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Abstract: Identification of features with high levels of confidence in liquid chromatography–mass
spectrometry (LC–MS) lipidomics research is an essential part of biomarker discovery, but existing
software platforms can give inconsistent results, even from identical spectral data. This poses
a clear challenge for reproducibility in biomarker identification. In this work, we illustrate the
reproducibility gap for two open-access lipidomics platforms, MS DIAL and Lipostar, finding just
14.0% identification agreement when analyzing identical LC–MS spectra using default settings. Whilst
the software platforms performed more consistently using fragmentation data, agreement was still
only 36.1% for MS2 spectra. This highlights the critical importance of validation across positive
and negative LC–MS modes, as well as the manual curation of spectra and lipidomics software
outputs, in order to reduce identification errors caused by closely related lipids and co-elution issues.
This curation process can be supplemented by data-driven outlier detection in assessing spectral
outputs, which is demonstrated here using a novel machine learning approach based on support
vector machine regression combined with leave-one-out cross-validation. These steps are essential
to reduce the frequency of false positive identifications and close the reproducibility gap, including
between software platforms, which, for downstream users such as bioinformaticians and clinicians,
can be an underappreciated source of biomarker identification errors.

Keywords: lipidomics; separation science; mass spectrometry; bioinformatics; machine learning;
retention time

1. Introduction

The identification of lipids allows for biological interpretation, as well as the asso-
ciation of specific lipids with cellular processes, signaling pathways, and disease condi-
tions [1,2]. In addition, bioinformatics allows for the integration of lipidomic identifications
with other omics datasets, such as genomics, proteomics, and metabolomics, to provide a
more comprehensive understanding of cellular processes and interactions [3,4]. Therefore,
accurate and reproducible identification is critical when searching for biomarkers, features
that can indicate the presence or prognostics of a disease, allowing for early diagnosis
and personalized medicine. Conversely, inaccurate identification can lead to incorrect
conclusions and potentially misleading research findings [5–7].

The desire for accurate identification—as in other areas of omics research—has driven
the creation of the Lipidomics Standards Initiative (LSI) [8]. This initiative sets out rec-
ommended procedures for quality controls, reporting checklists, and minimum reported
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information [9,10]. However, the LSI is less mature in its recommendations and imple-
mentation than, for example, the Metabolomics Standards Initiative (MSI), which itself is
still evolving [11,12]. The difficulty in defining parameters for confident annotation partly
reflects the sheer range of potential lipids and matrices, encompassing cells, biofluids,
tissues, plant extracts, and others [13,14]. This range of samples is then multiplied by the
panoply of analytical platforms and separation techniques, such as reversed-phase LC or
hydrophobic interaction LC (HILIC). This makes standards-based matching and other best
practices more challenging, costly, and time-consuming, especially at the discovery stage.

These issues are well described in the literature, but an underappreciated source of
reproducibility problems in untargeted analysis is the lack of consistency in outputs from
lipidomics software platforms. Whilst analytical chemists specializing in lipids will often
be aware of the issues with peak annotation and feature identification, this will not always
be the case for users such as bioinformaticians and clinicians. These software solutions
typically pre-process lipid spectra in a five-step workflow previously summarized by Song
et al. [15], comprising (i) baseline and noise reduction, (ii) peak identification and extraction,
(iii) smoothing, (iv) calculation of signal-to-noise ratios, and (v) isotope identification and
deconvolution. Following these steps, accurate mass-to-charge ratio (m/z) matching is
used for identification, combined with fragmentation spectra derived from MS2. However,
such MS2 spectra are not infallible given the potential for co-elution of lipids within the
precursor ion selection window and co-fragmentation. Furthermore, MS2 may not be
practical for lower-abundance lipids. The same abundance issues hinder ion-mobility mass
spectrometry [16], a powerful technique that allows for the separation of isobaric lipids
but requires specialist instruments and has trade-offs between sensitivity and resolving
power. Inconsistencies can also be driven by the use of different lipid libraries such as
LipidBlast, LipidMAPS, ALEX123, and METLIN [17]. These issues can also be magnified
by different spectral alignment methodologies, which are often opaque to the end user and
can cause substantial differences in peak identification. One inter-laboratory comparison of
lipidomics LC–MS alignment found an agreement for post-processed features of around
40% between the two laboratories [18].

