Identification of Plasma Metabolomic Biomarkers of Juvenile Idiopathic Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Sample Preparation
2.3. Ultra-High-Performance Liquid Chromatography/Tandem Accurate Mass Spectrometry (UHPLC/MS/MS)
2.4. Data Extraction and Compound Identification
2.5. Metabolite Quantification and Data Normalization
2.6. Metabolomics Analysis
2.7. Enrichment Analysis
2.8. Statistical Analysis
3. Results
3.1. Demographic Data for Discovery and Replication Cohorts
3.2. Metabolomic Profiling to Identify Plasma Metabolites Altered in Children with JIA
3.3. Chemical Enrichment Analysis and Network Visualization to Identify Metabolic Alterations in JIA
3.4. Identification of Putative Small-Molecule Biomarkers of Disease in JIA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patwardhan, A. The utility and experience with disease biomarkers in juvenile onset arthritis vs. adult onset arthritis. Cureus 2019, 11, e5131. [Google Scholar] [CrossRef] [PubMed]
- Al-Mayouf, S.M.; Al Mutairi, M.; Bouayed, K.; Habjoka, S.; Hadef, D.; Lotfy, H.M.; Scott, C.; Sharif, E.M.; Tahoun, N. Epidemiology and demographics of juvenile idiopathic arthritis in Africa and Middle East. Pediatr. Rheumatol. 2021, 19, 166. [Google Scholar] [CrossRef] [PubMed]
- Teniou, A.; Rhouati, A.; Marty, J.L. Recent Advances in Biosensors for Diagnosis of Autoimmune Diseases. Sensors 2024, 24, 1510. [Google Scholar] [CrossRef] [PubMed]
- Fenton, K.A.; Pedersen, H.L. Advanced methods and novel biomarkers in autoimmune diseases—A review of the recent years progress in systemic lupus erythematosus. Front. Med. 2023, 10, 1183535. [Google Scholar] [CrossRef]
- van Delft, M.A.; Huizinga, T.W. An overview of autoantibodies in rheumatoid arthritis. J. Autoimmun. 2020, 110, 102392. [Google Scholar] [CrossRef]
- Rocha, S.D.B.; Baldo, D.C.; Andrade, L.E.C. Clinical and pathophysiologic relevance of autoantibodies in rheumatoid arthritis. Adv. Rheumatol. 2019, 59, 2. [Google Scholar] [CrossRef]
- Shapiro, S.C. Biomarkers in rheumatoid arthritis. Cureus 2021, 13, e15063. [Google Scholar] [CrossRef]
- Lotito, A.P.N.; Campa, A.; Silva, C.A.; Kiss, M.H.; Mello, S.B. Interleukin 18 as a marker of disease activity and severity in patients with juvenile idiopathic arthritis. J. Rheumatol. 2007, 34, 823–830. [Google Scholar]
- Shimizu, M.; Takei, S.; Mori, M.; Yachie, A. Pathogenic roles and diagnostic utility of interleukin-18 in autoinflammatory diseases. Front. Immunol. 2022, 13, 951535. [Google Scholar] [CrossRef]
- Wysocki, T.; Olesińska, M.; Paradowska-Gorycka, A. Current understanding of an emerging role of HLA-DRB1 gene in rheumatoid arthritis–from research to clinical practice. Cells 2020, 9, 1127. [Google Scholar] [CrossRef]
- Inoue, M.; Nagafuchi, Y.; Ota, M.; Tsuchiya, H.; Tateishi, S.; Kanda, H.; Fujio, K. Carriers of HLA-DRB1* 04: 05 have a better clinical response to abatacept in rheumatoid arthritis. Sci. Rep. 2023, 13, 15250. [Google Scholar] [CrossRef] [PubMed]
- Rigby, W.; Buckner, J.H.; Louis Bridges, S.; Nys, M.; Gao, S.; Polinsky, M.; Ray, N.; Bykerk, V. HLA-DRB1 risk alleles for RA are associated with differential clinical responsiveness to abatacept and adalimumab: Data from a head-to-head, randomized, single-blind study in autoantibody-positive early RA. Arthritis Res. Ther. 2021, 23, 245. [Google Scholar] [CrossRef] [PubMed]
- Prahalad, S.; Glass, D.N. A comprehensive review of the genetics of juvenile idiopathic arthritis. Pediatr. Rheumatol. 2008, 6, 11, Bookshelf ID: NBK554605. [Google Scholar] [CrossRef] [PubMed]
