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Abstract: This study investigates the growth tolerance mechanisms of Chlorella pyrenoidosa to
3-fluorophenol and its removal efficiency by algal cells. Our results indicate that C. pyrenoidosa
can tolerate up to 100 mg/L of 3-fluorophenol, exhibiting a significant hormesis effect character-
ized by initial inhibition followed by promotion of growth. In C. pyrenoidosa cells, the activities of
superoxide dismutase (SOD) and catalase (CAT), as well as the levels of malondialdehyde (MDA)
and reactive oxygen species (ROS), were higher than or comparable to the control group. Metabolic
analysis revealed that the 3-fluorophenol treatment activated pathways, such as glycerol phospho-
lipid metabolism, autophagy, glycosylphosphatidylinositol (GPI)-anchored protein biosynthesis,
and phenylpropanoid biosynthesis, contributed to the stabilization of cell membrane structures and
enhanced cell repair capacity. After 240 h of treatment, over 50% of 3-fluorophenol was removed
by algal cells, primarily through adsorption. Thus, C. pyrenoidosa shows potential as an effective
biosorbent for the bioremediation of 3-fluorophenol.

Keywords: Chlorella pyrenoidosa; 3-fluorophenol; metabolic profiling; tolerance

1. Introduction

In recent years, the development of fluorinated chemical products has been extensive
and rapid due to their “mimic effect” and “block effect” in living organisms. The van der
Waals radius of fluorine atoms (1.35 Å) closely matches that of hydrogen atoms (1.09 Å),
resulting in negligible molecular volume changes when hydrogen atoms are replaced by
fluorine atoms. Consequently, fluorinated organic compounds exhibit significant biological
effects such as enzyme inhibition, cell communication, and membrane transport [1]. These
compounds are notably stable, resulting in prolonged biological half-lives and inhibiting
normal metabolic processes. Due to these properties, fluorinated compounds are widely
used in pharmaceuticals, disinfectants, herbicides, and wood preservatives [2,3]. These
compounds enter the environment through industrial wastewater and agricultural activi-
ties primarily. In contaminated soils and sediments, the concentration of 3-fluorophenol
can range from ng/L to µg/L [4]. In polluted surface and groundwater, monofluorophenol
concentrations are typically lower, ranging from ng/L to µg/L [5]. The accumulation
of fluorinated organic compounds in the environment poses potential hazards to both
environmental organisms and human health [6–11]. These compounds are highly toxic,
persistent, and bioaccumulative in general. For example, 3-fluorophenol can be degraded
into 3-fluorocatechol and other small organic molecules by some fungi, bacteria, or pho-
tolysis [4,5,12]. However, the degradation process is challenging, and the pathways and
products are complex.

In recent years, biological treatments have gained prominence for their effectiveness
in pollutant remediation. Compared to chemical treatments like chlorine and ozone, which
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can produce toxic byproducts [2,13,14], biological treatments offer advantages such as high
biodiversity, strong selectivity, and low secondary pollutant production. Consequently,
they are essential for halogenated pollutant remediation [15,16].

The interaction between pollutants and biomaterials is complex, necessitating evalu-
ations of removal efficiency, pollutant fate, and biological tolerance to assess biomaterial
efficacy. While extensive research has focused on the bacterial treatment of halogenated pol-
lutants, the issue of antibiotic resistance is becoming increasingly problematic [11,17–19]. In
contrast, microalgae present numerous advantages as biomaterials for pollutant treatment.
Microalgae are not targeted by antibiotics, thereby avoiding bacterial resistance issues
and can be repurposed for various uses based on the pollutant removal mechanism as
fuel, pigments, and fertilizers post-treatment [20–23]. Nevertheless, polluted environments
can significantly inhibit microalgae growth and potentially cause irreversible cell damage,
making high pollution tolerance crucial for effective application in pollution remediation.

