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Abstract: Background: Feline mammary carcinoma (FMC) is a prevalent and fatal carcinoma that
predominantly affects unspayed female cats. FMC is the third most common carcinoma in cats but
is still underrepresented in research. Current diagnosis methods include physical examinations,
imaging tests, and fine-needle aspiration. The diagnosis through these methods is sometimes delayed
and unreliable, leading to increased chances of mortality. Objectives: The objective of this study
was to identify the biomarkers, including blood metabolites and genes, related to feline mammary
carcinoma, study their relationships, and develop a machine learning (ML) model for the early
diagnosis of the disease. Methods: We analyzed the blood metabolites of felines with mammary
carcinoma using the pathway analysis feature in MetaboAnalyst software, v. 5.0. We utilized
machine-learning (ML) methods to recognize FMC using the blood metabolites of sick patients.
Results: The metabolic pathways that were elucidated to be associated with this disease include
alanine, aspartate and glutamate metabolism, Glutamine and glutamate metabolism, Arginine
biosynthesis, and Glycerophospholipid metabolism. Furthermore, we also elucidated several genes
that play a significant role in the development of FMC, such as ERBB2, PDGFA, EGFR, FLT4, ERBB3,
FIGF, PDGFC, PDGFB through STRINGdb, a database of known and predicted protein-protein
interactions, and MetaboAnalyst 5.0. The best-performing ML model was able to predict metabolite
class with an accuracy of 85.11%. Conclusion: Our findings demonstrate that the identification of the
biomarkers associated with FMC and the affected metabolic pathways can aid in the early diagnosis
of feline mammary carcinoma.

Keywords: feline mammary cancer; machine learning; metabolomics; early diagnosis

1. Introduction

Feline mammary cancer is a type of cancer that affects the mammary glands of cats.
It is one of the most common types of cancer in cats, particularly in those that have not
been spayed. Mammary cancer usually begins as a small lump or nodule in one of the
mammary glands and can spread to other parts of the body if left untreated. Although it is
the third most common carcinoma in cats, feline mammary carcinoma (FMC) is a significantly
understudied disorder. Millions of cats each year die from cancer, and early diagnosis is
essential for increased survival rates. Technology, specifically machine learning (ML), may be
a useful tool in the efficient, accurate, and timely diagnosis of cancer. In addition, analyzing
the pathways, genes, and metabolites that play a part in the disorder can greatly develop the
current understanding of FMC and assist with early diagnosis methods. The early detection
and diagnosis of feline mammary cancer are crucial for a positive outcome. Recent research
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has focused on identifying novel biomarkers and early diagnostic tools for feline mammary
cancer, including blood metabolites.

Researchers aimed to identify potential serum metabolite biomarkers for feline mammary
carcinomas using liquid chromatography-mass spectrometry (LC-MS) and multiple reaction
monitoring (MRM) techniques [1]. The results of the study identified 12 metabolites that were
significantly different in cats with mammary carcinoma, including lysophosphatidylcholines,
sphingomyelins, and Glycerophospholipids. The identified metabolites were involved in
various metabolic pathways, including Glycerophospholipid metabolism, Sulphingolipid
metabolism, and Fatty acid metabolism. The study concluded that the identified metabolites
could serve as potential serum biomarkers for feline mammary carcinomas [1].

Gameiro and colleagues studied the molecular mechanisms of FMC development
and utilized knowledge from human breast cancer research to identify diagnostic and
prognostic biomarkers [2]. Their research offers insights into potential therapeutic options
for specific subtypes of FMC, such as HER2-positive and triple-negative FMC. This study
highlights the importance of using cats as a cancer model to advance our understanding of
FMC and develop effective treatments [2].

The broad study of Wei and co-authors reveals that metabolites obtained using untargeted
and targeted metabolomics allow to distinguish different stages of breast cancer in women [3].
Fifteen targeted metabolites with a fold change of 0.54–2.20 and p-value of < 0.025 and thirty-three
untargeted metabolites with a fold change of 0.46–2.24 and p-value of < 0.049 were revealed [3].

Yu and colleagues identified canine mammary tumor-associated metabolites using untar-
geted metabolomics [4]. The study revealed 536 differential metabolites that were analyzed
with MetaboAnalyst 4.0 and showed the most significant pathways: Purine metabolism,
Alpha-linolenic acid metabolism, Vitamin B6 metabolism, and Fatty acid biosynthesis [4].

The abovementioned studies demonstrate that various blood-based biomarkers, includ-
ing microRNA, metabolite, and protein biomarkers, have the potential to serve as early
diagnostic tools for feline mammary cancer, which is essential for the development of new
diagnostic and therapeutic strategies, which might help improve the prognosis and survival
rate of affected cats. Further research is necessary to validate these biomarkers and develop
practical clinical applications. Early detection and treatment of feline mammary cancer remain
critical to the successful management of this disease. Although there have been studies on
feline mammary cancer in the past, there is a lack of specific studies that address the metabo-
lites that play a role in the cancer’s progression and identify machine-learning techniques that
can be applied to the early diagnosis of the disorder. This highlights the novelty of our work.