Another reason for inconsistencies between platforms in untargeted analyses and
the need for outlier detection and manual curation is that the majority of lipidomics
software tools do not make full use of retention time (tR), a rich source of information
that has been used extensively in machine learning approaches to improve proteomic
identifications [19–22]. Machine learning methods that use algorithms trained on specific
columns and operating conditions do not generalize well and are not straightforward
to implement across the full range of lipidomics modalities. Whilst the producers of
lipidomics software are, of course, aware of these limitations and recommend that putative
lipid identifications be manually curated, this can be time-consuming, as well as imposing
barriers to entry around lipidomics research for bioinformaticians and clinicians. This is
especially the case in secondary analyses such as obtaining validated biomarkers, meta-
analyses, or systematic reviews [23,24].

Whilst these issues are recognized by the LSI and other best practice guidelines, there
is a paucity of benchmarking of software applications relative to LC–MS methodologies.
In this work, we provide a case study in order to reveal the problems researchers face
in the form of potentially inaccurate biomarker identifications by processing an identical
set of LC–MS spectra using two popular lipidomics platforms: MS DIAL and Lipostar.
Whilst workflows for the individual platforms are well-described, to our knowledge, this is
the first cross-platform comparison on a single LC–MS dataset. We use this case study to
highlight the importance of manual curation and the pitfalls of relying too heavily on ‘top
hit’ software identifications, including for discovery work or where groups do not have
in-house lipid curation libraries. This can be particularly relevant to new researchers in
the field, who may face challenges in receiving sufficient support for analytical training
and education [25]. We also demonstrate a novel data-driven quality control step for
outlier detection applicable to any untargeted lipidomics analysis by using support vector
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machine regression combined with leave-one-out cross-validation to identify potentially
false positive identifications. These types of quality control steps can be performed on
computers typically available in a laboratory setting, without recourse to high-performance
computing clusters, and can support manual inspection processes. Such additional steps,
especially manual curation, are necessary even where MS2 spectra are used, particularly in
instances of conflicting identifications by differing platforms.

2. Materials and Methods
2.1. PANC-1 Lipid Extraction LC–MS Dataset

The lipidomics case study dataset used in this work analyzed a lipid extraction of
a human pancreatic adenocarcinoma cell line (PANC-1, Merck, Gillingham, UK, cat no.
87092802). Lipids were extracted by a modified Folch extraction using a chilled solution
of methanol/chloroform (1:2 v/v) according to the protocol described by Zhang et al.
supplemented with 0.01% butylated hydroxytoluene (BHT) to prevent lipid oxidation [26].
An Avanti EquiSPLASH® LIPIDOMIX® quantitative mass spectrometry internal standard,
a mixture of deuterated lipids, was added to the extract, and the resulting mixture was then
diluted to 280 cells/µL. The final EquiSPLASH concentration was 16 ng/mL. Injections of
5 µL of the lipid extract were analyzed using an Acquity M-Class UPLC system (Waters,
Wilmslow, UK) coupled to a ZenoToF 7600 mass spectrometer (Sciex, Macclesfield, UK)
operated in positive mode. A Luna Omega 3 µm polar C18 column was used (50 × 0.3 mm,
100 Å, Phenomenex, Macclesfield, UK, cat no. 00B-4760-AC) for microflow separation at
8 µL/min. A binary gradient was carried out using eluent A (60:40 acetonitrile/water) and
B (85:10:5 isopropanol/water/acetonitrile), both supplemented with 10 mM ammonium
formate and 0.1% formic acid. Separation was achieved using the following gradient:
0–0.5 min, 40% B; 0.5–5 min, 99% B; 5–10 min, 99% B; 10–12.5 min, 40% B; 12.5–15 min,
40% B. Mass spectrometry settings are set out in Supplementary Material (Table S1). The
analysis was conducted in 2023; the untargeted approach described here, including the use
of positive mode, was adapted from a commonly used method [27].

The output files were then processed in two lipidomics applications, MS DIAL
(v4.9.221218) and Lipostar (v2.1.4) [28,29], using settings set out in full in Supplemen-
tary Material (Tables S2 and S3); settings were chosen to make the assumption sets used by
the two platforms as similar as possible, but the default libraries were used. For data-driven
outlier analysis, a .csv file was prepared for each output, containing the chemical formula
for the parent molecule, the class of lipid, the lipid tR, MS1 and MS2 status, and the putative
identification. Lipids with tR below 1 min were considered to have no column retention
at all (i.e., eluting with the solvent front) and were excluded from the outlier analysis as
having no useful dependent variable.

