Olefinic aldehyde | 4313-3-5 | C7H10O | 110.154 | 15.4 | N.D. | >1 |
Ketones | |||||||
7 | 2-Nonanone | 821-55-6 | C9H18O | 142.239 | 38.9 | >1 | N.D. |
8 | 3,5-octadiene-2-one | 30086-02-3 | C8H12O | 124.180 | 150 | N.D. | >1 |
9 | 4-chlorophenylbutanone | 4559-96-0 | C10H10BrClO | 261.540 | N.A. | N.D. | >1 |
Others | |||||||
10 | Tetradecane | 629-59-4 | C14H30 | 198.390 | 1000 | >1 | >1 |
11 | 2,6-ditert-butyl-p-cresol | 821-55-6 | C9H18O | 142.239 | 1000 | >1 | N.D. |
12 | 4-isopropyl toluene | 99-87-6 | C10H14 | 134.218 | 7.2 | >1 | N.D. |
PB | RFB | |
---|---|---|
Hardness (g) | 1139.96 ± 232.77 a | 910.10 ± 236.58 b |
Adhesiveness | −13.73 ± 4.96 a | −10.40 ± 1.12 b |
Springiness (mm) | 0.53 ± 0.06 a | 0.49 ± 0.03 a |
Cohesiveness | 0.51 ± 0.08 a | 0.34 ± 0.02 b |
Gumminess | 578.54 ± 114.09 a | 309.20 ± 93.25 b |
Chewiness | 305.94 ± 67.65 a | 148.98 ± 37.06 b |
Resilience | 0.30 ± 0.03 a | 0.19 ± 0.01 b |
Fatty Acids | Groups | |
---|---|---|
PB | RFB | |
C12:0 | 0.02 ± 0.00 | 0.02 ± 0.00 |
C13:0 | 0.02 ± 0.01 | 0.02 ± 0.00 |
C14:0 | 1.25 ± 0.04 | 1.25 ± 0.12 |
C14:1n5 | 0.09 ± 0.00a | 0.11 ± 0.01 b |
C15:0 | 0.34 ± 0.03 | 0.35 ± 0.01 |
C16:0 | 11.13 ± 0.09 | 10.64 ± 0.46 |
C16:1n7 | 7.58 ± 0.35 a | 9.23 ± 0.76 b |
C17:0 | 0.34 ± 0.03 | 0.36 ± 0.03 |
C17:1n7 | 0.53 ± 0.01 a | 0.64 ± 0.00 b |
C18:1n9t | 6.06 ± 0.23 | 5.49 ± 1.99 |
C18:1n9c | 20.74 ± 0.32 a | 24.75 ± 0.52 b |
C18:0 | 1.34 ± 0.28 | 2.41 ± 1.33 |
C18:2n6t | 0.11 ± 0.02 | 0.11 ± 0.01 |
C18:2n6c | 26.79 ± 0.27 a | 21.46 ± 0.20 b |
C18:3n3 | 0.68 ± 0.03 | 0.66 ± 0.03 |
C18:3n6 | 2.73 ± 0.01 a | 2.30 ± 0.05 b |
C20:0 | 0.17 ± 0.01 | 0.18 ± 0.01 |
C20:1 | 1.14 ± 0.03 a | 1.44 ± 0.06 b |
C20:2 | 0.88 ± 0.02 a | 0.79 ± 0.04 b |
C20:4n6 | 0.87 ± 0.01 a | 0.76 ± 0.05 b |
C20:3n6 | 1.70 ± 0.03 a | 1.60 ± 0.04 b |
C20:3n3 | 0.22 ± 0.02 a | 0.16 ± 0.02 b |
C22:0 | 2.99 ± 0.03 | 3.10 ± 0.14 |
C20:5n3 | 0.06 ± 0.01 | 0.06 ± 0.01 |
C22:1n9 | 0.03 ± 0.01 | 0.04 ± 0.02 |
C22:2n6 | 0.19 ± 0.02 | 0.20 ± 0.04 |
C22:6n3 | 1.45 ± 0.07 a | 1.70 ± 0.08 b |
C24:1n9 | 10.50 ± 0.35 | 10.13 ± 0.64 |
C24:0 | 0.04 ± 0.02 | 0.06 ± 0.01 |
EPA + DHA | 1.51 ± 0.07 a | 1.76 ± 0.09 b |
SFA | 17.64 ± 0.43 | 18.37 ± 1.22 |
MUFA | 46.67 ± 0.29 a | 51.84 ± 1.60 b |
PUFA | 35.69 ± 0.20 a | 29.79 ± 0.46 b |
UFA | 82.36 ± 0.43 | 81.63 ± 1.22 |
omega-3 | 2.20 ± 0.09 a | 2.42 ± 0.12 b |