2. Methods
2.1. Data Collection and Preprocessing

The feline carcinoma-related metabolites were collected from the open source data
published by Zheng and co-authors [1] and are presented in Table 1. The dataset includes
six female Chinese Pastoral cats with mammary gland carcinoma (positive samples) and
six female Chinese Pastoral cats who were healthy samples in the data (negative samples).
Before tumor removal, blood samples were retrieved from each of the cats, and metabolites
were extracted from the samples. Liquid chromatography and mass spectrometry were
performed, and the data were processed. In our study, the metabolites were selected when
they had a p-value less than 0.05 and a fold change value over 1.5. The HMDB was then
used to choose random metabolites and to obtain their SMILES (Simplified Molecular-Input
Line-Entry System) [5,6]. The variable importance of projection (VIP) values assesses the
importance of each metabolite to FMC. The randomly selected metabolites were obtained
from HMDB using a random number generator without repetitions and are labeled with
the corresponding label “random” in the rightmost column.

To analyze mammary carcinoma metabolic pathways in combination with genes, the
latter were extracted from two studies [7,8] and are presented in Table 2.
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Table 1. FMC-related metabolites [1].

Metabolites p-Value Increase/Decrease Fold Change

L-glutamate 9.39957 × 10−6 Increase 2.301030
L-alanine 9.66197 × 10−5 Increase 1.903090

Glycerol 3-phosphate 1.128205 × 10−3 Increase 1.591065
Succinate 5.54729 × 10−4 Increase 1.446256

20-hydroxy-PGE2 2.17846 × 10−5 Increase 2.079181
Fosfomycin 2.655475 × 10−3 Increase 2.041393

3-methyluridine 2.77439 × 10−4 Increase 1.748188
N-acetyl-L-alanine 2.40845 × 10−4 Increase 1.698970

Choline 2.37754 × 10−7 Increase 1.778151
Trigonelline 2.40845 × 10−4 Increase 1.612784

Ile-Asn 1.10469 × 10−5 Increase 1.724276
Arachidonic acid (peroxide free) 1.126785 × 10−3 Increase 1.556303

S-methyl-5′-thioadenosine 3.60333 × 10−4 Increase 1.643453
Creatinine 5.23436 × 10−5 Increase 1.568202

L-histidinol 8.41015 × 10−4 Increase 1.602060
Guanidine acetic acid 5.46455 × 10−4 Increase 1.653213

Cytosine 1.12223 × 10−4 Increase 1.690196
Inosine 2.446273 × 10−3 Decrease −1.522878

Adenine 1.575227 × 10−3 Increase 1.518514
Hypoxanthine 6.7303 × 10−4 Increase 1.585027

L-glutamic acid 1.94106 × 10−2 Increase 1.579784

Table 2. FMC-related genes.

FMC-Related Genes References

AKT2 [8]
ANGPT2 [7]

BMI1 [8]
COX-2 (PTGS2) [8]

Cyclin A1 (CCNA1) [8]
E-cadherin (CDH1) [8]

EGFR [7,8]
ERBB2 [7,8]
ERBB3 [7]

ERalpha (ESR1) [8]
FGF2 (FGFR2) [7]

FOXA1 [8]
HSPB1 [7]
JAG1 [8]

MYOF [7]
PDGFA [7]
PDGFB [7]
PDGFC [7]
PDGFD [7]

PDGFRA [7]
STAT3 [7]

f-STK (SPRY4) [7]
TOP2A [8]
TP53 [8]

TWIST1 [8]
VEGFC [7]

VEGFD (FGF6) [7]
VEGFR3 (FLT4) [7]

WNT5A [8]
B-catenin (CTNNB1) [8]

2.2. Programs Used

All research was completed in silico. The programs, tools, and websites used are
as follows: PubChem, v. 2023 (National Center for Biotechnology Information (NCBI),
Bethesda, MD, USA) [9] Human Metabolome Database (HMDB), v. 5.0 (University of Al-
berta, Edmonton, AB, Canada) [10], Pharmaceutical Data Exploration Laboratory (PaDEL)
PaDel-Descriptor, v. 2.21 (Institute of Chemical and Engineering Sciences (ICES), Agency
for Science, Technology and Research (A*STAR), Jurong Island, Singapore) [11], Waikato
Environment for Knowledge Analysis (WEKA), v. 3.8.6 (University of Waikato, Hamilton,
New Zealand) [12], MetaboAnalyst 5.0 (McGill University, Department of Epidemiology,
Biostatistics, and Occupational Health, Montreal, QC, Canada) [13], Search Tool for the Re-
trieval of Interacting Genes/Proteins (STRING), v. 12.0 (Institute of Molecular Life Sciences,
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Zurich, Switzerland) [14], and Database for Annotation, Visualization and Integrated Dis-
covery (DAVID), version 6.8, (Laboratory of Human Retrovirology and Immunoinformatics
(LHRI), Frederick National Laboratory for Cancer Research, Frederick, MD, USA) [15].

2.2.1. PaDEL-Descriptor

PaDEL-Descriptor software was employed to calculate the molecular descriptors for
the selected metabolites [11]. Specifically, compounds’ SMILES were input into PaDEL-
Descriptor, version 2.21, which then generated a comprehensive set of 1D, 2D, and 3D
descriptors for each compound (1875 descriptors). These descriptors provide valuable
information about the physicochemical and structural characteristics of the molecules, such
as their size, shape, and functional groups. The use of PaDEL-Descriptor allowed for a
detailed characterization of the molecular properties of the metabolites, providing a solid
foundation for further analysis and interpretation of the data. In our research, we used the
1D and 2D descriptors (1444 descriptors) [16].

