The Effects of Maternal Nutrient Restriction during Mid to Late Gestation with Realimentation on Fetal Metabolic Profiles in the Liver, Skeletal Muscle, and Blood in Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection
2.3. Metabolomic Analysis
2.3.1. Sample Preparation
2.3.2. Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS)
2.3.3. Data Extraction and Compound Identification
2.4. Statistical Analysis
3. Results
3.1. Metabolites Identified
3.2. Effects of Maternal Nutrient Restriction on Metabolic Pathways Specific to Tissue
3.3. Effects of Maternal Nutrient Restriction at Day 90 of Gestation in Liver, Longissimus Dorsi, and Blood
3.4. Effects of Maternal Diet in Liver, Longissimus Dorsi, and Blood at Day 130 of Gestation
3.5. Effects of Diet on Metabolites across All Tissues at Day 130 of Gestation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cianfarani, S.; Agostoni, C.; Bedogni, G.; Berni Canani, R.; Brambilla, P.; Nobili, V.; Pietrobelli, A. Effect of Intrauterine Growth Retardation on Liver and Long-Term Metabolic Risk. Int. J. Obes. 2012, 36, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.P.; Borowicz, P.P.; Caton, J.S.; Crouse, M.S.; Dahlen, C.R.; Ward, A.K. Developmental Programming of Fetal Growth and Development. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 229–247. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Yin, J.; Zhu, M.J. Cellular Signaling Pathways Regulating the Initial Stage of Adipogenesis and Marbling of Skeletal Muscle. Meat Sci. 2010, 86, 103–109. [Google Scholar] [CrossRef]
- Du, M.; Wang, B.; Fu, X.; Yang, Q.; Zhu, M.J. Fetal Programming in Meat Production. Meat Sci. 2015, 109, 40–47. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. BOARD-INVITED REVIEW: Intrauterine Growth Retardation: Implications for the Animal Sciences. J. Anim. Sci. 2006, 84, 2316–2337. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.L.; Peck, K.N.; Forella, M.E.; Fox, A.R.; Govoni, K.E.; Zinn, S.A. The Effects of Poor Maternal Nutrition during Gestation on Postnatal Growth and Development of Lambs. J. Anim. Sci. 2016, 94, 789–799. [Google Scholar] [CrossRef]
- Ford, S.P.; Long, N.M. Evidence for Similar Changes in Offspring Phenotype Following Either Maternal Undernutrition or Overnutrition: Potential Impact on Fetal Epigenetic Mechanisms. Reprod. Fertil. Dev. 2011, 24, 105–111. [Google Scholar] [CrossRef]
- Ford, S.P.; Hess, B.W.; Schwope, M.M.; Nijland, M.J.; Gilbert, J.S.; Vonnahme, K.A.; Means, W.J.; Han, H.; Nathanielsz, P.W. Maternal Undernutrition during Early to Mid-Gestation in the Ewe Results in Altered Growth, Adiposity, and Glucose Tolerance in Male Offspring. J. Anim. Sci. 2007, 85, 1285–1294. [Google Scholar] [CrossRef]
- Martin, D.E.; Jones, A.K.; Pillai, S.M.; Hoffman, M.L.; McFadden, K.K.; Zinn, S.A.; Govoni, K.E.; Reed, S.A. Maternal Restricted- and Over-Feeding During Gestation Result in Distinct Lipid and Amino Acid Metabolite Profiles in the Longissimus Muscle of the Offspring. Front. Physiol. 2019, 10, 515. [Google Scholar] [CrossRef]
- Hyatt, M.A.; Gardner, D.S.; Sebert, S.; Wilson, V.; Davidson, N.; Nigmatullina, Y.; Chan, L.L.Y.; Budge, H.; Symonds, M.E. Suboptimal Maternal Nutrition, during Early Fetal Liver Development, Promotes Lipid Accumulation in the Liver of Obese Offspring. Reproduction 2011, 141, 119–126. [Google Scholar] [CrossRef]
