Comprehensive Secondary Metabolite Profiling and Antioxidant Activity of Aqueous and Ethanol Extracts of Neolamarckia cadamba (Roxb.) Bosser Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Aqueous and Ethanolic Extractions
2.3. Metabolite Extraction and UPLC-MS/MS Analysis
2.4. Metabolomics Data Analysis
2.5. Antioxidant Activity Tests
3. Results
3.1. Secondary Metabolite Profiles of N. Cadamba Fruits in Aqueous and Ethanolic Extracts
3.2. Differential Accumulation of Metabolites in Aqueous and Ethanolic Extracts
3.3. Differentially Extracted Metabolites (DEMs) between Aqueous and Ethanolic Extracts
3.3.1. Differentially Extracted Flavonoids
3.3.2. Differentially Extracted Phenolic Acids and Terpenoids
3.3.3. Differentially Extracted Alkaloids, Proanthocyanins, Tannins, Lignans, and Coumarins
3.4. Variation in Antioxidant Activities of Aqueous and Ethanolic Extracts of N. cadamba Fruits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Hu, X.; OuYang, K.; Yang, J.; Que, Q.; Long, J.; Zhang, J.; Zhang, T.; Wang, X.; Gao, J.; et al. Chromosome-Level Assembly of the Neolamarckia Cadamba Genome Provides Insights into the Evolution of Cadambine Biosynthesis. Plant J. 2022, 109, 891–908. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Negi, P.S. Traditional Uses, Phytochemistry and Pharmacological Properties of Neolamarckia Cadamba: A Review. J. Ethnopharmacol. 2016, 181, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Dwevedi, A.; Sharma, K.; Sharma, Y.K. Cadamba: A Miraculous Tree Having Enormous Pharmacological Implications. Pharmacogn. Rev. 2015, 9, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Datar, H.; Datar, A. Antimicrobial Activity of Anthoceplalus Cadamba and Scirpus Kysoor Roxb. Against Food Pathogens. Int. J. Curr. Pharm. Res. 2016, 8, 13–18. [Google Scholar] [CrossRef]
- Mishra, A.; Maurya, S.K.; Singh, A.; Siddique, H.; Samanta, S.K.; Mishra, N. Neolamarckia Cadamba (Roxb.) Bosser (Rubiaceae) Extracts: Promising Prospects for Anticancer and Antibacterial Potential through in Vitro and in Silico Studies. Med. Oncol. 2023, 40, 99. [Google Scholar] [CrossRef]
- Munira, S.; Nesa, L.; Islam, M.S.; Begum, Y.; Rashid, M.A.; Sarker, M.R.; Ahmed, T. Antidiabetic Activity of Neolamarckia Cadamba (Roxb.) Bosser Flower Extract in Alloxan-Induced Diabetic Rats. Clin. Phytoscience 2020, 6, 33. [Google Scholar] [CrossRef]
- Tairin, I.; Abhijit, D.; Kumar, B.S.; Palash, K.; Shafiul, I.; Mohammad, M.S. Evaluation of Membrane Stabilizing, Anthelmintic, Antioxidant Activity with Phytochemical Screening of Methanolic Extract of Neolamarckia Cadamba Fruits. J. Med. Plants Res. 2015, 9, 151–158. [Google Scholar] [CrossRef]
- Prathibhakumari, P.V.; Prasad, G. Phytochemical Screening of Neolamarckia Cadamba and Its Role in Preventing the Growth of Bacteria Associated with Kidney Stone. Int. J. Sci. Invent. Today 2018, 7, 65–079. [Google Scholar]
- Selvakumar, D.; Vaikuntavasan, P.; Sampathrajan, V.; Manoharan, B.; Adhimoolam, K.; Nallusamy, S.; Arunachalam, B.; Senthil, K.; Natesan, S. GC-MS-Based Metabolomics Analysis Unravels the Therapeutic Potential of Neolamarckia Cadamba Fruit Peel. J. Phytol. 2022, 14, 100–108. [Google Scholar] [CrossRef]
- Razali, S.; Firus Khan, A.Y.; Khatib, A.; Ahmed, Q.U.; Abdul Wahab, R.; Zakaria, Z.A. An In Vitro Anticancer Activity Evaluation of Neolamarckia Cadamba (Roxb.) Bosser Leaves’ Extract and Its Metabolite Profile. Front. Pharmacol. 2021, 12, 741683. [Google Scholar] [CrossRef]