2.2.2. Waikato Environment for Knowledge Analysis

Waikato Environment for Knowledge Analysis (WEKA), version 3.8.6, is a cutting-
edge software tool that has been developed for data mining and ML [12]. We applied it to
the analysis of metabolite data, where it enables efficient processing and analysis of large
datasets. WEKA was utilized to perform classification tasks on a dataset using different
classification algorithms. These metabolites were initially labeled as “selected” or “random”
based on their source. The InfoGainAttributeEval application in WEKA was then used to
evaluate the relevance of each attribute to the class label. This process effectively eliminated
any unnecessary data, resulting in the selection of only significant attributes. Furthermore,
WEKA’s preprocessing algorithms proved invaluable in filtering out unwanted instances
through its attribute filter function. This ensured that the final dataset used for classification
was optimized and devoid of any redundant information.

2.2.3. MetaboAnalyst

MetaboAnalyst 5.0, a web-based tool, has emerged as a resource for metabolomics
data analysis [13]. In this study, the pathway analysis function offered by MetaboAnalyst
was utilized to gain insights into the biological pathways that are potentially influenced by
the 40-metabolite dataset under investigation.

The Joint Pathway Analysis application in MetaboAnalyst allows for the identification
of significant pathways that may be associated with the feline mammary cancer metabo-
lite and gene data. This function employs advanced statistical algorithms and pathway
databases to identify pathways that are potentially altered or expressed in the dataset.
By leveraging this feature, we were able to gain a comprehensive understanding of the
metabolic pathways that are most relevant to our data.

The Network Analysis application allows one to download the sets of metabolites
and genes and then visually explore these molecules’ participation in biological networks
created based on known associations between genes, metabolites, and diseases [13].

2.2.4. STRINGdb

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins), version 12.0, is a
biological database and web resource of known and predicted protein-protein interactions [14].
The STRING database uses information from experiments, computational predictions, and publi-
cations. The latest version, 12.0, contains information on more than 59 million proteins [14]. The
tool creates network of connected proteins; connectivity (called degree, κ) is a measure of how
centrally positioned a protein is within the interaction network; it is an important concept because
highly connected proteins are often involved in key biological functions, and their dysfunction
can have widespread effects on cellular systems [17].
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2.2.5. DAVID

DAVID (Database for Annotation, Visualization, and Integrated Discovery),
version 6.8, is a bioinformatics tool that provides functional analysis of large gene lists [15].
It integrates a wide variety of biological annotations, including gene ontology, pathways,
and disease associations, to help uncover the biological meaning behind gene or protein
datasets. DAVID offers enrichment analysis, gene functional classification, and visualizes
associations within input gene lists [15].

2.3. Data Selection and Preprocessing

Twenty metabolites were extracted from the study of Zheng and colleagues [1]. The
metabolites related to FMC [1] and their corresponding values are shown in Table 1. Twenty
random metabolites were obtained from HMDB using a random-number generator without
repetitions. The metabolites were marked “Selected” or “Random” and compiled in the
dataset, which ran through PaDEL-Descriptor, creating 1444 1D, 2D, and fingerprint descrip-
tors. The obtained dataset with attributes applied to the WEKA’s InfoGainAttributeEval
application, which reduced descriptor dimension to 31 most significant descriptors.

For more detailed analysis, we collected additional FMC-related genes from open
source studies [7,8].

3. Results
3.1. Metabolic Pathway Analysis

We analyzed the metabolites selected as biomarkers for FMC to support a hypothesis
that these are significantly related to the cancer development process. Below, we show the
pathways in which these metabolites are involved. The list of metabolites was inputted
to MetaboAnalyst, v. 5.0, and the program analyzed the pathways corresponding to
the metabolites submitted. The most relevant pathways had larger points on the graph
(Figure 1). Below, we discuss the relation to cancer of these pathways involved.

Figure 1. Significant metabolic pathways in FMC that were elucidated through the Metabolic Pathway
Analysis application conducted using MetaboAnalyst 5.0. The analysis was performed on metabolites
that play a role in FMC. The position of the pathways on the Y-axis and the vibrancy of the color
are determined by their respective p-values. A higher value on the Y-axis and a darker shade of red
color indicates greater significance of the pathway in relation to the metabolites. The size of circles
indicates the number of the selected FMC metabolites in the pathways: the greater the size, the more
metabolites included in pathway.
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3.2. Genetic Analysis Using STRING

Significant genes in FMC shown in Table 2 [7,8] and corresponding proteins were
analyzed with the STRINGdb program, and their relationships were elucidated (Figure 2A).
There were no specific criteria applied to these genes besides their discovery as significant
to feline mammary carcinoma through the studies cited.