- George, L.A.; Zhang, L.; Tuersunjiang, N.; Ma, Y.; Long, N.M.; Uthlaut, A.B.; Smith, D.T.; Nathanielsz, P.W.; Ford, S.P. Early Maternal Undernutrition Programs Increased Feed Intake, Altered Glucose Metabolism and Insulin Secretion, and Liver Function in Aged Female Offspring. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2012, 302, R795–R804. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Guo, C.; Hu, F.; Zhu, W.; Mao, S. Maternal Undernutrition Induces Fetal Hepatic Lipid Metabolism Disorder and Affects the Development of Fetal Liver in a Sheep Model. FASEB J. 2019, 33, 9990–10004. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Guo, C.; Hu, F.; Zhu, W.; Mao, S. Undernutrition-induced Lipid Metabolism Disorder Triggers Oxidative Stress in Maternal and Fetal Livers Using a Model of Pregnant Sheep. FASEB J. 2020, 34, 6508–6520. [Google Scholar] [CrossRef]
- Barker, D.J.P. The Malnourished Baby and Infant. Br. Med. Bull. 2001, 60, 69–88. [Google Scholar] [CrossRef]
- Symonds, M.E.; Sebert, S.P.; Hyatt, M.A.; Budge, H. Nutritional Programming of the Metabolic Syndrome. Nat. Rev. Endocrinol. 2009, 5, 604–610. [Google Scholar] [CrossRef]
- Mangel, M.; Munch, S.B. A Life-History Perspective on Short- and Long-Term Consequences of Compensatory Growth. Am. Nat. 2005, 166, E155–E176. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.O.; Nager, R.G.; Monaghan, P. Compensatory Growth Impairs Adult Cognitive Performance. PLoS Biol. 2006, 4, e251. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.M.; Camacho, L.E.; Ebarb, S.M.; Swanson, K.C.; Vonnahme, K.A.; Stelzleni, A.M.; Johnson, S.E. Realimentation of Nutrient Restricted Pregnant Beef Cows Supports Compensatory Fetal Muscle Growth1. J. Anim. Sci. 2013, 91, 4797–4806. [Google Scholar] [CrossRef] [PubMed]
- Field, M.E.; Anthony, R.V.; Engle, T.E.; Archibeque, S.L.; Keisler, D.H.; Han, H. Duration of Maternal Undernutrition Differentially Alters Fetal Growth and Hormone Concentrations. Domest. Anim. Endocrinol. 2015, 51, 1–7. [Google Scholar] [CrossRef]
- Hornick, J.L.; Van Eenaeme, C.; Clinquart, A.; Diez, M.; Istasse, L. Different Periods of Feed Restriction before Compensatory Growth in Belgian Blue Bulls: I. Animal Performance, Nitrogen Balance, Meat Characteristics, and Fat Composition. J. Anim. Sci. 1998, 76, 249–259. [Google Scholar] [CrossRef]
- Smith, B.I.; Liefeld, A.; Vásquez-Hidalgo, M.A.; Vonnahme, K.A.; Grazul-Bilska, A.T.; Swanson, K.C.; Mishra, N.; Reed, S.A.; Zinn, S.A.; Govoni, K.E. Mid- to Late-Gestational Maternal Nutrient Restriction Followed by Realimentation Alters Development and Lipid Composition of Liver and Skeletal Muscles in Ovine Fetuses. J. Anim. Sci. 2021, 99, skab299. [Google Scholar] [CrossRef] [PubMed]
- Westerblad, H.; Bruton, J.D.; Katz, A. Skeletal Muscle: Energy Metabolism, Fiber Types, Fatigue and Adaptability. Exp. Cell Res. 2010, 316, 3093–3099. [Google Scholar] [CrossRef]
- Rui, L. Energy Metabolism in the Liver. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2014; pp. 177–197. [Google Scholar]
- Barry, J.S.; Anthony, R.V. The Pregnant Sheep as a Model for Human Pregnancy. Theriogenology 2008, 69, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Trotta, R.J.; Vasquez-Hidalgo, M.A.; Vonnahme, K.A.; Swanson, K.C. Effects of Nutrient Restriction During Midgestation to Late Gestation on Maternal and Fetal Postruminal Carbohydrase Activities in Sheep. J. Anim. Sci. 2020, 98, skz393. [Google Scholar] [CrossRef] [PubMed]