- Sanjay, P.U.; Kumar, G.S.; Jayaveera, K.N.; Kishore Kumar, D.V.; Ashok Kumar, C.K.; Dhanapal, R. Antimicrobial, Wound Healing and Antioxidant Activities of Anthocephalus Cadamba. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 481–487. [Google Scholar] [CrossRef]
- Pandey, A.; Negi, P.S. Phytochemical Composition, in Vitro Antioxidant Activity and Antibacterial Mechanisms of Neolamarckia Cadamba Fruits Extracts. Nat. Prod. Res. 2018, 32, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Chauhan, A.S.; Haware, D.J.; Negi, P.S. Proximate and Mineral Composition of Kadamba (Neolamarckia Cadamba) Fruit and Its Use in the Development of Nutraceutical Enriched Beverage. J. Food Sci. Technol. 2018, 55, 4330–4336. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, B. Qualitative & Quantitative Estimation of Flavonoid (Quercetin) Content & Antioxidant Activities of Neolamarckia Cadamba Fruits. World J. Pharm. Pharm. Sci. 2017, 6, 2023–2040. [Google Scholar] [CrossRef]
- Ganjewala, D.; Tomar, N.; Gupta, A.K. Phytochemical Composition and Antioxidant Properties of Methanol Extracts of Leaves and Fruits of Neolamarckia Cadamba (Roxb.). J. Biol. Act. Prod. Nat. 2013, 3, 232–240. [Google Scholar] [CrossRef]
- Nie, M.; Huang, J.; Huang, J.; Chen, Z.; Lin, L.; Luo, F.; Zhang, X.; Xiao, S. Differences in the Components of Neolamarckia Cadamba from Different Provenance and the Drug Resistance Reversal Activity of Characteristic Alkaloid. Ind. Crops Prod. 2022, 186, 115145. [Google Scholar] [CrossRef]
- Ben Othman, S.; Katsuno, N.; Kanamaru, Y.; Yabe, T. Water-Soluble Extracts from Defatted Sesame Seed Flour Show Antioxidant Activity in Vitro. Food Chem. 2015, 175, 306–314. [Google Scholar] [CrossRef]
- Choi, Y.M.; Yoon, H.; Lee, S.; Ko, H.C.; Shin, M.J.; Lee, M.C.; Hur, O.S.; Ro, N.Y.; Desta, K.T. Isoflavones, Anthocyanins, Phenolic Content, and Antioxidant Activities of Black Soybeans (Glycine Max (L.) Merrill) as Affected by Seed Weight. Sci. Rep. 2020, 10, 19960. [Google Scholar] [CrossRef]
- Koirala, N.; Thuan, N.H.; Ghimire, G.P.; Thang, D.V.; Sohng, J.K. Methylation of Flavonoids: Chemical Structures, Bioactivities, Progress and Perspectives for Biotechnological Production. Enzyme Microb. Technol. 2016, 86, 103–116. [Google Scholar] [CrossRef]
- Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; et al. Luteolin, a Flavonoid, as an Anticancer Agent: A Review. Biomed. Pharmacother. 2019, 112, 108612. [Google Scholar] [CrossRef]
- Manayi, A.; Nabavi, S.M.; Daglia, M.; Jafari, S. Natural Terpenoids as a Promising Source for Modulation of GABAergic System and Treatment of Neurological Diseases. Pharmacol. Rep. 2016, 68, 671–679. [Google Scholar] [CrossRef]
- Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W.; Ali, M.; Li, J.; Li, X. Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders. Int. J. Biol. Sci. 2018, 14, 341–357. [Google Scholar] [CrossRef]
- Gong, C.F.; Wang, Y.X.; Wang, M.L.; Su, W.C.; Wang, Q.; Chen, Q.X.; Shi, Y. Evaluation of the Structure and Biological Activities of Condensed Tannins from Acanthus Ilicifolius Linn and Their Effect on Fresh-Cut Fuji Apples. Appl. Biochem. Biotechnol. 2019, 189, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, G.; Duan, X.; Zhang, K.; Zhang, X.; Zhou, Y.; Wu, C.; Zhang, X.; Tan, S.; Hua, X.; et al. Research Progress and Trends in Metabolomics of Fruit Trees. Front. Plant Sci. 2022, 13, 881856. [Google Scholar] [CrossRef]