Figure 2. STRINGdb analyzed the set of FMC-related proteins and displayed connections between
them based on their relationship to one another. Colored nodes mean query proteins and first shell of
interactors; filled nodes mean that 3D structure is known or predicted; empty nodes are those proteins
of unknown 3D structure. Edges are drawn with up to seven differently colored lines, which represent
the existence of the seven types of evidence used in predicting the associations: red line indicates the
presence of fusion evidence; green line—neighborhood evidence; blue line—co-occurrence evidence;
purple line—experimental evidence; yellow line—text-mining evidence; light-blue line—database
evidence; black line—co-expression evidence. (A) Network based on proteins corresponding to the
genes in Table 2. (B) Enriched network with CBL, GRB2, NOTCH1, PDGFRB, and TEK proteins
added (notified with the red asterisks).
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The high connectivity of the network confirms that the proteins and metabolites play a
significant role in the same pathways and interact with each other. The proteins with the highest
connectivity (degree, κ) are EGFR (κ = 18); STAT3 and CTNNB1 (κ = 17); CDH1, ERBB3, and p53
(κ = 14); PDGFRA (κ = 13). The group of four platelet-derived growth factors (PDGFA, PDGFB,
PDGFC, and PDGFD) and VEGFC (average connectivity κavg = 10.4) have a close relationship
with each other and have a large impact on the disorder (Figure 3, bottom). In FMC, these proteins
encoded by appropriate genes play a role in tumor growth, invasion, and metastasis. ERBB2 (also
known as HER2) is a receptor tyrosine kinase that is often overexpressed in breast cancer and has
been implicated in the development of FMC as well [18]. PDGFA, PDGFB, PDGFC, and PDGFD
are ligands for the platelet-derived growth factor receptors (PDGFRA and PDGFRB), which
are involved in cell proliferation, migration, and survival [19]. EGFR (epidermal growth factor
receptor) and ERBB3 (also known as HER3) are receptor tyrosine kinases that have been implicated
in the development of cancer [20]. FLT4 (also known as VEGFR3) is a receptor for vascular
endothelial growth factors (VEGFC and VEGFD), which are involved in lymphangiogenesis (the
formation of new lymphatic vessels) [21]. FIGF (also known as VEGFD) is a member of the
VEGF family that has been implicated in tumor growth and lymphangiogenesis [22]. CDH1
(cadherin 1) plays an essential role in epithelial cell adherence. The CDH1 mutation puts females
at risk for a certain form of breast cancer called lobular breast cancer [18]. Together, ERBB2 and
CDH1 mutations show a significantly worse prognosis for patients compared to their counterparts
without such a mutation [18]. In feline mammary cancer, these genes may be dysregulated, leading
to abnormal activation of signaling pathways that promote tumor growth and metastasis [7,8].

Figure 3. The above figure depicts the clusters created for the genes in Table 2. Each cluster was
created using k-means clustering, and each cluster was analyzed through the DAVID program.

Using enrichment analysis, an additional five proteins were elucidated by STRINGdb—CBL,
GRB2, NOTCH1, PDGFRB, and TEK (Figure 2B). The network presented in Figure 2A shows
high-evidence associations of the proteins coded by selected genes. The additional proteins are
also highly associated with the presented network (Figure 2B). The average connection association
with added proteins increased from κ = 7.40 to κ = 10.46. Such an increase demonstrates that the
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added genes play a significant role in the organization of a strongly connected protein network
involved in cancer development. This fact points to mentioned proteins as preferable targets for
drug design.

CBL is a proto-oncogene that encodes a RING (interesting new gene) finger E3 ubiq-
uitin ligase. This gene has been found to be mutated or translocated in many cancers,
including acute myeloid leukemia [23].

The GRB2 is a Growth Factor Receptor Bound Protein 2. Its activation through some
specific RTKs (receptor tyrosine kinase), in our case PDGFRB—class III, VEGFR3 (FLT4)—class
IV, FGFR2—class V, and TEK—class IX, certifies its involvement in breast cancer progression,
and its abnormal activation by ERBB2 is related with the development of human breast cancers
and mammary carcinoma [21] (Figure 2B).

NOTCH1 is one of four known genes encoding the NOTCH family of proteins, a
group of receptors involved in the Notch signaling pathway. Increased expression of Notch
receptors has been observed in a variety of cancer types, including cervical, colon, head
and neck, lung, renal, pancreatic, leukemia, and breast cancer. Activation of Notch1, among
other Notch family proteins, has been shown to cause mammary carcinomas in mice [24,25].

PDGFRs (platelet-derived growth factor receptors) are catalytic receptors that have
intracellular tyrosine kinase activity. Its activation induced epithelial-to-mesenchymal
transition and led to Basal-like breast cancers [18].

TEK (Tie2) is one of the RTKs that belongs to the TIE family and, along with VEGFR,
encodes angiogenesis in cancer patients [26].

The mentioned proteins participate in 75 pathways, with 22 of them directly involved
in cancers (Table 3).

Table 3. FMC-related pathways. In bold is shown breast cancer having highest betweenness centrality
of two contacting proteins CDH1 and p53 (encoded by TP53) (Figure 4).