- Thatayatikom, A.; Modica, R.; De Leucio, A. Juvenile Idiopathic Arthritis; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Edilova, M.I.; Akram, A.; Abdul-Sater, A.A. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed. J. 2021, 44, 172–182. [Google Scholar] [CrossRef]
- Firestein, G.S.; McInnes, I.B. Immunopathogenesis of rheumatoid arthritis. Immunity 2017, 46, 183–196. [Google Scholar] [CrossRef]
- Nigrovic, P.A. Autoinflammation and autoimmunity in systemic juvenile idiopathic arthritis. Proc. Natl. Acad. Sci. USA 2015, 112, 15785–15786. [Google Scholar] [CrossRef]
- Zaripova, L.N.; Midgley, A.; Christmas, S.E.; Beresford, M.W.; Baildam, E.M.; Oldershaw, R.A. Juvenile idiopathic arthritis: From aetiopathogenesis to therapeutic approaches. Pediatr. Rheumatol. 2021, 19, 135. [Google Scholar] [CrossRef]
- Krainer, J.; Hendling, M.; Siebenhandl, S.; Fuehner, S.; Kessel, C.; Verweyen, E.; Vierlinger, K.; Foell, D.; SchönthaleR, S.; Weinhäusel, A. Patients with Systemic Juvenile Idiopathic Arthritis (SJIA) Show Differences in Autoantibody Signatures Based on Disease Activity. Biomolecules 2023, 13, 1392. [Google Scholar] [CrossRef]
- Feger, D.M.; Longson, N.; Dodanwala, H.; Ostrov, B.E.; Olsen, N.J.; June, R.R. Comparison of adults with polyarticular juvenile idiopathic arthritis to adults with rheumatoid arthritis: A cross-sectional analysis of clinical features and medication use. JCR J. Clin. Rheumatol. 2019, 25, 163–170. [Google Scholar] [CrossRef]
- Ahmad, A.; Imran, M.; Ahsan, H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023, 15, 1630. [Google Scholar] [CrossRef]
- Ruth, N.M.; Passo, M.H. Juvenile idiopathic arthritis: Management and therapeutic options. Ther. Adv. Musculoskelet. Dis. 2012, 4, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Padjen, I.; Crnogaj, M.R.; Anić, B. Conventional disease-modifying agents in rheumatoid arthritis–a review of their current use and role in treatment algorithms. Reumatologia/Rheumatology 2020, 58, 390–400. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, C.; Di Paola, M.; Giani, T.; Tirelli, F.; Cimaz, R. Gut microbiota in children and altered profiles in juvenile idiopathic arthritis. J. Autoimmun. 2019, 98, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Wang, Z.; Wang, K.; Lei, Y.; Zhuang, Y.; Zhou, Z.; Chen, J. Relationships among gut microbiota, plasma metabolites, and juvenile idiopathic arthritis: A mediation Mendelian randomization study. Front. Microbiol. 2024, 15, 1363776. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, X.; Liu, W.; Wang, Z.; Zhang, Z.; Chen, G.; Zhang, Y.; Wang, T.; Yu, T.; Zhang, Y. Causal relationship between serum metabolites and juvenile idiopathic arthritis: A mendelian randomization study. Pediatr. Rheumatol. 2024, 22, 51. [Google Scholar] [CrossRef]
- Ali, N.M.; Shaheen, M.; Mabrouk, M.S.; Aborizka, M. Machine Learning-Based Models for Detection of Biomarkers of Autoimmune Diseases by Fragmentation and Analysis of miRNA Sequences. Appl. Sci. 2022, 12, 5583. [Google Scholar] [CrossRef]
- Danieli, M.G.; Brunetto, S.; Gammeri, L.; Palmeri, D.; Claudi, I.; Shoenfeld, Y.; Gangemi, S. Machine learning application in autoimmune diseases: State of art and future prospectives. Autoimmun. Rev. 2023, 23, 103496. [Google Scholar] [CrossRef]
- Guitton, J.; Bandet, C.L.; Mariko, M.L.; Tan-Chen, S.; Bourron, O.; Benomar, Y.; Hajduch, E.; Le Stunff, H. Sphingosine-1-phosphate metabolism in the regulation of obesity/type 2 diabetes. Cells 2020, 9, 1682. [Google Scholar] [CrossRef]