2.2. Comparison of Outputs

Both Lipostar and MS DIAL produced a list of putative identifications based on both
MS1 and MS2 data. All lipidomics (and omics software in general) rely on user settings but
also built-in analytical steps for alignment and lipid library access, which may produce
inconsistencies. The two output datasets from identical input spectral files were compared
to identify the overlapping and unique lipid annotations. Lipid identifications were only
considered to be in agreement if the formula was identical, the lipid class was identical,
and the aligned retention time was consistent within 5 s between MS DIAL and Lipostar.

2.3. Post-Software Quality Control Checks of Data

Post-software quality control steps were then conducted on the assumption that the
initial output from the lipidomics software would not represent a ‘definitive’ ground
truth. This step—aiming to provide a method and platform-neutral means of improving
confidence in lipid annotations—employed a support vector machine (SVM) regression
algorithm using leave-one-out cross-validation (LOOCV) in order to predict lipid tR [30,31].
The independent variable inputs for the algorithm were the atom count of the parent
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lipid (i.e., numbers of carbon, hydrogen, nitrogen, oxygen, or other atoms) and lipid class,
including inter alia diglycerides (DGs), triglycerides (TGs), phosphatidylcholines (PCs),
and ceramides. tR was the dependent variable. SVM was chosen for its stability of outputs,
ability to deal with multicollinearity, e.g., between carbon and hydrogen atom count (C
and H count hereafter), and efficient execution time relative to tree-based algorithms.
In addition, given an a priori assumption that the latent variables were linear, using
a linear kernel can be preferable to step-function models, which can be more prone to
overfitting [32]. Numeric variables were auto-scaled, and categorical variables (lipid
classes) were one-hot encoded prior to their inclusion [33]. A linear kernel was used with
C = 10, and feature importance was assessed by measuring the explanatory contribution
of each variable by SHAP values (SHapley Additive exPlanations), which quantify how
much each feature contributes to a model’s prediction of the dependent variable, in this
case, tR [34,35]. In some cases, SHAP values for a feature can be misleading due to non-
confounding redundancy, where a feature explains tR but also causally drives another
feature included in the model, which in turn also explains tR [36].

The code was developed in Python using the scikit-learn (v1.3), shap (v0.43.0), and
chemparse (v0.1.2) libraries [37–39]. The tqdm (vv4.66.1) library was used to include
progress bars for the more time-intensive processes [40]. This code is provided in full
as a Jupyter Notebook together with the original raw spectral files and the processed
outputs from Lipostar and MS DIAL (as described under Data Availability) and requires
no additional software other than a Python environment. The code described in this work
was run on a standard Windows PC with a 12th Gen Intel Core i7 CPU paired with 32.0 GB
of memory, without employing GPU resources, using the Spyder IDE [41].

As a final step in assessing differences in MS2 spectra, lipid identifications were
then reviewed based on confidence criteria reported by the two software platforms and
then manually inspected in SCIEX (v3.0.0.3339), with a particular focus on (i) outliers
identified by the SVM with LOOCV algorithm described above and (ii) lipids where MS
DIAL and Lipostar provided conflicting identifications in spite of MS2 fragmentation data
being available.

3. Results
3.1. Comparison of MS DIAL and Lipostar Outputs

MS DIAL produced 907 putative lipid identifications across 64 lipid classes from the
PANC-1 LC–MS spectra, the most common of which being ceramides (232 identifications
across six subclasses), ether PCs (75), and PCs (72). Retention times varied from 1.1 min to
12.4 min, and m/z values ranged from 153.1 to 898.8. Lipostar produced 979 putative lipid
identifications across 43 lipid classes, the most common of which were PCs (151 identifica-
tions), DGs (130), and ceramides (114). Retention times for the Lipostar-identified peaks
varied from 1.1 min to 12.3 min, and m/z values ranged from 177.1 to 889.7.

As a simple measure of agreement and disagreement, Figure 1 shows the common
(same formula, tR, and lipid class) and unique identifications for the MS1-only features
and also the features with MS2 data. In total, the two platforms generated 1653 unique
identifications, of which 231 were common to both platforms, or 14.0%. The breakdown of
the lipid classes by matched and unmatched status is shown in Figure 2.