Pathway Number of Proteins Strength FDR

Melanoma 9 of 64 1.99 3.60 × 10−4

Choline metabolism in cancer 7 of 87 1.75 1.69 × 10−9

Endometrial cancer 4 of 52 1.73 1.76 × 10−5

Glioma 5 of 67 1.72 8.47 × 10−7

Thyroid cancer 2 of 32 1.64 7.60 × 10−3

Central carbon metabolism in cancer 4 of 65 1.63 3.91 × 10−5

Bladder cancer 2 of 35 1.60 8.30 × 10−3

Gastric cancer 7 of 127 1.59 1.60 × 10−8

Breast cancer 7 of 131 1.57 1.83 × 10−8

MicroRNAs in cancer 7 of 141 1.54 2.79 × 10−8

Non-small cell lung cancer 3 of 62 1.53 1.10 × 10−3

Pancreatic cancer 3 of 64 1.52 1.20 × 10−3

Acute myeloid leukemia 3 of 65 1.51 1.20 × 10−3

Proteoglycans in cancer 8 of 187 1.48 6.60 × 10−9

Colorectal cancer 3 of 75 1.45 1.70 × 10−3

PD-L1 expression and PD-1 checkpoint pathway in cancer 3 of 83 1.40 2.10 × 10−3

Basal cell carcinoma 2 of 55 1.40 1.81 × 10−2

Pathways in cancer 15 of 475 1.34 1.93 × 10−15

Kaposi sarcoma-associated herpesvirus infection 5 of 162 1.33 4.81 × 10−5

Renal cell carcinoma 2 of 66 1.33 2.38 × 10−2

Hepatocellular carcinoma 4 of 140 1.30 5.50 × 10−4

Transcriptional misregulation in cancer 3 of 154 1.13 9.10 × 10−3
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Figure 4. Metabolite-Gene-Disease Interaction Network created through MetaboAnalyst’s 5.0 Net-
work Analysis application. A total of 35 genes and 21 metabolites were analyzed. Six subnetworks
were created: subnetwork 1 with 86 nodes, 100 edges, and 21 seeds and five subnetworks with
3 nodes, 2 edges, and 1 seed. Subnetwork 1 is more informative. It contains 8 genes and 13 metabo-
lites. Shapes represent the following: circles—genes, diamonds—metabolites, and squares—diseases;
colors show the following: red—activated, blue—inhibited, and purple—neutral; size represents
importance. Edge color represents correlation: red—positive; blue—negative.

3.3. Gene Cluster Analysis through DAVID

Using STRINGdb, we performed k-means clustering on the genes from Table 2 in order
to create five separate clusters with genes that are interacting with one another. K-means
clustering utilizes a machine-learning model to divide a dataset into several such unique
clusters. The clusters are shown in Figure 3. Submitting the genes from each cluster to
DAVID (Database for Annotation, Visualization and Integrated Discovery), version 6.8 [15] we
were able to identify the top pathways for each cluster. We found that the UniProt signaling
pathway had the greatest number of genes from the first cluster, playing an important role in
the pathway. This signaling pathway allows for the ribosome to effectively create proteins. The
most prominent pathway in the second cluster was the UniProt nucleus pathway, which works
within the nucleus and specifically with the pore complex. In the third cluster, the SPRY4 gene
encodes a protein known as sprouty RTK signaling antagonist 4. This protein is part of the
sprouty family, which acts as inhibitors of receptor tyrosine kinase (RTK) signaling pathways.
These pathways are crucial for cell growth, differentiation, and survival. In the fourth cluster,
the TWIST1 gene encodes the TWIST1 protein, which is a basic helix-loop-helix (bHLH)
transcription factor. This protein plays a crucial role in various biological processes, including
embryonic development, cell differentiation, and the epithelial-mesenchymal transition (EMT).
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For the fifth cluster, the JAG1 gene encodes Jagged1, a ligand for the Notch receptor. Jagged1
plays a crucial role in the Notch signaling pathway, which is essential for various cellular
processes, including cell fate determination, differentiation, proliferation, and apoptosis.

3.4. Network Analysis Using MetaboAnalyst

To show that the explored genes presented in Table 2 interact closely with the metabo-
lites from the original open source dataset1 and impact mammalian breast cancer, we used
MetaboAnalyst’s 5.0 Network Analysis, especially its Metabolite-Gene-Disease Interaction
Network application. This network provides a scheme of potential functional relation-
ships between metabolites, connected genes, and target diseases. Six subnetworks were
elucidated: one with 86 nodes, 100 edges, and 21 seeds and five with 3 nodes, 2 edges,
and 1 seed each. The main subnetwork is presented in Figure 3. The network shows that
most selected metabolites and genes are connected and lead to different diseases, including
cancers, with breast cancer among them.

The breast cancer node has connectivity degree 2 and betweenness centrality 72.02. The
two nodes to which it connected are CDH1 and TP53 with connectivity degrees 4 and 12
and betweenness centrality 306.39 and 1052.70, accordingly. The higher is connectivity of a
node, the more significant it is. Centrality is used to measure the importance of various nodes
in a network. Betweenness centrality defines and measures the importance of a node in a
network based on how many times it occurs in the shortest path between all pairs of nodes
in the network. Nodes with a high betweenness centrality can represent important proteins
in signaling pathways and can form targets for drug discovery [27]. The network helps to
elucidate the large number of genes and metabolites that impact this disease.

Genes shown in the network (Figure 3, bottom) also participate in the protein networks
obtained with STRINGdb. This fact demonstrates that many of the metabolites used in
our analysis are part of a large network, including several cancer-related genes. So, these
metabolites are not only biomarkers but also participants in the cancer development process.

3.5. Joint Pathway Analysis Using MetaboAnalyst

To study metabolic and signaling pathways in mammalian breast cancer, we used Metabo-
Analyst’s 5.0 Joint Pathway Analysis application, choosing All Integrated Pathways function with
both inputs—metabolites and genes. The results of this analysis are shown in Figure 4.