- Trotta, R.J.; Vasquez-Hidalgo, M.A.; Smith, B.I.; Reed, S.A.; Govoni, K.E.; Vonnahme, K.A.; Swanson, K.C. Timing of Maternal Nutrient Restriction during Mid-to Late-Gestation Influences Net Umbilical Uptake of Glucose and Amino Acids in Adolescent Sheep. J. Anim. Sci. 2023, 101, skad383. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Hidalgo, M.A.; Grazul-Bilska, A.T.; Swanson, K.C.; Perry, G.A.; Vonnahme, K.A. Timing and Duration of Nutrient Restriction and Its Impacts on Placental Development and Umbilical Blood Flow in Adolescent Sheep. Theriogenology 2023, 209, 21–30. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Wang, Y.; Wang, C.-H.; Zhang, Y.-F.; Zhu, L.; Lei, H.-M.; Tang, Y.-B. UPLC-MS-Based Metabolomics Reveals Metabolic Dysregulation in ALDH1A1-Overexpressed Lung Adenocarcinoma Cells. Metabolomics 2019, 15, 52. [Google Scholar] [CrossRef]
- Marciniak, A.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Marciniak, B.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Fetal Programming of the Metabolic Syndrome. Taiwan J. Obstet. Gynecol. 2017, 56, 133–138. [Google Scholar] [CrossRef]
- Owens, J.A.; Kind, K.L.; Carbone, F.; Robinson, J.S.; Owens, P.C. Circulating Insulin-like Growth Factors-I and -II and Substrates in Fetal Sheep Following Restriction of Placental Growth. J. Endocrinol. 1994, 140, 5–13. [Google Scholar] [CrossRef]
- Argilés, J.M.; Campos, N.; Lopez-Pedrosa, J.M.; Rueda, R.; Rodriguez-Mañas, L. Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease. J. Am. Med. Dir. Assoc. 2016, 17, 789–796. [Google Scholar] [CrossRef]
- Gancheva, S.; Jelenik, T.; Álvarez-Hernández, E.; Roden, M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol. Rev. 2018, 98, 1371–1415. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.A.; Raja, J.S.; Hoffman, M.L.; Zinn, S.A.; Govoni, K.E. Poor Maternal Nutrition Inhibits Muscle Development in Ovine Offspring. J. Anim. Sci. Biotechnol. 2014, 5, 43. [Google Scholar] [CrossRef]
- Bremer, J. Carnitine—Metabolism and Functions. Physiol. Rev. 1983, 63, 1420–1480. [Google Scholar] [CrossRef]
- Rebouche, C.J.; Paulson, D.J. Carnitine Metabolism and Function in Humans. Annu. Rev. Nutr. 1986, 6, 41–66. [Google Scholar] [CrossRef]
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine Transport and Fatty Acid Oxidation. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2016, 1863, 2422–2435. [Google Scholar] [CrossRef] [PubMed]
- Manta-Vogli, P.D.; Schulpis, K.H.; Dotsikas, Y.; Loukas, Y.L. The Significant Role of Carnitine and Fatty Acids during Pregnancy, Lactation and Perinatal Period. Nutritional Support in Specific Groups of Pregnant Women. Clin. Nutr. 2020, 39, 2337–2346. [Google Scholar] [CrossRef] [PubMed]
- Manta-Vogli, P.D.; Schulpis, K.H.; Dotsikas, Y.; Loukas, Y.L. The Significant Role of Amino Acids during Pregnancy: Nutritional Support. J. Matern.-Fetal Neonatal Med. 2020, 33, 334–340. [Google Scholar] [CrossRef]
- Barmore, W.; Azad, F.; Stone, W.L. Physiology, Urea Cycle; StatPearls: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Schutz, Y. Protein Turnover, Ureagenesis and Gluconeogenesis. Int. J. Vitam. Nutr. Res. 2011, 81, 101–107. [Google Scholar] [CrossRef]