3.2. Data-Driven Investigation of Putative Lipid Identifications

In line with best practice, and given the low numbers of common identifications for
the PANC-1 dataset between the two platforms, additional investigations were undertaken.
First, both platforms provide a variety of ‘scores’ to help assess confidence in the annotation.
For Lipostar, the overall identification score is based on a weighted average of mass score,
isotopic pattern score, and fragment score (which itself is a geometric average of the
number of fragments score multiplied by ion intensity score) [28]. For MS DIAL, the overall
identification score is calculated as a weighted average of MS2 similarity, MS1 similarity,
retention time similarity, and isotopic similarity [42]. The two ‘scores’ are calculated in
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different ways; therefore, they should not be directly compared, but as shown in Figure 3,
there was no clean ‘score’ threshold to identify matched/overlapping features versus non-
matched features. Whilst the software platforms generally reported a higher ‘score’ for
features identified by both platforms, the overlap was far from perfect.

Metabolites 2024, 14, x FOR PEER REVIEW  5  of  14 
 

 

 

Figure 1. Distinct and overlapping  identifications between Lipostar and MS DIAL.  (A) MS1 data 

only and (B) MS2 data only. 

 

Figure 2. Breakdown of lipid classes identified: (A) common MS2 identifications and (B) unique MS2 

identifications. 

3.2. Data‐Driven Investigation of Putative Lipid Identifications 

In line with best practice, and given the low numbers of common identifications for 

the PANC-1 dataset between  the  two platforms, additional  investigations were under-

taken. First, both platforms provide a variety of ‘scores’ to help assess confidence in the 

annotation. For Lipostar, the overall identification score is based on a weighted average 

of mass score, isotopic pattern score, and fragment score (which itself is a geometric aver-

age of the number of fragments score multiplied by ion intensity score) [28]. For MS DIAL, 

the overall identification score is calculated as a weighted average of MS2 similarity, MS1 

similarity, retention time similarity, and isotopic similarity [42]. The two ‘scores’ are cal-

culated in different ways; therefore, they should not be directly compared, but as shown 

in Figure 3, there was no clean ‘score’ threshold to identify matched/overlapping features 

versus non-matched features. Whilst the software platforms generally reported a higher 

‘score’ for features identified by both platforms, the overlap was far from perfect. 

Figure 1. Distinct and overlapping identifications between Lipostar and MS DIAL. (A) MS1 data only
and (B) MS2 data only.

Metabolites 2024, 14, x FOR PEER REVIEW  5  of  14 
 

 

 

Figure 1. Distinct and overlapping  identifications between Lipostar and MS DIAL.  (A) MS1 data 

only and (B) MS2 data only. 

 

Figure 2. Breakdown of lipid classes identified: (A) common MS2 identifications and (B) unique MS2 

identifications. 

3.2. Data‐Driven Investigation of Putative Lipid Identifications 

In line with best practice, and given the low numbers of common identifications for 

the PANC-1 dataset between  the  two platforms, additional  investigations were under-

taken. First, both platforms provide a variety of ‘scores’ to help assess confidence in the 

annotation. For Lipostar, the overall identification score is based on a weighted average 

of mass score, isotopic pattern score, and fragment score (which itself is a geometric aver-

age of the number of fragments score multiplied by ion intensity score) [28]. For MS DIAL, 

the overall identification score is calculated as a weighted average of MS2 similarity, MS1 

similarity, retention time similarity, and isotopic similarity [42]. The two ‘scores’ are cal-

culated in different ways; therefore, they should not be directly compared, but as shown 

in Figure 3, there was no clean ‘score’ threshold to identify matched/overlapping features 

versus non-matched features. Whilst the software platforms generally reported a higher 

‘score’ for features identified by both platforms, the overlap was far from perfect. 

Figure 2. Breakdown of lipid classes identified: (A) common MS2 identifications and (B) unique MS2

identifications.

Metabolites 2024, 14, x FOR PEER REVIEW  6  of  14 
 

 

 

Figure 3. Violin plots for annotation confidence scores of matching and non-matching lipid identi-

fications for Lipostar and MS DIAL. Individual scores range from 0 to 100. MS2 identifications are 

only shown here. 