Chlorella spp. are typical freshwater algae with wide distribution, rapid growth, and
strong tolerance to extreme environments [24]. Studies have demonstrated that Chlorella
spp. can effectively tolerate and remove diverse pollutants. For example, C. vulgaris 13-1
and C. saccharophila RNY efficiently remove pharmaceuticals such as caffeine, codeine, and
ofloxacin [25,26]. C. sorokiniana can remove salicylic acid and paracetamol with efficiencies
of 73% and 41–69%, respectively, primarily through biodegradation [27]. Chlorella sp.
L38 shows good adaptability to 0.5 mg/L sulfadimethoxine, achieving a removal rate of
around 88% through antioxidant enzyme secretion [17]. C. pyrenoidosa can remove ammonia
nitrogen and total phosphorus from wastewater [11] and tolerate heavy metals such as
Pb2+ [28] as well as various organophosphorus pesticide pollutants [29], indicating its good
potential in environmental pollution control and ecotoxicological assessment. However,
the potential of C. pyrenoidosa in the reduction in fluorinated organic pollutants remains
underexplored. This study employs C. pyrenoidosa to investigate its tolerance and response
mechanisms to 3-fluorophenol exposure, as well as its efficacy in removing 3-fluorophenol.
By observing changes in biochemical indicators and cellular metabolic profiles, we aim to
elucidate the mechanisms underlying C. pyrenoidosa’s tolerance and explore its potential
applications in the remediation of 3-fluorophenol pollution.

2. Materials and Methods
2.1. Exposure of C. pyrenoidosa to 3-Fluorophenol

C. pyrenoidosa was obtained from the Institute of Hydrobiology, Chinese Academy of
Sciences (Wuhan), catalog number FACHB-5. 3-Fluorophenol (CAS No. 372-20-3) with a
purity of ≥98% was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China).

C. pyrenoidosa was cultured in a light incubator with a shaker, using Blue-Green
11 medium. The culture conditions were maintained at (25 ± 1) ◦C with a light intensity of
4000 lux and a light-to-dark ratio of 1:1. The rotation speed was set at 150 rpm. During the
experiment, algae in the exponential growth phase were transferred to 250 mL Erlenmeyer
flasks. The algae density was adjusted to approximately 1 × 105 cells/mL using the culture
medium, and 3-fluorophenol was added to achieve final concentrations of 10, 50, and
100 mg/L. Samples were collected every 48 h to measure algal biomass, 3-fluorophenol
concentration, and biochemical indicators, continuing until 240 h of exposure.

Algal cells treated with 100 mg/L of 3-fluorophenol for 96 h were collected to measure
biochemical indicators and metabolic profiles. Each experiment was repeated three times.

2.2. Determination of Algal Growth and Biochemical Indicators

The absorbance of algal solution at 680 nm was measured and was used to determine
algal density.

To determine biochemical indicators, 10 mL of the algal solution was centrifuged
at 4000 rpm for 10 min. The precipitates were collected and resuspended in 10 mL of
phosphate buffer (0.01 mol/L, pH 7.8). The solution was then sonicated on ice for 15 min
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at a power of 200 W (ultrasonic 3 s and then rest 7 s) to break the cells. Reagent kits
from Suzhou Keming Biotechnology Co., Ltd. (Suzhou, China) were used to test for
superoxide dismutase (SOD, serial No.: SOD-1-W), catalase (CAT, serial No.: CAT-1-
W), malondialdehyde (MDA, serial No.: MDA-1-Y), total soluble protein (TSP, serial
No. BCAP-1-W), and reactive oxygen species (ROS, serial No.: ROS-1-Y). The values of
TSP, ROS, SOD, CAT and MDA measured in mg/mL, ×10−3 u/s/µg prot, U/mg·prot,
U/mg·prot, nmol/mg·prot, respectively. T-test analysis was performed on the control and
3-fluorophenol groups to analyze the significant differences.

2.3. Determination of Algal Metabolic Profile

The determination of algae metabolomics was conducted with reference to the method
described by Li et al. [30]. After treating C. pyrenoidosa with 100 mg/L of 3-fluorophenol
for 96 h, 20 mL of the algal solution was sonicated and then freeze-dried. The sample
was re-dissolved in methanol. The control algal solution was also taken and treated
for analysis. Ultra-high-performance liquid chromatography–tandem mass spectrome-
try (UPLC-MS/MS, Agilent 6546, Agilent Technologies, No.1 Yishun Avenue 7, Singa-
pore, Singapore) was used for detection. Agilent Mass Hunter Profiler software was
utilized for mass spectrometry data preprocessing, while Agilent Mass Profiler Profes-
sional (version 15.1) software was used to analyze the complex information content of the
mass spectrometry data and conduct differential analysis. Differential metabolites were
mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolite database
(https://www.genome.jp/kegg, accessed on 13 March 2024) to identify corresponding
metabolic pathways.