- Yatomi, Y. Plasma sphingosine 1-phosphate metabolism and analysis. Biochim. Biophys. Acta (BBA) Gen. Subj. 2008, 1780, 606–611. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, K. Sphingosine 1-phosphate metabolism and signaling. Sphingolipid Metab. Metab. Dis. 2022, 67–76. [Google Scholar] [CrossRef]
- Miura, K.; Nagahashi, M.; Prasoon, P.; Hirose, Y.; Kobayashi, T.; Sakata, J.; Abe, M.; Sakimura, K.; Matsuda, Y.; Butash, A.L.; et al. Dysregulation of sphingolipid metabolic enzymes leads to high levels of sphingosine-1-phosphate and ceramide in human hepatocellular carcinoma. Hepatol. Res. 2021, 51, 614–626. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, S.; Merrill, A.H., Jr. Sphingolipid metabolism and cell growth regulation. FASEB J. 1996, 10, 1388–1397. [Google Scholar] [CrossRef] [PubMed]
- Nixon, G.F. Sphingolipids in inflammation: Pathological implications and potential therapeutic targets. Br. J. Pharmacol. 2009, 158, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Hartel, J.C.; Merz, N.; Grösch, S. How sphingolipids affect T cells in the resolution of inflammation. Front. Pharmacol. 2022, 13, 1002915. [Google Scholar] [CrossRef]
- Lee, M.; Lee, S.Y.; Bae, Y.S. Functional roles of sphingolipids in immunity and their implication in disease. Exp. Mol. Med. 2023, 55, 1110–1130. [Google Scholar] [CrossRef]
- Scuderi, C.; Valenza, M.; Stecca, C.; Esposito, G.; Carratù, M.R.; Steardo, L. Palmitoylethanolamide exerts neuroprotective effects in mixed neuroglial cultures and organotypic hippocampal slices via peroxisome proliferator-activated receptor-α. J. Neuroinflammation 2012, 9, 49. [Google Scholar] [CrossRef]
- Paterniti, I.; Cordaro, M.; Campolo, M.; Siracusa, R.; Cornelius, C.; Navarra, M.; Cuzzocrea, S.; Esposito, E. Neuroprotection by association of palmitoylethanolamide with luteolin in experimental Alzheimer’s disease models: The control of neuroinflammation. CNS Neurol. Disord. Drug Targets (Former. Curr. Drug Targets-CNS Neurol. Disord.) 2014, 13, 1530–1541. [Google Scholar] [CrossRef]
- Beggiato, S.; Tomasini, M.C.; Ferraro, L. Palmitoylethanolamide (PEA) as a potential therapeutic agent in Alzheimer’s disease. Front. Pharmacol. 2019, 10, 821. [Google Scholar] [CrossRef]
- Hesselink, J.K. Palmitoylethanolamid and Other Lipid Autacoids Against Neuroinflammation, Pain, and Spasms in Multiple Sclerosis. In Nutrition and Lifestyle in Neurological Autoimmune Diseases; Academic Press: Cambridge, MA, USA, 2017; pp. 29–37. [Google Scholar]
- Guida, F.; Luongo, L.; Boccella, S.; Giordano, M.E.; Romano, R.; Bellini, G.; Manzo, I.; Furiano, A.; Rizzo, A.; Imperatore, R.; et al. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: Involvement of the CB2 receptor. Sci. Rep. 2017, 7, 375. [Google Scholar] [CrossRef]
- Iovine, M.; Quagliariello, V.; Buccolo, S.; Paccone, A.; De Laurentiis, M.; Maurea, N. The analgesic compound palmitoylethanolamide reduces inflammation in human cardiomyocytes and vascular endothelial cells exposed to doxorubicin and anti-HER2 monoclonal antibody through PPAR-α and NLRP3-related pathways. J. Clin. Oncol. 2022, 40, e24054. [Google Scholar] [CrossRef]
- Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: From synthesis to breakdown. Sphingolipids Signal. Regul. Mol. 2010, 1–23. [Google Scholar] [CrossRef]