omega-6 | 27.67 ± 0.28 a | 22.22 ± 0.25 b |
Amino Acids | Groups | |
---|---|---|
PB | RFB | |
Aspartic acid (Asp) | 1.15 ± 0.33 | 1.20 ± 0.23 |
Threonine (Thr) | 0.42 ± 0.11 | 0.43 ± 0.06 |
Serine (Ser) | 0.34 ± 0.08 | 0.36 ± 0.05 |
Glutamic acid (Glu) | 1.37 ± 0.23 | 1.32 ± 0.14 |
Alanine (Ala) | 0.69 ± 0.20 | 0.81 ± 0.19 |
Glycine (Gly) | 0.58 ± 0.16 | 0.62 ± 0.13 |
Valine (Val) | 0.03 ± 0.00 | 0.04 ± 0.01 |
Cysteine (Cys) | 1.27 ± 0.35 | 1.28 ± 0.25 |
Methionine (Met) | 0.34 ± 0.09 | 0.34 ± 0.06 |
Isoleucine (Ile) | 0.54 ± 0.16 | 0.55 ± 0.11 |
Leucine (Leu) | 0.95 ± 0.28 | 0.97 ± 0.19 |
Phenylalanine (Phe) | 0.37 ± 0.11 | 0.37 ± 0.07 |
Tyrosine (Tyr) | 0.56 ± 0.16 | 0.57 ± 0.12 |
Lysine (Lys) | 1.13 ± 0.34 | 1.16 ± 0.23 |
Histidine (His) | 1.79 ± 0.54 | 1.85 ± 0.42 |
Arginine (Arg) | 0.72 ± 0.21 | 0.76 ± 0.15 |
Proline (Pro) | 0.45 ± 0.12 | 0.48 ± 0.11 |
Fresh Amino Acids | 2.53 ± 0.55 | 2.51 ± 0.23 |
Sweet Amino Acids | 1.61 ± 0.44 | 1.78 ± 0.36 |
ƩFAA | 4.14 ± 0.99 | 4.29 ± 0.54 |
ƩEAA | 6.29 ± 1.84 | 6.46 ± 1.31 |
ƩAA | 12.70 ± 3.44 | 13.09 ± 2.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Bu, W.; Fan, H.; Guo, S.; Qi, M.; Yao, G.; Bei, Y.; Huang, Y.; Zhu, S.; Ding, X.; et al. A Comparative Study on the Muscle and Gut Microbiota of Opsariichthys bidens from Rice Field and Pond Culture Breeding Modes. Metabolites 2024, 14, 443. https://doi.org/10.3390/metabo14080443
Zhou F, Bu W, Fan H, Guo S, Qi M, Yao G, Bei Y, Huang Y, Zhu S, Ding X, et al. A Comparative Study on the Muscle and Gut Microbiota of Opsariichthys bidens from Rice Field and Pond Culture Breeding Modes. Metabolites. 2024; 14(8):443. https://doi.org/10.3390/metabo14080443
Chicago/Turabian StyleZhou, Fan, Weichao Bu, Hongjie Fan, Shuirong Guo, Ming Qi, Gaohua Yao, Yijiang Bei, Yuanfei Huang, Shicheng Zhu, Xueyan Ding, and et al. 2024. "A Comparative Study on the Muscle and Gut Microbiota of Opsariichthys bidens from Rice Field and Pond Culture Breeding Modes" Metabolites 14, no. 8: 443. https://doi.org/10.3390/metabo14080443
APA StyleZhou, F., Bu, W., Fan, H., Guo, S., Qi, M., Yao, G., Bei, Y., Huang, Y., Zhu, S., Ding, X., & Xiang, X. (2024). A Comparative Study on the Muscle and Gut Microbiota of Opsariichthys bidens from Rice Field and Pond Culture Breeding Modes. Metabolites, 14(8), 443. https://doi.org/10.3390/metabo14080443