2.4. Determination of 3-Fluorophenol

To determine the concentration of 3-fluorophenol, 10 mL of the algal solution was
centrifuged at 4000 rpm for 10 min. The supernatant was collected, and an equal volume of
ethyl acetate was added, followed by vortex mixing for 1 min to extract 3-fluorophenol.
The organic phase was collected for further analysis.

For detecting 3-fluorophenol in algal cells, cells from a 10 mL sample were collected
and resuspended in 10 mL of phosphate buffer, then sonicated on ice. An equivalent
volume of ethyl acetate was added to extract 3-fluorophenol. Additionally, a 10 mL sample
of the algal solution was directly sonicated on ice to break the cells, and an equal volume of
ethyl acetate was added to extract 3-fluorophenol. All organic phases were collected and
prepared for GC-MS analysis.

The concentration of 3-fluorophenol was determined using Agilent 7890A/5975C gas
chromatography–mass spectrometry (GC-MS). The chromatographic column used was
HP-5, with a length of 30 m, an inner diameter of 250 µm, and a film thickness of 0.25 µm.
The main GC-MS parameters were as follows: inlet temperature of 280 ◦C, ultrapure helium
carrier gas flow of 1 mL/min, electron ionization (EI) source energy of 70 eV, ion source
temperature of 230 ◦C, and collision energy of 5–50 V. The analysis utilized a programmed
temperature rise, starting at 60 ◦C for 5 min, then increasing to 230 ◦C at a rate of 10 ◦C/min,
and holding for 10 min.

3. Results and Discussion
3.1. Effects of 3-Fluorophenol on the Growth and Biochemical Indicators of C. pyrenoidosa

The time–dose effect of 3-fluorophenol on C. pyrenoidosa growth is shown in Figure 1A.
Throughout the exposure cycle, 10 mg/L of 3-fluorophenol promoted the growth of algal
cells. Initial concentrations of 50 and 100 mg/L of 3-fluorophenol initially inhibited the
growth of C. pyrenoidosa, followed by a promotion effect. These beneficial effects at low
doses of 3-fluorophenol and inhibitory effects at high doses conform to the hormesis
model [31,32]. Mechanisms such as signal transduction, gene expression regulation, as well
as overcompensation and adaptive responses, are attributed to this phenomenon [32,33].

https://www.genome.jp/kegg
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Figure 1. Effects of 3-fluorophenol on the growth and biochemical indicators of Chlorella pyrenoidosa.
(A) Time–dose effect of 3-fluorophenol exposure on C. pyrenoidosa growth. (B) The biochemical
indicators of C. pyrenoidosa treated by 100 mg/L 3-fluorophenol for 96 h. Note: a, b, and c indicate
significant differences detected at p < 0.05. The values of TSP, ROS, SOD, CAT, and MDA refer to
their levels in control (CK) or 3-fluorophenol (3-FP) samples, measured in mg/mL, ×10−3 u/s/µg
prot, U/mg·prot, U/mg·prot, and nmol/mg·prot, respectively.

Algal cells treated with 100 mg/L of 3-fluorophenol for 96 h were analyzed for bio-
chemical indicators including TSP, SOD, CAT, MDA, and ROS (Figure 1B). Compared to
the control group, the 3-fluorophenol treatment had little effect on the TSP content of algal
cells, while levels of ROS, SOD, CAT, and MDA were significantly higher. TSP in algal
cells are mostly enzymes involved in cellular metabolic activities, nutrient storage, and
resistance to extreme environments. Changes in TSP content reflect changes in cellular
metabolic levels [34]. The lack of significant difference in TSP between the 3-fluorophenol
treated and control cells indicates normal protein metabolism.