- Nayak, S.N.; Aravind, B.; Malavalli, S.S.; Sukanth, B.S.; Poornima, R.; Bharati, P.; Hefferon, K.; Kole, C.; Puppala, N. Omics Technologies to Enhance Plant Based Functional Foods: An Overview. Front. Genet. 2021, 12, 742095. [Google Scholar] [CrossRef]
- Xiao, Q.; Mu, X.; Liu, J.; Li, B.; Liu, H.; Zhang, B.; Xiao, P. Plant Metabolomics: A New Strategy and Tool for Quality Evaluation of Chinese Medicinal Materials. Chin. Med. 2022, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Castro-Puyana, M.; Pérez-Míguez, R.; Montero, L.; Herrero, M. Reprint of: Application of Mass Spectrometry-Based Metabolomics Approaches for Food Safety, Quality and Traceability. TrAC Trends Anal. Chem. 2017, 96, 62–78. [Google Scholar] [CrossRef]
- Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; González-Casado, A. Chromatographic Fingerprinting: An Innovative Approach for Food “identitation” and Food Authentication—A Tutorial. Anal. Chim. Acta 2016, 909, 9–23. [Google Scholar] [CrossRef]
- Verma, A.; Parihar, R.; Baishya, B. Identification of Metabolites in Coriander Seeds (Coriandrum sativum L.) Aided by Ultrahigh Resolution Total Correlation NMR Spectroscopy. Magn. Reson. Chem. 2019, 57, 304–316. [Google Scholar] [CrossRef]
- Ma, T.; Sun, Y.; Lin, J.; Wang, J.; Zhang, X.; Yan, T.; Jia, Y. Chemical Constituents and Mechanisms from Hemerocallis Citrina Baroni with Anti-Neuroinflammatory Activity. J. Funct. Foods 2023, 102, 105427. [Google Scholar] [CrossRef]
- Xiao, J.; Gu, C.; He, S.; Zhu, D.; Huang, Y.; Zhou, Q. Widely Targeted Metabolomics Analysis Reveals New Biomarkers and Mechanistic Insights on Chestnut (Castanea Mollissima Bl.) Calcification Process. Food Res. Int. 2021, 141, 110128. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luoa, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef]
- Dossou, S.S.K.; Xu, F.; You, J.; Zhou, R.; Li, D.; Wang, L. Widely Targeted Metabolome Profiling of Different Colored Sesame (Sesamum indicum L.) Seeds Provides New Insight into Their Antioxidant Activities. Food Res. Int. 2022, 151, 110850. [Google Scholar] [CrossRef]
- Mushtaq, M.Y.; Choi, Y.H.; Verpoorte, R.; Wilson, E.G. Extraction for Metabolomics: Access to the Metabolome. Phytochem. Anal. 2014, 25, 291–306. [Google Scholar] [CrossRef]
- Dobson, G.; Vasukuttan, V.; Alexander, C.J. Evaluation of Different Protocols for the Analysis of Lipophilic Plant Metabolites by Gas Chromatography-Mass Spectrometry Using Potato as a Model. Metabolomics 2012, 8, 880–893. [Google Scholar] [CrossRef]
- Li, J.; Sobańtka, A. A Systematic Analysis of the Effect of Extraction Solvents on the Chemical Composition of Extraction Solutions and the Analytical Implications in Extractables and Leachables Studies. J. Pharm. Biomed. Anal. 2023, 222, 115081. [Google Scholar] [CrossRef] [PubMed]
- Ashurst, J.V.; Nappe, T.M. Methanol Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Li, X.; Chen, T.; Ding, N.; Xi, Q.; Zhang, Y. Effects of Aqueous Extracts from Branches and Leaves of Neolamarckia Cadamba (Roxb.) Bosser on Biochemical Indices and Intestinal Flora of Mice. Chin. J. Vet. Sci. 2022, 42, 1869–1877. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, D.; Ma, X.; Han, B.; Han, L. Comparative Analysis of Rice Reveals Insights into the Mechanism of Colored Rice via Widely Targeted Metabolomics. Food Chem. 2022, 399, 133926. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, S.; Chen, D.; Wu, X.; Cai, Q. Polyphenols and Phytohormones Profiling of Pre-Harvest Sprouting Resistant and Susceptible Wheat Genotypes. SN Appl. Sci. 2023, 5, 249. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Ateba, S.B.; Mvondo, M.A.; Ngeu, S.T.; Tchoumtchoua, J.; Awounfack, C.F.; Njamen, D.; Krenn, L. Natural Terpenoids against Female Breast Cancer: A 5-Year Recent Research. Curr. Med. Chem. 2018, 25, 3162–3213. [Google Scholar] [CrossRef]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed]
- Mukund, V.; Mukund, D.; Sharma, V.; Mannarapu, M.; Alam, A. Genistein: Its Role in Metabolic Diseases and Cancer. Crit. Rev. Oncol. Hematol. 2017, 119, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, B.; Li, H.; Lan, L.; Yu, H.; Wu, S.; Wu, J.; Zhang, H. Galangin Suppresses Hepatocellular Carcinoma Cell Proliferation by Reversing the Warburg Effect. Biomed. Pharmacother. 2017, 95, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Kong, S.; Song, F.; Li, L.; Jiang, H. Pharmacokinetic Study of Luteolin, Apigenin, Chrysoeriol and Diosmetin after Oral Administration of Flos Chrysanthemi Extract in Rats. Fitoterapia 2012, 83, 1616–1622. [Google Scholar] [CrossRef]
- Mackert, J.D.; McIntosh, M.K. Combination of the Anthocyanidins Malvidin and Peonidin Attenuates Lipopolysaccharide-Mediated Inflammatory Gene Expression in Primary Human Adipocytes. Nutr. Res. 2016, 36, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-L.; Wei, X.-C.; Guo, L.-Q.; Zhao, L.; Chen, X.-H.; Cui, Y.-D.; Yuan, J.; Chen, D.-F.; Zhang, J. The Therapeutic Effects of Jaceosidin on Lipopolysaccharide-Induced Acute Lung Injury in Mice. J. Pharmacol. Sci. 2019, 140, 228–235. [Google Scholar] [CrossRef]
- Ambasta, R.K.; Gupta, R.; Kumar, D.; Bhattacharya, S.; Sarkar, A.; Kumar, P. Can Luteolin Be a Therapeutic Molecule for Both Colon Cancer and Diabetes? Brief. Funct. Genom. 2018, 18, 230–239. [Google Scholar] [CrossRef]
- Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of Their Molecular Mechanisms and Experimental Models. Phyther. Res. 2015, 29, 323–331. [Google Scholar] [CrossRef]
- Choi, J.; Lee, D.H.; Park, S.Y.; Seol, J.W. Diosmetin Inhibits Tumor Development and Block Tumor Angiogenesis in Skin Cancer. Biomed. Pharmacother. 2019, 117, 109091. [Google Scholar] [CrossRef]
- Imran, M.; Aslam Gondal, T.; Atif, M.; Shahbaz, M.; Batool Qaisarani, T.; Hanif Mughal, M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an Anticancer Agent. Phyther. Res. 2020, 34, 1812–1828. [Google Scholar] [CrossRef] [PubMed]
- Oak, C.; Khalifa, A.O.; Isali, I.; Bhaskaran, N.; Walker, E.; Shukla, S. Diosmetin Suppresses Human Prostate Cancer Cell Proliferation through the Induction of Apoptosis and Cell Cycle Arrest. Int. J. Oncol. 2018, 53, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Atif, M.; Ali, I.; Hussain, A.; Hyder, S.V.; Khan, F.A.; Maalik, A.; Farooq, U. Pharmacological Assessment of Hispidulin—A Natural Bioactive Flavone. Acta Pol. Pharm. Drug Res. 2016, 73, 565–578. [Google Scholar]
- Chu, B.; Chen, S.; Zheng, X.; Ye, J.; Cheng, X.; Zhang, L.; Guo, D.; Wang, P.; Hong, D.; Hong, Z. Nepetin Inhibits Osteoclastogenesis by Inhibiting RANKL-Induced Activation of NF-ΚB and MAPK Signalling Pathway, and Autophagy. J. Cell. Mol. Med. 2020, 24, 14366–14380. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and Inflammation: From Chemistry to Medicine. Pharmacol. Res. 2015, 99, 1–10. [Google Scholar] [CrossRef]