The significance of the pathway is determined by p-value and impact. The lower the
p-value, the more significant the pathway. Pathway impact represents a combination of
centrality and pathway enrichment results. Centrality assigns importance to nodes in the
pathway. To calculate the impact, we used the degree centrality and the hypergeometric
test. Higher impact values represent the relative importance of the pathway.

The MAPK signaling pathway, Pathways in cancer, and EGFR tyrosine kinase inhibitor
resistance have the best p-values: 7.823 × 10−19, 9.137 × 10−19, and 3.891 × 10−18, correspond-
ingly. The breast cancer pathway has p value = 3.608 × 10−13 and an impact score of 0.45,
which reflects that this pathway has an over-average significance.

MAPK signaling pathway plays an important role in cancer development because
its abnormal activation leads to increased/uncontrolled cell proliferation and resistance
to apoptosis. Its activation is responsible for around 40% of all cancers [28]. The Cancer
pathway includes 14 significant pathways whose functions are necessary for cancer growth
and progression [29].

The JAK-STAT signaling pathway is involved in the proliferation, progression, metas-
tasis, and survival of various types of tumor cells. It plays an important role in mammary
cancer development [30].

The ErbB signaling pathway regulates cell proliferation, migration, differentiation,
apoptosis, and cell motility. It includes four family members: ERBB1 (EGFR, or HER1),
ERBB2 (HER2), ERBB3 (HER3), and ERBB4 (HER4). They are over-expressed, amplified, or
mutated in many forms of cancer, especially in breast cancer [20].



Metabolites 2024, 14, 501 11 of 18

There are also some metabolism pathways: Choline metabolism, Focal adhesion, Cen-
tral carbon metabolism, Proteoglycans in cancer, Phospholipase D signaling pathway, and
GAP junction, which are important in cancer development (outlined by the oval in Figure 5).

Figure 5. Integrated Pathway Analysis of metabolite and gene biomarkers shown in breast cancer.
The position of the pathways on the Y-axis is determined by their respective p-values. The larger
the size of the circle, the greater the pathway enrichment. The darker the color of each circle on the
plot, the greater its significance. The size of circles indicates the ratio of number of elements involved
in pathway to the number of all pathway’s members. The vibrancy of the color reflects pathway
impact score, which represents significance of given pathway relative to global integrative network.
Outlined by oval, the following are metabolic pathways important in cancer development: Choline
metabolism, Focal adhesion, Central carbon metabolism, Proteoglycans in cancer, Phospholipase D
signaling pathway, and GAP junction.

3.6. Machine Learning Classifiers

ML has gained popularity in cancer studies and biomedical data analysis for iden-
tifying patterns. In our study, we used a final dataset comprising 40 metabolites, with
20 selected from a previous study [1] and 20 randomly selected from an HMDB. The filtered
dataset consisted of 31 attributes. We employed various classifiers, such as SGD, Random
Forest, Hoeffding Tree, and others, to evaluate the accuracy of classification.

Among the classifiers, J48, REP Tree, MLP, and Random Forest showed accuracy above 80%,
with Random Forest achieving the highest accuracy of 90.02% (Figure 6). To evaluate the classifiers,
we used cross-validation, which involves dividing the dataset into ten folds and testing each fold
on the remaining nine folds for training, repeating the process ten times for each distinct fold. The
results of each test were then averaged to obtain the accuracy of each classifier. Cross-validation
helps in reducing the variance of the estimate, making the results more reliable.



Metabolites 2024, 14, 501 12 of 18

Figure 7 shows the ROC (receiver operating characteristic) curve for the ML classifier.
The X-axis of the curve plots the false positive rate, and the Y-axis plots the true positive
rate. This curve reflects the performance of the model at various classification thresholds.
The comparison of these values through the curve allows for the identification of how likely
the model is to maximize true positives and minimize false positives in the data. The area
under the curve (AUC) is 0.886, which is close to 1. AUC provides an aggregate measure of
performance across all possible classification thresholds; the higher the AUC, the better the
performance. There is another characteristic to evaluate performance of ML model—the
precision-recall curve, which is the measure between precision and recalls for different
thresholds. As the curve approaches the top right of the graph, it demonstrates that the
model has good prediction accuracy. (Table 4).

Figure 6. The classifier performances with different algorithms obtained through cross-validation classifier.

Figure 7. ROC curve for Random Forest Model. The ROC (receiver operating characteristic) curve is a
graphical representation of the performance of a classifier in distinguishing between positive and negative
samples. The colors of the curve represent threshold value set to get the best pair of true FPR/TPR point.
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The selected performance measures of the models are presented in Table 5. The
best accuracy is obtained with the Random Forest classifier, which is recommendable for
implementation. More detailed measures related to the performance of the best ML models
are presented in Table 4.

Table 4. Performance measures of the best ML models.

Classifier TP Rate FP Rate Precision Recall F-Measure MCC AUC AUCPR Class

Random F 0.857 0.154 0.818 0.857 0.837 0.701 0.886 0.819 select
Random F 0.846 0.143 0.880 0.846 0.863 0.701 0.886 0.904 random

MLP 0.810 0.154 0.810 0.810 0.810 0.656 0.846 0.800 select
MLP 0.846 0.190 0.846 0.846 0.846 0.656 0.846 0.867 random

Random F—Random Forest; MLP—Multilayer Perceptron.