- Kobayashi, T.; Takahashi, M.; Nagatsuka, Y.; Hirabayashi, Y. Lipid rafts: New tools and a new component. Biol. Pharm. Bull. 2006, 29, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Riboni, L.; Abdel Hadi, L.; Navone, S.E.; Guarnaccia, L.; Campanella, R.; Marfia, G. Sphingosine-1-phosphate in the tumor microenvironment: A signaling hub regulating cancer hallmarks. Cells 2020, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Quinville, B.M.; Deschenes, N.M.; Ryckman, A.E.; Walia, J.S. A comprehensive review: Sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int. J. Mol. Sci. 2021, 22, 5793. [Google Scholar] [CrossRef]
- Hla, T.; Dannenberg, A.J. Sphingolipid signaling in metabolic disorders. Cell Metab. 2012, 16, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Toncic, R.J.; Jakasa, I.; Hadzavdic, S.L.; Goorden, S.M.; Ghauharali-van der Vlugt, K.J.; Stet, F.S.; Balic, A.; Petkovic, M.; Pavicic, B.; Zuzul, K.; et al. Altered Levels of Sphingosine, Sphinganine and Their Ceramides in Atopic Dermatitis Are Related to Skin Barrier Function, Disease Severity and Local Cytokine Milieu. Int. J. Mol. Sci. 2020, 21, 1958. [Google Scholar] [CrossRef] [PubMed]
- Alexandropoulou, I.; Grammatikopoulou, M.G.; Gkouskou, K.K.; Pritsa, A.A.; Vassilakou, T.; Rigopoulou, E.; Lindqvist, H.M.; Bogdanos, D.P. Ceramides in autoimmune rheumatic diseases: Existing evidence and therapeutic considerations for diet as an anticeramide treatment. Nutrients 2023, 15, 229. [Google Scholar] [CrossRef] [PubMed]
- Sólyom, A.; Karabul, N.; Hügle, B.; Simonaro, C.; Schuchman, E. Polyarticular arthritis as presenting feature of farber disease: A lysosomal storage disease involving inflammation. Pediatr. Rheumatol. 2014, 12, 285. [Google Scholar] [CrossRef]
- Maceyka, M.; Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 2014, 510, 58–67. [Google Scholar] [CrossRef]
- Aoki, M.; Aoki, H.; Ramanathan, R.; Hait, N.C.; Takabe, K. Sphingosine-1-phosphate signaling in immune cells and inflammation: Roles and therapeutic potential. Mediat. Inflamm. 2016, 2016, 8606878. [Google Scholar]
- Wu, K.L.; Liang, Q.H.; Ding, N.; Li, B.W.; Hao, J. Sphingosine-1-phosphate in anti-neutrophil cytoplasmic antibody-associated vasculitis: Coagulation-related clinical indicators and complications. Biosci. Rep. 2020, 40, BSR20200157. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Saba, J.D. Regulation of immune cell migration by sphingosine-1-phosphate. Cell. Mol. Biol. (OMICS) 2015, 61, 121. [Google Scholar]
- Mizushima, N.; Kohsaka, H.; Miyasaka, N. Ceramide, a mediator of interleukin 1, tumour necrosis factor α, as well as Fas receptor signalling, induces apoptosis of rheumatoid arthritis synovial cells. Ann. Rheum. Dis. 1998, 57, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Kurz, J.; Parnham, M.J.; Geisslinger, G.; Schiffmann, S. Ceramides as novel disease biomarkers. Trends Mol. Med. 2019, 25, 20–32. [Google Scholar] [CrossRef]
- Kosinska, M.K.; Liebisch, G.; Lochnit, G.; Wilhelm, J.; Klein, H.; Kaesser, U.; Lasczkowski, G.; Rickert, M.; Schmitz, G.; Steinmeyer, J. Sphingolipids in human synovial fluid-a lipidomic study. PLoS ONE 2014, 9, e91769. [Google Scholar] [CrossRef]
- Medcalf, M.R.; Bhadbhade, P.; Mikuls, T.R.; O’dell, J.R.; Gundry, R.L.; Funk, R.S. Plasma metabolome normalization in rheumatoid arthritis following initiation of methotrexate and the identification of metabolic biomarkers of efficacy. Metabolites 2021, 11, 824. [Google Scholar] [CrossRef]
- Yang, M.; Gu, J.; Xu, F.; Wang, Y.; Wang, H.; Zhang, B. The protective role of glucocerebrosidase/ceramide in rheumatoid arthritis. Connect. Tissue Res. 2022, 63, 625–633. [Google Scholar] [CrossRef]