Next, a platform-independent data-driven approach was adopted by assessing the 

overall internal consistency of the elution order of the lipid annotations produced by each 

software package to identify outliers versus expected tR values. This was performed with-

out reference to external data, such as custom libraries. The analysis was performed using 

SVM regression combined with LOOCV, which was applied only to the data internal to 

the LC–MS spectra analyzed. For the MS DIAL dataset, the algorithm assessed the identi-

fications as being 80.1% internally consistent (i.e., with 19.9% of identifications being fur-

ther than 5% of the LC–MS runtime from their predicted values). For the Lipostar dataset, 

the algorithm assessed the identifications as being 69.1% internally consistent, i.e., the li-

pid identifications showed less internal consistency than with MS DIAL. As a simple met-

ric for overall identification performance, these percentages were consistent with the two 

platforms being unable to fully validate each others’ identifications (Figure 1B). 

The Python code used for this data-driven approach also generated a number of vis-

ualizations to support post-software investigation of annotations. These are illustrated in 

Figure 4 for the MS DIAL dataset. The outlier algorithm identified three categories of out-

lier lipids where tR was potentially inconsistent with the lipid identification provided by 

the software. The first category of outliers included cases where lipid identifications were 

outside  the range of  the vast majority of  lipids  in  their class, given comparable carbon 

counts. The process of identifying clear outliers can be seen by a simple visual comparison 

of actual tR versus the SVM-predicted tR in Figure 4A,B. 

Figure 3. Violin plots for annotation confidence scores of matching and non-matching lipid identifica-
tions for Lipostar and MS DIAL. Individual scores range from 0 to 100. MS2 identifications are only
shown here.



Metabolites 2024, 14, 461 6 of 13

Next, a platform-independent data-driven approach was adopted by assessing the
overall internal consistency of the elution order of the lipid annotations produced by
each software package to identify outliers versus expected tR values. This was performed
without reference to external data, such as custom libraries. The analysis was performed
using SVM regression combined with LOOCV, which was applied only to the data internal
to the LC–MS spectra analyzed. For the MS DIAL dataset, the algorithm assessed the
identifications as being 80.1% internally consistent (i.e., with 19.9% of identifications being
further than 5% of the LC–MS runtime from their predicted values). For the Lipostar
dataset, the algorithm assessed the identifications as being 69.1% internally consistent, i.e.,
the lipid identifications showed less internal consistency than with MS DIAL. As a simple
metric for overall identification performance, these percentages were consistent with the
two platforms being unable to fully validate each others’ identifications (Figure 1B).

The Python code used for this data-driven approach also generated a number of
visualizations to support post-software investigation of annotations. These are illustrated
in Figure 4 for the MS DIAL dataset. The outlier algorithm identified three categories of
outlier lipids where tR was potentially inconsistent with the lipid identification provided
by the software. The first category of outliers included cases where lipid identifications
were outside the range of the vast majority of lipids in their class, given comparable carbon
counts. The process of identifying clear outliers can be seen by a simple visual comparison
of actual tR versus the SVM-predicted tR in Figure 4A,B.

The second category of outliers was unexpected variations in elution time in sequences
of double bonds. An example is shown in Table 1, where decreasing saturation (increas-
ing hydrogen count) of TGs was associated with increasing tR. However, in the case of
C51H98O6, this relationship was inconsistent. The third category of outliers is related to
head group ordering. PCs are formed of a quaternary charged amine and two fatty acid
chains. DGs are formed of glycerol with two fatty acid chains. The charged quaternary
amine renders PCs more hydrophilic than DGs, and so on a C18 column, PCs with equiva-
lent fatty acid chains would be expected to elute earlier than DGs, not at the same time; an
example is shown in Table 1.

Table 1. Example lipids flagged for review versus those with an internally consistent tR—MS DIAL
dataset.

MS DIAL Identified Features Actual tR (min) Predicted tR (min) ∆ (min)

Inconsistencies in tR: saturation

TG C51H92O6 7.42 7.49 0.07
TG C51H94O6 7.55 7.57 0.02
TG C51H96O6 7.69 7.65 −0.04
TG C51H98O6 6.62 7.74 1.12

Inconsistencies in tR: headgroups

DG C36H61D7O5 6.55 6.52 −0.03
PC C36H64NO8P 6.50 5.42 −1.08

Bold text indicates >5% run-time ∆, flagged for review.