ROS have dual roles in plant cells. They act as signaling molecules regulating various
biological processes [35,36] and can also cause cellular damage due to their high reactiv-
ity [35]. To maintain homeostasis, cells rely on a complex antioxidant system to balance ROS
production and scavenging. There is a complex interaction between ROS and antioxidant
enzymes, with ROS inducing the expression of enzymes such as SOD and CAT in some
cases [37]. Elevated levels of ROS, SOD, CAT, and MDA in the 3-fluorophenol treatment
group indicate that exposure triggered a burst of intracellular ROS and modulated the cell’s
defense mechanisms. MDA, a product of lipid peroxidation caused by polyunsaturated
fatty acid oxidation, reflects cellular peroxidation damage levels [38]. The increase in MDA
content in algal cells after 3-fluorophenol treatment indicates relatively weak ROS-induced
cell membrane damage.

The above indicators show that after 96 h of exposure to 100 mg/L 3-fluorophenol,
the metabolic balance of ROS in algal cells was disrupted. SOD and CAT were sensitive
to ROS response, and the increase in enzyme activity effectively alleviated ROS oxidative
damage. The cell metabolism was not significantly damaged. These results are consistent
with the weak promoting effect of 100 mg/L 3-fluorophenol exposure on the growth of C.
pyrenoidosa after 96 h (growth inhibition rate −8.85 ± 2.74%).

3.2. Effects of 3-Fluorophenol on the Metabolic Profiles of C. pyrenoidosa

Algal cells treated with 100 mg/L 3-fluorophenol for 96 h were collected to inves-
tigate metabolic profiles. The results of principal component analysis (PCA) are shown
in Figure 2A. The control group and treatment group samples were mapped to different
regions, but each parallel sample was mapped to the same region, some of which were
superimposed, indicating good intra-group parallelism and significant inter-group differ-
ences. This demonstrates that 3-fluorophenol exposure had a significant impact on the
intracellular metabolites of C. pyrenoidosa.
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Figure 2. Effects of 3-fluorophenol on the metabolic profiles of Chlorella pyrenoidosa, (A) Principal
component analysis. (B) Heatmap of differential metabolites. (C) Bubble diagram of differential
metabolic pathways.

Based on the criteria of fold change (FC) < −2 or >2 and p-value < 0.05, 172 differential
metabolites were screened, with 80 metabolites upregulated and 92 downregulated. Enrich-
ment of metabolic pathways was carried out using the KEGG database, with 46 metabolites
enriched in glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI)-anchored
protein biosynthesis, autophagy, and other metabolic pathways. The heatmap of differ-
ential metabolites and bubble diagram of differential metabolic pathways are shown in
Figure 2B,C.
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Exposure to 3-fluorophenol resulted in an upregulation of various lipid metabolites
in C. pyrenoidosa, including 9 types of phosphatidylcholines (PC) such as PC (14:0/14:0),
10 types of phosphatidylethanolamines (PE) such as PE (15:0/18:2 (9Z, 12Z)), and hemolytic
phospholipids such as LysoPC (16:0). These metabolites were enriched in glycerophospho-
lipid metabolism (p = 0.0012), GPI-anchored protein biosynthesis (p = 0.057), linoleic acid
metabolism (p = 0.15), and alpha-linolenic acid metabolism (p = 0.16). Glycerophospholipids
play a crucial role in cell membranes, ensuring stability, fluidity, and permeability. They are
also essential for the optimal functioning of membrane proteins, receptors, and ion channels,
and serve as repositories for second messengers and their respective precursors [39,40].

GPI anchoring modification, an important form of protein glycosylation in eukaryotic
cells, plays a key role in signaling, cell growth, immune response, and cell development [41,42].
Autophagy is a cellular self-degradation mechanism in eukaryotes, important for cell
self-protection [43,44]. Unsaturated fatty acids have antioxidant capacity [45], and their
increased content helps maintain cellular metabolic stability. Lipid accumulation is often
a survival strategy of microalgae to protect cells from oxidative stress under stressful
conditions [46]. The upregulation of various lipid metabolites may be essential for C.
pyrenoidosa to resist 3-fluorophenol stress.

Phenylpropanoids are bioactive secondary metabolites biosynthesized by plants from
phenylalanine [47]. This biosynthesis is crucial for plant growth, development, reproduc-
tion, signaling, antioxidant activity, and responses to environmental stimuli, including
tolerance and resistance against abiotic and biotic stresses [46,48–50]. After exposure to
3-fluorophenol, intermediate or final products of the phenylpropanoid pathway (p = 0.097)
in C. pyrenoidosa cells, including anethole, 4-hydroxystyrene, and N1, N5, N10-tricaffeoyl
spermidine, were upregulated, indicating activation of this pathway to help algal cells
resist 3-fluorophenol stress.