- Beckmann, N.; Becker, K.A.; Walter, S.; Becker, J.U.; Kramer, M.; Hessler, G.; Weber, S.; Göthert, J.R.; Fassbender, K.; Gulbins, E.; et al. Regulation of arthritis severity by the acid sphingomyelinase. Cell. Physiol. Biochem. 2017, 43, 1460–1471. [Google Scholar] [CrossRef]
- Coras, R.; Murillo-Saich, J.D.; Singh, A.G.; Kavanaugh, A.; Guma, M. Lipidomic profiling in synovial tissue. Front. Med. 2022, 9, 857135. [Google Scholar] [CrossRef]
- Inoue, T.; Kohno, M.; Nagahara, H.; Murakami, K.; Sagawa, T.; Kasahara, A.; Kaneshita, S.; Kida, T.; Fujioka, K.; Wada, M.; et al. Upregulation of sphingosine-1-phosphate receptor 3 on fibroblast-like synoviocytes is associated with the development of collagen-induced arthritis via increased interleukin-6 production. PLoS ONE 2019, 14, e0218090. [Google Scholar] [CrossRef]
- Sun, M.; Deng, R.; Wang, Y.; Wu, H.; Zhang, Z.; Bu, Y.; Zhang, H. Sphingosine kinase 1/sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 pathway: A novel target of geniposide to inhibit angiogenesis. Life Sci. 2020, 256, 117988. [Google Scholar] [CrossRef] [PubMed]
- Kostik, M.M.; Chikova, I.A.; Avramenko, V.V.; Vasyakina, L.I.; Le Trionnaire, E.; Chasnyk, V.G.; Levade, T. Farber lipogranulomatosis with predominant joint involvement mimicking juvenile idiopathic arthritis. J. Inherit. Metab. Dis. Off. J. Soc. Study Inborn Errors Metab. 2013, 36, 1079–1080. [Google Scholar] [CrossRef] [PubMed]
- Torcoletti, M.; Petaccia, A.; Pinto, R.M.; Hladnik, U.; Locatelli, F.; Agostoni, C.; Corona, F. Farber disease in infancy resembling juvenile idiopathic arthritis: Identification of two new mutations and a good early response to allogeneic haematopoietic stem cell transplantation. Rheumatology 2014, 53, 1533–1534. [Google Scholar] [CrossRef] [PubMed]
- Erfan, M.; Haque, A.U.; Ahmed, S.A. Farbers disease: A case report. Int. J. Pathol. 2018, 13, 115–119. [Google Scholar]
- Schuchman, E. A132: Farber disease explains subset of Juvenile Idiopathic Arthritis. Arthritis Rheumatol. 2014, 66, S173. [Google Scholar] [CrossRef]
- Dworski, S.; Lu, P.; Khan, A.; Maranda, B.; Mitchell, J.J.; Parini, R.; Di Rocco, M.; Hugle, B.; Yoshimitsu, M.; Magnusson, B.; et al. Acid ceramidase deficiency is characterized by a unique plasma cytokine and ceramide profile that is altered by therapy. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2017, 1863, 386–394. [Google Scholar] [CrossRef]
- Steels, E.; Venkatesh, R.; Steels, E.; Vitetta, G.; Vitetta, L. A double-blind randomized placebo controlled study assessing safety, tolerability and efficacy of palmitoylethanolamide for symptoms of knee osteoarthritis. Inflammopharmacology 2019, 27, 475–485. [Google Scholar] [CrossRef]
- Gatti, A.; Lazzari, M.; Gianfelice, V.; Di Paolo, A.; Sabato, E.; Sabato, A.F. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012, 13, 1121–1130. [Google Scholar] [CrossRef]
- Hesselink, J.M.K.; Hekker, T.A. Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: A case series. J. Pain Res. 2012, 5, 437–442. [Google Scholar] [CrossRef]
- Britti, D.; Crupi, R.; Impellizzeri, D.; Gugliandolo, E.; Fusco, R.; Schievano, C.; Morittu, V.M.; Evangelista, M.; Di Paola, R.; Cuzzocrea, S. A novel composite formulation of palmitoylethanolamide and quercetin decreases inflammation and relieves pain in inflammatory and osteoarthritic pain models. BMC Vet. Res. 2017, 13, 229. [Google Scholar] [CrossRef]