Table 5. Selected performance measures of the ML models in cross-validation.

Parameter Random Forest MLP REPTree J48 SGD

Correctly Classified
Instances 85.11% 82.98% 80.85% 80.85% 76.60%

Kappa statistic 0.70 0.65 0.61 0.61 0.53
Mean absolute error 0.25 0.19 0.27 0.27 0.23

Root mean squared error 0.35 0.39 0.40 0.40 0.48

4. Discussion
4.1. Alanine, Aspartate, and Glutamate Metabolism

The metabolic pathways involving alanine, aspartate, and glutamate, three impor-
tant amino acids, have been implicated in the development and progression of FMC.
Understanding the role of these amino acids in cancer metabolism may shed light on the
underlying mechanisms of this cancer [1].

Alanine, aspartate, and glutamate are interrelated amino acids that are involved in
various cellular processes, including protein synthesis, energy production, and redox balance.
The metabolism of these amino acids is tightly regulated by a group of enzymes known as
aminotransferases, which facilitates the transfer of amino groups between these amino acids.
Dysregulation of these enzymes and altered expression of genes involved in the metabolism
of these amino acids have been observed in cancer, including FMC in cats [31].

One of the key roles of alanine metabolism in cancer is its involvement in cellular
energy production. Alanine can be converted into pyruvate, a crucial intermediate in
cellular respiration, through the action of the alanine aminotransferase enzyme. Pyruvate
can then be utilized in the citric acid cycle to generate ATP, the primary energy currency
of cells. Dysregulation of alanine metabolism has been associated with increased cell
proliferation and survival in several cancers, and it may contribute to the metabolic rewiring
that occurs in cancer cells to meet their increased energy demands [32].

Aspartate metabolism is also implicated in cancer cell proliferation and survival. Aspartate
can be converted into oxaloacetate, another intermediate in the citric acid cycle, through the action
of aspartate aminotransferase enzyme. Oxaloacetate can then be utilized in the biosynthesis of
nucleotides, which are essential for DNA synthesis and cell division. Alterations in aspartate
metabolism have been shown to impact cellular energy production, redox balance, and nucleotide
synthesis, all of which are critical for cancer cell growth and survival [33].

Glutamate metabolism, on the other hand, has been linked to cancer cell invasion and
metastasis. Glutamate can be converted into α-ketoglutarate, another intermediate in the
citric acid cycle, through the action of glutamate dehydrogenase enzyme. α-ketoglutarate
can then be utilized in the biosynthesis of collagen and other extracellular matrix compo-
nents, which are crucial for cancer cell invasion and metastasis. Dysregulation of glutamate
metabolism has been associated with enhanced cancer cell migration, invasion, and metas-
tasis in various cancers [34].
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Moreover, alterations in the metabolism of these amino acids may also impact the
tumor microenvironment and immune response in feline mammary cancer. For example,
changes in the levels of alanine, aspartate, and glutamate have been detected in the blood
and tissue samples of cats with mammary cancer, suggesting that these amino acids may
serve as potential biomarkers for early detection and prognosis of feline mammary cancer.
Additionally, the metabolism of these amino acids has been shown to modulate the activity
of immune cells in the tumor microenvironment, potentially influencing the immune
response against cancer cells [1].

4.2. Glutamine and Glutamate Metabolism

The metabolism of glutamine and glutamate, two important amino acids, has been
implicated in the development and progression of feline mammary cancer, a malignant
neoplasm that occurs in the mammary glands of cats. These amino acids play critical roles
in various cellular processes, including protein synthesis, energy production, and redox
balance, and dysregulation of their metabolism has been associated with cancer-related
pathways in several cancers, including mammary cancer in cats [1].

Glutamine is a non-essential amino acid that serves as a major source of nitrogen and
carbon for cancer cells. It can be converted into α-ketoglutarate, an intermediate in the
citric acid cycle, through the action of glutaminase enzyme. α-ketoglutarate can then be
utilized in the biosynthesis of nucleotides, which are essential for DNA synthesis and cell
division. Dysregulation of glutamine metabolism has been shown to impact cellular energy
production, redox balance, and nucleotide synthesis, all of which are critical for cancer cell
growth and survival [35].

Similarly, glutamate, another non-essential amino acid, plays a key role in cancer
metabolism. It can be converted into α-ketoglutarate through the action of amino acid
oxidase enzyme, which generates hydrogen peroxide as a byproduct. Hydrogen peroxide
is a reactive oxygen species (ROS) that can cause oxidative stress and damage to cellular
components, including DNA, proteins, and lipids. Dysregulation of glutamate metabolism
and the accumulation of ROS have been linked to DNA damage, genomic instability, and
tumor progression in various cancers [36].

Furthermore, alterations in the metabolism of glutamine and glutamate may also
impact the tumor microenvironment and immune response in feline mammary cancer. For
instance, changes in the levels of glutamine and glutamate have been detected in the blood
and tissue samples of cats with mammary cancer, suggesting that these amino acids may
serve as potential biomarkers for early detection and prognosis of feline mammary cancer.
Additionally, the metabolism of glutamine and glutamate has been shown to modulate
the activity of immune cells in the tumor microenvironment, potentially influencing the
immune response against cancer cells [1].