Photosynthetic pigment content is a sensitive parameter for algal cells’ response to
environmental stress. After exposure to 3-fluorophenol, levels of chlorophyll-a, chlorophyll-
b, 7-hydroxychlorophyll-a, and cobinamide in C. pyrenoidosa cells were downregulated,
while levels of chlorophyll, adenosyl cobyrinate hexaamide, and Mg-protoporphyrin were
upregulated. These products were enriched in porphyrin metabolism (p = 0.13). The Mg-
porphyrin ring is the core part of the chlorophyll molecule, undergoing reactions such as
reduction and esterification to form chlorophyll-a; during this process, many chlorophyll-a
precursor substances are generated, such as divinylchlorophyll-a. 7-hydroxychlorophyll-a
is an intermediate product of the conversion between chlorophyll-a and -b [51,52]. Addition-
ally, carotenoids, necessary photosynthetic pigments, bind to pigment–protein complexes
on the membrane to exert their effects [53,54]. Exposure to 3-fluorophenol also resulted in
the downregulation of anhydrohodovibrin, beta-cryptoxanthin, chlorobactene, and zeax-
anthin levels in the carotenoid biosynthesis pathway (p = 0.14) of C. pyrenoidosa. It was
observed that 3-fluorophenol significantly inhibited the growth of C. pyrenoidosa after 48 h
of exposure (with an inhibition ratio of 40.80 ± 7.19%), but showed a weak promoting
effect after 96 h. It can be inferred that 3-fluorophenol greatly interferes with the synthesis
of chlorophyll and carotenoids. The downregulation of various intermediate products
likely weakens the cells’ ability to absorb light, hindering photosynthesis. At 96 h, the
photosynthetic system of algal cells is still inhibited.

For algal growth, an inhibitory effect is generally observed in the early treatment
stages, with possible biomass promotion in later stages. The addition of organic pollutants
may provide an organic carbon source, contributing to higher biomass. However, the toler-
ance of algal cells to pollutants shows a significant dose–effect relationship [55]. Generally,
photosynthetic pigments, redox homeostasis, and DNA replication are vulnerable and can
be easily disrupted by pollutants [56]. Chlorella sp. exhibits significant oxidative stress
under cadmium, arsenic, copper, and zinc stress. It reduces oxidative stress by enhanc-
ing the activities of antioxidant enzymes such as SOD, CAT, glutathione reductase (GR),
and ascorbate peroxidase (APX), thereby improving its bioremediation capacity [57–59].
Chlorella sp. can degrade 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) through adsorption,
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uptake, and metabolism, involving debromination, hydroxylation, and methoxylation,
while BDE-47 can induce the production of hydrogen peroxide in the cell wall, plasma
membrane, and chloroplast, enhancing the activity of antioxidant enzymes to alleviate
oxidative stress [60]. Under 4-n-nonylphenol (4-n-NP) stress, Chlorella sp. exhibits disrup-
tions in photosynthesis, carbohydrate metabolism, and protein synthesis, and mitigates the
stress response through redox systems and energy metabolism [61]. Thus, it is inferred that
algae cells exhibit various physiological and biochemical adaptation mechanisms under
exogenous pollutant stress.

The structural characteristics of organic pollutants significantly impact the toxicological
effects and bioremediation capacity of algal cells. For example, compared to 3-fluorophenol,
C. pyrenoidosa exhibits a greater removal capacity for phenol and 4-fluorophenol, with a
bioremoval rate exceeding 70%. The growth promotion under phenol and 4-fluorophenol
stress is attributed to the accumulation of chlorophyll and glycerophospholipids, as well
as reduced oxidative damage [30]. In our study, 3-fluorophenol treatment resulted in the
downregulation of compounds related to porphyrin and carotenoid metabolism, indicating
that the photosynthesis system is susceptible to interference. However, various lipids,
which play pivotal roles in cell membrane integrity, autophagy, and GPI-anchored protein
biosynthesis, were upregulated, suggesting a detoxification mechanism in algal cells. It
has been reported that halogen substitution at the ortho-, meta-, and para-positions of
phenol significantly affects the electron density and reactivity of the compounds [62]. Ortho-
and para-substituted halophenols are more readily biodegradable than meta-substituted
halophenols [11,63]. Consistent with these findings, our study found that C. pyrenoidosa has
greater difficulty in removing 3-fluorophenol and exhibits more sensitive toxicity responses
compared to phenol and 4-fluorophenol.