- Jung, J.I.; Lee, H.S.; Jeon, Y.E.; Kim, S.M.; Hong, S.H.; Moon, J.M.; Lim, C.Y.; Kim, Y.H.; Kim, E.J. Anti-Inflammatory activity of palmitoylethanolamide ameliorates osteoarthritis induced by monosodium iodoacetate in Sprague–Dawley rats. Inflammopharmacology 2021, 29, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- Alabarse, P.V.; Silva, J.M.; Santo, R.C.; Oliveira, M.S.; Almeida, A.S.; de Oliveira, M.S.; Immig, M.L.; Freitas, E.C.; Teixeira, V.O.; Bathurst, C.L.; et al. Metabolomic biomarker candidates for skeletal muscle loss in the collagen-induced arthritis (CIA) model. J. Pers. Med. 2021, 11, 837. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Muguruza, S.; Altuna-Coy, A.; Arreaza-Gil, V.; Mendieta-Homs, M.; Castro-Oreiro, S.; Poveda-Elices, M.J.; del Castillo-Piñol, N.; Fontova-Garrofé, R.; Chacón, M.R. A serum metabolic biomarker panel for early rheumatoid arthritis. Front. Immunol. 2023, 14, 1253913. [Google Scholar] [CrossRef] [PubMed]
- Chetnik, K.; Petrick, L.; Pandey, G. MetaClean: A machine learning-based classifier for reduced false positive peak detection in untargeted LC–MS metabolomics data. Metabolomics 2020, 16, 117. [Google Scholar] [CrossRef] [PubMed]
- Kayentis. Overcoming the Complexities of Pediatric Clinical Trials. Kayentis. 2 April 2020. Available online: https://kayentis.com/resources/overcoming-the-complexities-of-pediatrics-clinical-trials/ (accessed on 1 January 2024).
- Christians, U.; Klawitter, J.; Klawitter, J. Biomarkers in transplantation-proteomics and metabolomics. Ther. Drug Monit. 2016, 38, S70. [Google Scholar] [CrossRef] [PubMed]
- Chrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted metabolomics strategies—Challenges and emerging directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905. [Google Scholar] [CrossRef]
- Telenti, A. Integrating metabolomics with genomics. Pharmacogenomics 2018, 19, 1377–1381. [Google Scholar] [CrossRef]
Baseline | JIA | Non-JIA | JIA vs. Non-JIA (p-Value) |
---|---|---|---|
Discovery | |||
Patient, no. (N) | 60 | 60 | --- |
Age (years), mean (SD) | 10.15 (4.50) | 11.88 (4.45) | 0.027 |
Female, N (%) | 40 (66.67) | 31 (51.67) | 0.137 |
Replication | |||
Patient, no. (N) | 49 | 38 | --- |
Age (years), mean (SD) | 10.35 (4.96) | 14.48 (3.02) | 3.8 × 10−4 |
Female, N (%) | 34 (69.39) | 20 (52.63) | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Tatarian, J.; Shakhnovich, V.; Chevalier, R.L.; Sudman, M.; Lovell, D.J.; Thompson, S.D.; Becker, M.L.; Funk, R.S. Identification of Plasma Metabolomic Biomarkers of Juvenile Idiopathic Arthritis. Metabolites 2024, 14, 499. https://doi.org/10.3390/metabo14090499
Kumar A, Tatarian J, Shakhnovich V, Chevalier RL, Sudman M, Lovell DJ, Thompson SD, Becker ML, Funk RS. Identification of Plasma Metabolomic Biomarkers of Juvenile Idiopathic Arthritis. Metabolites. 2024; 14(9):499. https://doi.org/10.3390/metabo14090499
Chicago/Turabian StyleKumar, Amar, Joshua Tatarian, Valentina Shakhnovich, Rachel L. Chevalier, Marc Sudman, Daniel J. Lovell, Susan D. Thompson, Mara L. Becker, and Ryan S. Funk. 2024. "Identification of Plasma Metabolomic Biomarkers of Juvenile Idiopathic Arthritis" Metabolites 14, no. 9: 499. https://doi.org/10.3390/metabo14090499
APA StyleKumar, A., Tatarian, J., Shakhnovich, V., Chevalier, R. L., Sudman, M., Lovell, D. J., Thompson, S. D., Becker, M. L., & Funk, R. S. (2024). Identification of Plasma Metabolomic Biomarkers of Juvenile Idiopathic Arthritis. Metabolites, 14(9), 499. https://doi.org/10.3390/metabo14090499