4.3. Arginine Biosynthesis

The biosynthesis pathway of arginine, an essential amino acid, has been suggested to
potentially play a role in feline mammary cancer, a malignant neoplasm that occurs in the
mammary glands of cats. Arginine is a crucial amino acid involved in various physiological
processes, including protein synthesis, wound healing, immune response, and regulation
of nitric oxide production. Dysregulation of the Arginine biosynthesis pathway has been
implicated in cancer development and progression in several cancers, and its potential
involvement in feline mammary cancer warrants investigation [37].

The Arginine biosynthesis pathway involves a series of enzymatic reactions that
convert citrulline, an intermediate in the urea cycle, into arginine. This pathway is critical
for maintaining intracellular levels of arginine, which is required for various cellular
functions. However, cancer cells often exhibit alterations in metabolic pathways to meet
their increased demand for energy and building blocks for rapid cell growth, and the
Arginine biosynthesis pathway may be affected in cancer cells as well [38].



Metabolites 2024, 14, 501 15 of 18

Cancer cells may exhibit increased expression of argininosuccinate synthase (ASS1),
a key enzyme in the Arginine biosynthesis pathway, leading to enhanced production of
arginine within the tumor microenvironment. This can result in increased availability of
arginine for cancer cells, promoting their proliferation and survival [39].

On the other hand, some cancers, including melanoma and hepatocellular carcinoma,
have been shown to downregulate ASS1 expression, leading to arginine depletion in the
tumor microenvironment. This can lead to a state of arginine auxotrophy, where cancer cells
become dependent on exogenous arginine for survival. In such cases, arginine deprivation
strategies have been explored as potential therapeutic approaches, as they can selectively
target cancer cells that lack ASS1 expression while sparing normal cells that can produce
arginine through the biosynthesis pathway [40].

4.4. Glyoxylate and Dicarboxylate Metabolism

Recent studies have shown that alterations in the Glyoxylate and dicarboxylate
metabolism pathway may contribute to cancer development and progression by influ-
encing key cellular processes. For example, the dysregulation of enzymes involved in this
pathway, such as isocitrate lyase (ICL) and malate synthase (MS), has been shown to pro-
mote tumor growth and metastasis in certain types of cancer. These enzymes are involved
in the conversion of glyoxylate and dicarboxylate compounds into intermediates of the
tricarboxylic acid (TCA) cycle, which plays a crucial role in cellular energy production [41].

4.5. Purine Metabolism

Alterations in the Purine metabolism pathway may contribute to cancer development
and progression by influencing key cellular processes. For example, dysregulation of en-
zymes involved in this pathway, such as adenosine deaminase (ADA) and purine nucleoside
phosphorylase (PNP), has been shown to promote tumor growth and metastasis in certain
types of cancer. These enzymes are involved in the degradation of purine compounds, and
their dysregulation can lead to the accumulation of purine metabolites, which can potentially
disrupt cellular processes and promote cancer cell survival and proliferation [42].

Moreover, the Purine metabolism pathway has been implicated in the regulation of
immune response and inflammation, which can play a critical role in cancer development.
Purine metabolites, such as adenosine, can modulate immune response by acting as sig-
naling molecules that regulate immune cell function and inflammation. Dysregulation
of purine metabolism can disrupt the balance of purine metabolites, leading to altered
immune response and inflammation, which can promote cancer cell survival and facilitate
tumor growth [43].

4.6. Butanoate Metabolism

Butanoate has been shown to have diverse effects on cellular processes that are im-
plicated in cancer development. It has been reported to affect cell proliferation, apoptosis,
and inflammation, which are key processes involved in cancer progression. For example,
butanoate has been shown to inhibit the proliferation of cancer cells by inducing cell cycle
arrest and apoptosis, which can suppress tumor growth. On the other hand, butanoate has
also been reported to promote inflammation, which can contribute to cancer development and
progression by stimulating angiogenesis, immune cell infiltration, and tissue remodeling [44].

5. Conclusions

Our hypothesis that it is possible to create an ML model to effectively diagnose early feline
mammary cancer using blood metabolites was confirmed by our calculations. We developed
a Random Forest-based ML model that is able to predict feline mammary carcinoma with
85.11% accuracy. In addition to the classifier, we studied the metabolic pathways related
to feline mammary cancer. We analyzed the relationships between genes that interacted
with the blood metabolites. With bioinformatics tools, we were able to identify that most of



Metabolites 2024, 14, 501 16 of 18

the metabolites used to train the ML model corresponded to the pathways that cause feline
mammary carcinoma and interact with the known FMC-related genes.

Our study shows the applicability of ML classifiers and the analysis of metabolomic
pathways and genes to the veterinary sciences. Improvements to the developed model
could be achieved by acquiring a larger dataset, which includes additional metabolites and
descriptors. Although the impacts of our results are vast and important, it is significant to
note that we call for more frequent feline cancer screening as they will not only assist in
early diagnosis but they will also allow for the better application of our results and machine
learning model. The limitations in available feline mammary cancer metabolite data were
the primary challenge that we had to overcome and impacted how accurate our model could
become. In the future, similar models could be developed for other feline carcinomas and
could even be applicable to the early diagnosis of cancer in other species, including humans.
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