SHAP values were used to assess feature importance for the outlier detection algorithm
and are summarized in Figure 4D. SHAP value beeswarm plots show the contribution of
each variable (C count, headgroup, etc., on the y-axis) to each individual forecast of tR for
each lipid (the model output on the x-axis) and provide more individual detail than a plot
of overall feature importances. H count was the most explanatory variable, with higher-
than-average numbers of H atoms (red) associated with increased model output (predicted
tR). H count was selected by the model over C count, but it should be noted that this is
an example of non-confounding redundancy, as both H and C are causally driven by the
same latent variable, in this case, the length of acyl chains. Given the information already
available from the H count, in practice, increased C count for a given value of H reduced
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predicted tR slightly. This represents the saturation latent variable (i.e., changes in the CH
relationship). The SHAP values also show the impact of the headgroup independently—for
example, if all other variables were held equal, a PC headgroup would reduce tR.
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Figure 4. (A,B) Actual and predicted tR plotted as boxplots by lipid class: 8 most abundant lipid
classes shown. The upper and lower bounds of boxes show the interquartile range. (C) predicted
tR plotted against carbon atom count, with lipid class shown by color, for 8 most abundant lipid
classes. (D) SHAP value beeswarm plots for feature importance, atom count, and 8 most abundant
lipid classes shown—x-axis represents the impact on model output (predicted tR), each dot represents
a sample. The color scale indicates the impact of feature value, where red is an above-average
value for a feature such as carbon count, and blue is a below-average value for a feature. TG—
triglycerides, SM—sphingomyelins, SL—sphingolipids, PC—phosphatidylcholines, Cer—ceramides
including alpha-hydroxy ceramides (Cer_AP), non-hydroxy ceramides containing dihydrosphingo-
sine (Cer_NDS), and hydroxy ceramides containing dihydrosphingosine (Cer_HDS).
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3.3. Manual Investigation of Putative Lipid Identifications

Following the data-driven steps described in the preceding section, MS2 spectra for
the lipids were investigated, paying particular attention to any flagged by the SVM outlier
analysis or to those with inconsistent identifications between MS DIAL and Lipostar. A
number of lipid identifications were found to have MS2 spectra inconsistent with the
putative software identifications, falling under two headings.

Co-elution problems: where several lipids elute at the same time (i.e., within the
precursor ion selection window), a variety of lipid fragments may be present in the MS2

spectra. An example of this is shown in Table 2 at tR 6.78 and 6.80. MS DIAL identified
one DG, one TG, and two ceramides. At the same tR, Lipostar identified three DGs, one
TG, and one ceramide. Manual inspection of the MS2 spectra (shown in Supplementary
Materials, Figure S1) indicated that the four MS DIAL identifications were correct, and so
also were three of the Lipostar identifications, i.e., both platforms missed lipids identified
by the other platform. Lipostar additionally generated two identifications that could not be
validated by manual inspection.

Table 2. Conflicting identifications: MS DIAL versus Lipostar.

MS DIAL Identified Features tR (min) Lipostar Identified Features tR (min)

Identification problems: co-elution of lipids

DG 34:0|DG 16:0_18:0 6.78 DG (15:0/16:0/0:0) 6.78
TG 41:1;O|TG 9:0_17:0_15:1;O 6.78 DG (15:1/18:1/0:0) 6.78
Cer 42:2;O2|Cer 18:1;O2/24:1 6.80 TG (13:0/13:0/16:0) 6.78
Cer 42:2;O2|Cer 18:1;O2/24:1 6.80 DG (15:0/18:1/0:0) 6.79

Cer (51:1) 6.80

Identification problems: misidentifications

PC 37:7|PC 15:1_22:6 6.00 PE (40:7) 6.00

Insufficient data: in some instances, the software may simply make an identification
where there are insufficient data for a definitive identification. An example is the confusion
of PCs and PEs, closely related lipids based on a glycerol backbone, two fatty acid chains, a
phosphate group, and a choline or ethanolamine group, respectively. MS DIAL tended to
identify these features as PCs, and Lipostar tended to identify the features as PEs. In the
example in Table 2 at tR 6.00 min, manual inspection of the MS2 spectrum indicated that
there was insufficient information to be definitive either way (shown in Supplementary
Materials, Figure S2).