3.3. Removal of 3-Fluorophenol in the C. pyrenoidosa Solution

In the absence of algal cells, 3-fluorophenol could exist stably in the culture sys-
tem (Supplementary Materials Figure S1). Figure 3A shows the removal efficiency of
3-fluorophenol by C. pyrenoidosa. The residual 3-fluorophenol in the algal solution de-
creased gradually over time. After 240 h of treatment, the residual ratios (Ct/C0) of
3-fluorophenol at initial concentrations of 10, 50, and 100 mg/L were 34.26 ± 3.93%,
49.18 ± 0.64%, and 49.72 ± 3.18%, respectively. These results indicate that the removal
efficiency of C. pyrenoidosa for 3-fluorophenol is strongly dependent on the initial concen-
tration, with lower concentrations showing better reduction efficiency. This finding is
consistent with Sharma et al. [46], who observed a similar decrease in the removal rate of
sodium diclofenac by C. sorokiniana with increasing concentration.
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each group.
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Figure 3B illustrates the concentrations of 3-fluorophenol in the supernatant, sediment,
and total algal solution. After 144 h of exposure, the content of 3-fluorophenol in the
supernatant significantly decreased, while its content in the sediment gradually increased.
During the initial 144 h, the concentration of 3-fluorophenol in the algal solution remained
relatively unchanged but began to decrease gradually thereafter. Organic pollutants are
adsorbed onto the surface of microalgae via various functional groups and are selectively
transported into cells for biodegradation, which is a key mechanism in microalgae biore-
mediation of pollutants [64,65]. The surface of algal cells is rich in biomolecules such
as lipids, polysaccharides, and amino acid residues that contain functional groups like
hydroxyl and amino groups [65,66], Given that 3-fluorophenol is rich in aromatic rings and
fluorine atoms, it is speculated that it is easily adsorbed on the surface of algal cells. The
presence of 3-fluorophenol in the algal solution suggests that adsorption is the primary
mechanism for its decrease during the early exposure stages. In the later stages (e.g., 192 or
240 h), the significant reduction in 3-fluorophenol content in the algal solution indicates
that both adsorption and biodegradation contribute to its removal. Biological adsorption
and biodegradation are distinct pathways, but differentiating between them quantitatively
is challenging because adsorption is a preliminary stage of biodegradation [67,68]. Microal-
gae convert organic pollutants into simpler forms through enzymatic reactions such as
hydrolysis, hydrogenation, hydroxylation, and glycosylation [11]. The biodegradability of
a compound largely depends on its structural complexity; complex cyclic structures are
generally more difficult to biodegrade than linear unsaturated structures [67]. This study
demonstrates the degradation potential of C. pyrenoidosa for 3-fluorophenol.

4. Conclusions

This study developed a method for the biological treatment of 3-fluorophenol us-
ing C. pyrenoidosa. The algae effectively reduced 3-fluorophenol concentrations in water,
achieving over 50% removal. Cell growth exhibited a hormesis effect at concentrations of
10–100 mg/L. The biochemical response of C. pyrenoidosa to 3-fluorophenol stress included
stable levels of soluble proteins, enhanced activity of antioxidant enzymes (SOD and CAT),
and the management of oxidative stress markers such as MDA and ROS. Metabolomics anal-
yses revealed upregulation of lipid metabolism and key pathways such as glycerophospho-
lipid metabolism, autophagy, and GPI-anchored protein biosynthesis, which contributed
to the stabilization of cell membranes and enhanced antioxidant capacity. However, the
downregulation of photosynthetic pigment metabolism pathways indicated vulnerability
in the photosynthetic system under 3-fluorophenol exposure. These findings suggest that
C. pyrenoidosa is a promising biomaterial for the bioremediation of water contaminated
with 3-fluorophenol, due to its ability to maintain stable growth and significantly reduce
pollutant levels.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14080449/s1, Figure S1. Attenuation of 3-fluorophenol in
BG11 medium.
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