- Kwon, H.; Ford, S.P.; Bazer, F.W.; Spencer, T.E.; Nathanielsz, P.W.; Nijland, M.J.; Hess, B.W.; Wu, G. Maternal Nutrient Restriction Reduces Concentrations of Amino Acids and Polyamines in Ovine Maternal and Fetal Plasma and Fetal Fluids1. Biol. Reprod. 2004, 71, 901–908. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino Acid Nutrition in Animals: Protein Synthesis and Beyond. Annu. Rev. Anim. Biosci. 2014, 2, 387–417. [Google Scholar] [CrossRef]
- Waterland, R.A. Assessing the Effects of High Methionine Intake on DNA Methylation. J. Nutr. 2006, 136, 1706S–1710S. [Google Scholar] [CrossRef]
- Zhang, N. Role of Methionine on Epigenetic Modification of DNA Methylation and Gene Expression in Animals. Anim. Nutr. 2018, 4, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Eklund, M.; Bauer, E.; Wamatu, J.; Mosenthin, R. Potential Nutritional and Physiological Functions of Betaine in Livestock. Nutr. Res. Rev. 2005, 18, 31–48. [Google Scholar] [CrossRef]
- Petronini, P.G.; De Angelis, E.M.; Borghetti, P.; Borghetti, A.F.; Wheeler, K.P. Modulation by Betaine of Cellular Responses to Osmotic Stress. Biochem. J. 1992, 282 Pt 1, 69–73. [Google Scholar] [CrossRef]
- Fernández, C.; Gallego, L.; Lopez-Bote, C.J. Effect of Betaine on Fat Content in Growing Lambs. Anim. Feed Sci. Technol. 1998, 73, 329–338. [Google Scholar] [CrossRef]
- Lever, M.; Slow, S. The Clinical Significance of Betaine, an Osmolyte with a Key Role in Methyl Group Metabolism. Clin. Biochem. 2010, 43, 732–744. [Google Scholar] [CrossRef]
- Cai, D.; Wang, J.; Jia, Y.; Liu, H.; Yuan, M.; Dong, H.; Zhao, R. Gestational Dietary Betaine Supplementation Suppresses Hepatic Expression of Lipogenic Genes in Neonatal Piglets through Epigenetic and Glucocorticoid Receptor-Dependent Mechanisms. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2016, 1861, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Jia, Y.; Song, H.; Sui, S.; Lu, J.; Jiang, Z.; Zhao, R. Betaine Supplementation in Maternal Diet Modulates the Epigenetic Regulation of Hepatic Gluconeogenic Genes in Neonatal Piglets. PLoS ONE 2014, 9, e105504. [Google Scholar] [CrossRef]
- Cai, D.; Jia, Y.; Lu, J.; Yuan, M.; Sui, S.; Song, H.; Zhao, R. Maternal Dietary Betaine Supplementation Modifies Hepatic Expression of Cholesterol Metabolic Genes via Epigenetic Mechanisms in Newborn Piglets. Br. J. Nutr. 2014, 112, 1459–1468. [Google Scholar] [CrossRef]
- Jia, Y.; Song, H.; Gao, G.; Cai, D.; Yang, X.; Zhao, R. Maternal Betaine Supplementation during Gestation Enhances Expression of MtDNA-Encoded Genes through D-Loop DNA Hypomethylation in the Skeletal Muscle of Newborn Piglets. J. Agric. Food Chem. 2015, 63, 10152–10160. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, S.; Jia, Y.; Sun, B.; He, B.; Zhao, R. Maternal Betaine Supplementation Attenuates Glucocorticoid-Induced Hepatic Lipid Accumulation through Epigenetic Modification in Adult Offspring Rats. J. Nutr. Biochem. 2018, 54, 105–112. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, H.; Chen, D.; Tian, G.; Zheng, P.; He, J.; Yu, J.; Mao, X.; Huang, Z.; Pu, J.; et al. Long-Term Dietary Supplementation with Betaine Improves Growth Performance, Meat Quality and Intramuscular Fat Deposition in Growing-Finishing Pigs. Foods 2023, 12, 494. [Google Scholar] [CrossRef]
- Karetnikova, E.S.; Jarzebska, N.; Markov, A.G.; Weiss, N.; Lentz, S.R.; Rodionov, R.N. Is Homoarginine a Protective Cardiovascular Risk Factor? Arterioscler. Thromb. Vasc. Biol. 2019, 39, 869–875. [Google Scholar] [CrossRef]
- Stanton, R.C. Glucose-6-phosphate Dehydrogenase, NADPH, and Cell Survival. IUBMB Life 2012, 64, 362–369. [Google Scholar] [CrossRef]
- Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.C.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Grüning, N.; Krüger, A.; Tauqeer Alam, M.; et al. The Return of Metabolism: Biochemistry and Physiology of the Pentose Phosphate Pathway. Biol. Rev. 2015, 90, 927–963. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Pérez-Felpete, N.; Fernández-Fernández, C.; Donapetry-García, C.; Pazos-García, C. Liver Glucose Metabolism in Humans. Biosci. Rep. 2016, 36, e00416. [Google Scholar] [CrossRef]
- Judge, A.; Dodd, M.S. Metabolism. Essays Biochem. 2020, 64, 607–647. [Google Scholar] [CrossRef]
- Hoffman, M.L.; Rokosa, M.A.; Zinn, S.A.; Hoagland, T.A.; Govoni, K.E. Poor Maternal Nutrition during Gestation in Sheep Reduces Circulating Concentrations of Insulin-like Growth Factor-I and Insulin-like Growth Factor Binding Protein-3 in Offspring. Domest. Anim. Endocrinol. 2014, 49, 39–48. [Google Scholar] [CrossRef]
- Lie, S.; Morrison, J.L.; Williams-Wyss, O.; Suter, C.M.; Humphreys, D.T.; Ozanne, S.E.; Zhang, S.; MacLaughlin, S.M.; Kleemann, D.O.; Walker, S.K.; et al. Impact of Maternal Undernutrition around the Time of Conception on Factors Regulating Hepatic Lipid Metabolism and MicroRNAs in Singleton and Twin Fetuses. Am. J. Physiol.-Endocrinol. Metab. 2016, 310, E148–E159. [Google Scholar] [CrossRef]
n | ||||
---|---|---|---|---|
Diet 1 | Liver | LD | Blood | Description |
CON | 7 | 7 | 7 | |
RES | 7 | 7 | 5 † | Restricted diet maintained from day 50 to day 90 |
CON-CON | 6 | 6 | 6 | Control diet maintained through day 130 |
CON-RES | 7 | 7 | 7 | Control diet switched to restricted diet days 90 through 130 |
RES-CON | 7 | 7 | 7 | Restricted diet switched to control diet days 90 through 130 |
RES-RES | 7 | 7 | 6 † | Restricted diet maintained from day 50 to day 130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, B.I.; Vásquez-Hidalgo, M.A.; Li, X.; Vonnahme, K.A.; Grazul-Bilska, A.T.; Swanson, K.C.; Moore, T.E.; Reed, S.A.; Govoni, K.E. The Effects of Maternal Nutrient Restriction during Mid to Late Gestation with Realimentation on Fetal Metabolic Profiles in the Liver, Skeletal Muscle, and Blood in Sheep. Metabolites 2024, 14, 465. https://doi.org/10.3390/metabo14090465
Smith BI, Vásquez-Hidalgo MA, Li X, Vonnahme KA, Grazul-Bilska AT, Swanson KC, Moore TE, Reed SA, Govoni KE. The Effects of Maternal Nutrient Restriction during Mid to Late Gestation with Realimentation on Fetal Metabolic Profiles in the Liver, Skeletal Muscle, and Blood in Sheep. Metabolites. 2024; 14(9):465. https://doi.org/10.3390/metabo14090465
Chicago/Turabian StyleSmith, Brandon I., Manuel A. Vásquez-Hidalgo, Xiaomeng Li, Kimberly A. Vonnahme, Anna T. Grazul-Bilska, Kendall C. Swanson, Timothy E. Moore, Sarah A. Reed, and Kristen E. Govoni. 2024. "The Effects of Maternal Nutrient Restriction during Mid to Late Gestation with Realimentation on Fetal Metabolic Profiles in the Liver, Skeletal Muscle, and Blood in Sheep" Metabolites 14, no. 9: 465. https://doi.org/10.3390/metabo14090465
APA StyleSmith, B. I., Vásquez-Hidalgo, M. A., Li, X., Vonnahme, K. A., Grazul-Bilska, A. T., Swanson, K. C., Moore, T. E., Reed, S. A., & Govoni, K. E. (2024). The Effects of Maternal Nutrient Restriction during Mid to Late Gestation with Realimentation on Fetal Metabolic Profiles in the Liver, Skeletal Muscle, and Blood in Sheep. Metabolites, 14(9), 465. https://doi.org/10.3390/metabo14090465