4. Discussion

The ongoing issues around reproducibility in biostatistics and bioinformatics are well-
described [43,44]. These issues have a number of causes, such as insufficient documentation,
inappropriate applications of hypothesis testing, or poor study design. These challenges
also extend to metabolomic and lipidomic biomarker identifications, with consequences for
reproducibility when developing diagnostic and prognostic panels [5,45,46]. The challenge
can be further exacerbated by the issue shown in this work of inconsistent identifications
being produced by different software platforms, even from the same spectral data. Here,
agreement on lipid identifications for a bulk cell lysate between Lipostar and MS DIAL, two
open-source lipidomics platforms in common use, was just 14.0% overall. In addition, in-
built scores for identification confidence were, in our view, insufficient for the complexities
of the issue at hand, warranting further steps to define the data. The headline differences are
partly attributable to different underlying databases (MS DIAL partly uses LipidBlast [47],
and LipoStar uses LipidMAPS [48]). Inconsistencies can be reduced through the exclusion
of MS1 identifications, careful manual curation, and experimental iteration. Nonetheless,
the lack of consistency can still present a challenge to researchers.
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One approach to dealing with potential problems in LC–MS analysis is outlier de-
tection. The novel SVM regression with the LOOCV method described here successfully
identified the major physicochemical properties governing elution order. This was achieved
by using H count for acyl length, the CH relationship to identify saturation as a latent
variable [49], and automatically identifying the hydrophobicity of lipid headgroups and
their influence on tR, for example, correctly ordering PC and DG headgroups [50]. Crucially,
the algorithm can incorporate all these latent variables in its decision-making instead of
relying on one variable for assessment; a comparison based solely on C count, for example,
cannot provide significant information about tR. Interestingly, whilst equivalent carbon
number and its relationship with retention time has been proposed as a means of verifying
tR [51], the data-driven approach described here finds better performance from H count
in identifying the latent variable (in this case, acyl length), with C count exhibiting non-
confounding redundancy. For MS DIAL, outlier detection estimated the peak identifications
as 19.9% internally inconsistent and the Lipostar peak identifications as 30.9% internally
inconsistent. Taken in combination with the limited overlap between identifications of just
14%, these observations are strongly suggestive that a significant proportion of ‘top hit’
lipid identifications would pose reproducibility problems.

MS1 spectra are generally deemed insufficient for lipid identification, especially for
QTOF instruments, which in many cases have lower mass accuracy than Orbitrap mass
spectrometers. Consequently, the best practice in lipidomics is to use only MS2 identifica-
tions [6], but even here, the agreement was not perfect. Only 36.1% of MS2 identifications
could be matched between MS DIAL and LipoStar, and the outlier detection algorithm
found that 5.3% of MS DIAL and 22.4% of Lipostar putative MS2 identifications were
internally inconsistent. This lack of consistency in MS2 identifications—both internally
and between platforms—was driven by co-elution issues and closely related lipids being
difficult to distinguish from each other. Consistency was greatest for the major lipid classes,
especially TGs and PCs, and lowest for minor lipid classes. This inconsistency between
different software platforms for MS2 identifications presents a clear challenge for the inter-
pretation of results, especially for bioinformaticians and clinicians who are less familiar
with LC–MS workflows. These results demonstrate that ‘top hit’ identifications by a single
software platform should never be taken as a ‘given’ by users of lipidomics research. Based
on these findings, software versions and settings are as critical to best practice in reporting
as instrumental settings and yet are not given the same prominence in lipid research or in
guidelines such as the Lipidomics Minimal Reporting Checklist [10].

Many existing strategies exist to deal with the problem of misidentifications. Visual-
ization tools such as Kendrick mass defect plots can help spot outliers but do not take into
account the full range of variables available to the statistical learning approach described
here [52]. Other strategies include the use of internal standards, but such standards are
expensive, often only offer a small number of standards per lipid class, and can be deployed
in a more focused manner once appropriate targets have been identified at the discovery
stage. In this case study, the Avanti EquiSPLASH® LIPIDOMIX® standard was used, but
this includes only 14 deuterated lipids in the major lipid classes, for example, including
just one DG. This can confirm overall LC–MS performance and identify the rough tR range
for a lipid class within a run but is of lesser use in identifying specific lipids—increasing
the number of deuterated standards can be prohibitively expensive, especially in discovery
work. Inevitably, inaccurate identifications at the discovery stage pose costs and challenges
later on. Data-driven approaches either rely on multiple repeats of the experiment to
provide separate training and test sets such as QSSR [53] or the use of specific libraries
for samples or methods, for example, data on tR values for human plasma lipids or on
collision cross sections [54,55]. These library-driven approaches will not reflect the wide
range of analytical columns, mobile phases, platforms, and sampling matrices, especially
at the discovery stage.