- Reygaert, W.C. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. Biomed Res. Int. 2018, 2018, 9105261. [Google Scholar] [CrossRef]
- Rajhard, S.; Hladnik, L.; Vicente, F.A.; Srčič, S.; Grilc, M.; Likozar, B. Solubility of Luteolin and Other Polyphenolic Compounds in Water, Nonpolar, Polar Aprotic and Protic Solvents by Applying Ftir/Hplc. Processes 2021, 9, 1952. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Cuevas-Valenzuela, J.; González-Rojas, Á.; Wisniak, J.; Apelblat, A.; Pérez-Correa, J.R. Solubility of (+)-Catechin in Water and Water-Ethanol Mixtures within the Temperature Range 277.6–331.2K: Fundamental Data to Design Polyphenol Extraction Processes. Fluid Phase Equilib. 2014, 382, 279–285. [Google Scholar] [CrossRef]
- Poole, C.F. (Ed.) Chapter 2—Solvent Selection for Liquid-Phase Extraction. In Handbooks in Separation Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 45–89. ISBN 978-0-12-816911-7. [Google Scholar]
- Poças, M.F.; Oliveira, J.C.; Oliveira, F.A.R.; Hogg, T. A Critical Survey of Predictive Mathematical Models for Migration from Packaging. Crit. Rev. Food Sci. Nutr. 2008, 48, 913–928. [Google Scholar] [CrossRef]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A Review of Modern and Conventional Extraction Techniques and Their Applications for Extracting Phytochemicals from Plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. Int. J. Food Sci. 2020, 2020, 9081686. [Google Scholar] [CrossRef] [PubMed]
- Dossou, S.S.K.; Luo, Z.; Deng, Q.; Zhou, R.; Zhang, Y.; Li, D.; Li, H.; Tozo, K.; You, J.; Wang, L. Biochemical and Molecular Insights into Variation in Sesame Seed Antioxidant Capability as Revealed by Metabolomics and Transcriptomics Analysis. Antioxidants 2024, 13, 514. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, J.d.S.; Guimarães, R.d.C.A.; Zorgetto-Pinheiro, V.A.; Fernandes, C.D.P.; Marcelino, G.; Bogo, D.; Freitas, K.d.C.; Hiane, P.A.; de Pádua Melo, E.S.; Vilela, M.L.B.; et al. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022, 27, 3563. [Google Scholar] [CrossRef]
- Niki, E. Assessment of Antioxidant Capacity in Vitro and in Vivo. Free Radic. Biol. Med. 2010, 49, 503–515. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wu, L.; Li, Y.; Yang, Y.; Gu, Y.; Yang, J.; Zhang, L.; Meng, F. Comprehensive Secondary Metabolite Profiling and Antioxidant Activity of Aqueous and Ethanol Extracts of Neolamarckia cadamba (Roxb.) Bosser Fruits. Metabolites 2024, 14, 511. https://doi.org/10.3390/metabo14090511
Yang L, Wu L, Li Y, Yang Y, Gu Y, Yang J, Zhang L, Meng F. Comprehensive Secondary Metabolite Profiling and Antioxidant Activity of Aqueous and Ethanol Extracts of Neolamarckia cadamba (Roxb.) Bosser Fruits. Metabolites. 2024; 14(9):511. https://doi.org/10.3390/metabo14090511
Chicago/Turabian StyleYang, Lin, Liyan Wu, Yongxin Li, Yuhui Yang, Yuting Gu, Jialin Yang, Luzy Zhang, and Fanxin Meng. 2024. "Comprehensive Secondary Metabolite Profiling and Antioxidant Activity of Aqueous and Ethanol Extracts of Neolamarckia cadamba (Roxb.) Bosser Fruits" Metabolites 14, no. 9: 511. https://doi.org/10.3390/metabo14090511
APA StyleYang, L., Wu, L., Li, Y., Yang, Y., Gu, Y., Yang, J., Zhang, L., & Meng, F. (2024). Comprehensive Secondary Metabolite Profiling and Antioxidant Activity of Aqueous and Ethanol Extracts of Neolamarckia cadamba (Roxb.) Bosser Fruits. Metabolites, 14(9), 511. https://doi.org/10.3390/metabo14090511