These results also demonstrate that reporting software platform confidence ‘scores’
can be helpful but is insufficient for definitive identification (and, at worst, may produce
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unwarranted confidence). In addition to these automated steps of outlier detection and
reporting of confidence criteria, manual inspection is essential for all potential biomarkers
of interest. For example, a manual inspection can check for biological consistency, an impor-
tant step in lipid review, e.g., flagging the presence of plant-based lipids such as sulfolipids
as incongruous in a human plasma sample [56]. It will also frequently be the only means of
checking the validity of outlier observations, distinguishing closely related lipids such as
PCs and PEs, and resolving problems with co-eluting lipid identifications. There may even
be merit in analyzing data using more than one lipidomics software platform—as shown
here, neither MS DIAL nor Lipostar alone showed the level of sensitivity or specificity for
lipid identifications that would be required for reproducible identifications. Other solutions
include extending chromatography run-time, which can help with the co-elution of lipids;
running samples in negative mode, as well as positive mode, is also strongly recommended
for improved feature annotation. While not an option for the ZenoToF 7600 instrument
used in this case study, for some instruments, polarity switching can also be used to offer
positive and negative modes within a single run [57]. As with increasing the number of
deuterated standards, these solutions can involve cost and sensitivity trade-offs and often
require different gradients or phases. As an example, ammonium acetate is better for
negative mode, whereas ammonium formate was used here. For targeted work, naturally,
such steps become more practical.

This case study only compares two lipidomics platforms, MS DIAL and Lipostar.
Many other platforms are available, such as Progenesis QI or LipidSearch, and a more
comprehensive exercise to benchmark the full range of platforms across multiple test
datasets (covering different biological matrices and instrument methodologies) would have
considerable value in highlighting the strengths and weaknesses of each. As previously
noted, operating in negative mode as well as positive mode would improve consistency,
as certain lipid classes, such as TGs, ionize well only in positive polarity, whilst negative
polarity can produce better outputs for phospholipids. In addition, both MS DIAL and
Lipostar can import different libraries, and harmonizing the libraries used would reduce
differential identifications. These are all issues that could be further addressed in future
work and investigations. Nonetheless, our emphasis here is to highlight that in untargeted
lipidomics—especially when using default settings and libraries—the complexity of multi-
ple theoretical lipid identifications is one of the major pitfalls for (new) investigators. Many
lipid MS studies contain serious errors [58], and this emphasizes the importance of the
additional curation steps outlined here.

5. Conclusions

In this work, we demonstrate the challenges for reproducibility derived from the
choice of lipidomics software platform, an under-investigated source of inconsistencies
when identifying lipid biomarkers of interest. This is an important issue, especially for
bioinformaticians and clinicians (or indeed generalist readers) when using analytical LC–
MS outputs. We also show that a data-driven workflow for outlier detection can learn
the latent variables that govern the order of elution and tR, but manual curation will
still be required. This is especially the case where MS2 data are challenged by co-elution
issues or where lipid classes are similar. In-built software scoring and checks are helpful
but, in our view, insufficient, necessitating additional quality control workflow steps.
These are essential to reduce inconsistencies in identifications when different groups use
different lipidomics platforms, to address problems with reproducibility and replicability
for end users of LC–MS data, and to improve confidence in bioinformatics analyses using
lipid biomarkers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo14080461/s1, Table S1: Mass spectrometry settings; Table S2:
MS Dial settings for the PANC1 data; Table S3: Lipostar settings for the PANC1 data; Figure S1:
Fragmentation spectra for co-eluting lipids, tR between 6.78 and 6.80; Figure S2: Fragmentation

https://www.mdpi.com/article/10.3390/metabo14080461/s1
https://www.mdpi.com/article/10.3390/metabo14080461/s1
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spectra for conflicting identifications contain different indicators of co-eluting PE (neutral loss of
141 Da), PC (fragment ion of 184 Da) and even PS (neutral loss of 185 Da).
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