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Abstract: Background/Objectives: Pharmacogenomics (PGx) has revolutionized personal-
ized medicine, notably by predicting drug responses through the study of the metabolic
genotype of drug-metabolizing enzymes. However, these genotypes rely heavily on the
availability and completeness of drug metabolism information and do not account for (all)
“phenoconversion” factors, like drug–drug interactions and comorbidities. To address
these limitations, a more phenotypic approach would be desirable, for which pharma-
cometabolomics (PMx) could be useful by studying and elucidating drug metabolism in
patient samples, such as blood and urine. Methods: This study explored the potential
of PMx to analyze real-world drug metabolite profiles of the extensively studied drug
cyclosporine (CsA) using 24-h urine samples from 732 kidney and 350 liver transplant
recipients included in the TransplantLines Biobank and Cohort Study (NCT identifier
NCT03272841). Detected metabolites were matched with existing information on CsA
metabolism gathered through a comprehensive literature review, aiming to confirm previ-
ously reported metabolites and identify potentially unreported ones. Results: Our analyses
confirmed the urinary presence of CsA and six known metabolites. Additionally, we
detected three known metabolites not previously reported in urine and identified one
unreported metabolite, potentially suggesting the involvement of glutathione conjugation.
Lastly, the observed metabolic patterns showed no notable differences between kidney and
liver transplant recipients. Conclusions: Our findings demonstrate the potential of PMx to
enhance the understanding of drug metabolism, even for well-studied compounds such
as CsA. Moreover, this study highlights the value of PMx in real-world drug metabolism
research and its potential to complement PGx in advancing personalized medicine.

Keywords: personalized medicine; pharmacogenomics; pharmacometabolomics; real-world;
drug metabolism; human
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1. Introduction
Personalized medicine has revolutionized the field of healthcare, enabling treatment

approaches tailored to individual patient characteristics [1]. This field is largely driven
by technological advancements, for example, leading to the clinical implementation of
genetic screening methods to study variations in the genes encoding drug-metabolizing
enzymes, drug transporters, and drug targets, as they may influence an individual’s drug
response [2]. Pharmacogenomics (PGx) has emerged as a powerful tool in this regard,
notably studying the metabolic genotype of drug-metabolizing enzymes in an individual to
predict whether someone has a poor, intermediate, normal, rapid, or ultrarapid metabolizer
phenotype [3,4]. This genotyping helps predict therapeutic response, allowing for more
precise dosing and more effective drug treatments, as well as a reduction in adverse drug
reactions [5].

A key feature of PGx is its reliance on information about how and by which enzymes
a drug is metabolized. It is, however, often overlooked that this information is gener-
ally derived exclusively from so-called mass balance studies, which are small-scale drug
metabolism studies conducted in a few healthy male volunteers receiving a single dose
of the target drug [6]. Therefore, it may not be surprising that recent “real-world” drug
metabolism studies have described various previously unreported metabolites for drugs
that have been on the market for decades [7,8].

These real-world drug metabolism studies utilized the pharmacometabolomics (PMx)
technique to investigate drug metabolism in large patient populations. More specifically,
the PMx technique employed in these studies is an extension of the pioneering work of
Kaddurah-Daouk [9] and Everett and Nicholson [10] within the PMx field, which represents
a subdomain of metabolomics that studies endogenous metabolite profiles in relation to
drug therapies. Recent advances in PMx have highlighted its ability to characterize baseline
metabolic profiles, identify metabolite biomarkers for drug efficacy, and uncover metabolic
pathways associated with individual drug responses. By leveraging endogenous metabolite
data, PMx has also facilitated the prediction of adverse drug reactions and the stratification
of patients based on their metabolic phenotypes, providing actionable insights in the context
of precision medicine [11–15]. The recent studies of Klont et al. [7,8] furthermore extended
the focus to exogenous metabolites, as can often be studied using the same metabolomics
datasets, though typically necessitating different data-processing strategies [16]. This PMx
workflow, therefore, provides a more comprehensive understanding of how drugs are
metabolized on an individual level, yielding a more phenotypic view of drug metabolism
and potentially bringing interindividual differences in drug metabolism to light.

The studies by Klont et al. [7,8] admittedly did not involve an exhaustive search
for all possible metabolites (above a pre-set intensity threshold). Hence, the discovery
of previously unreported metabolites was arguably coincidental rather than a primary
objective. Assessing the potential clinical usefulness of PMx and its complementarity to
PGx, thus, requires a more systematic approach. In this regard, an ideal model compound
for such a study is the therapeutic drug cyclosporine (CsA). This immunosuppressant
has been studied extensively in the past decades, providing a comprehensive overview
of CsA metabolites in bile, blood, and urine [17–19]. In addition, recent findings suggest
the presence of various CsA-related signals of very high abundance in urine samples from
CsA users, which seems counterintuitive given that this drug is primarily excreted in
feces [20]. A PMx study targeting this drug could, thus, demonstrate its discovery potential
by confirming previously identified metabolites and potentially uncovering novel insights
into CsA metabolism.

In this work, we investigate the potential of PMx (in this project using a “SWATH”
mass spectrometry-based workflow) to analyze real-world drug metabolite profiles of
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the well-studied immunosuppressant CsA in 24-h urine from a large group of human
liver and kidney transplant recipients (historically being one of the largest populations
using this drug) participating in the TransplantLines Biobank and Cohort Study [21].
Firstly, we aim to explore existing knowledge of CsA metabolism and its metabolites
through a comprehensive literature review. Secondly, we aim to confirm the presence of
the known CsA metabolites and potentially unveil previously unreported CsA metabolites
in urine samples (as level 3 “putatively characterized compound classes”, according to the
Metabolomics Standards Initiative, MSI [22]).

2. Materials and Methods
2.1. A Literature Study of CsA Metabolites

A comprehensive literature review was conducted on PubMed to find relevant articles
that reported CsA drug metabolism studies. An overview of the search strategy can be
found in Method S1. Original research articles written in English were included in this
review. Other article types, such as review articles, meta-analyses, case reports, book
sections, protocols, commentaries, editorials, and letters to the editor, were excluded.
Exclusion criteria for original research articles consisted of articles that did not address
CsA metabolism, described in vitro CsA metabolism, performed CsA metabolism studies
in animals, and articles that were not related to CsA in any form. Titles, abstracts, and, if
needed, full texts were retrieved and screened. Screening and study selection were carried
out using EndNote 21 [23]. A PRISMA flow diagram shows the inclusion criteria of this
literature study (see Figure S1).

2.2. Clinical Samples

Twenty-four-hour urine samples were available for kidney (KTR) and (potential) liver
transplant recipients (LTR) included in the TransplantLines Biobank and Cohort Study
(NCT identifier NCT03272841). This study was approved by the Institutional Review
Board of the University Medical Center Groningen (UMCG; decision METc 2014/077) and
adheres to the Declaration of Helsinki, the Declaration of Istanbul, and the UMCG Biobank
Regulation [21]. The urine samples were collected per strict protocol, which was designed
internally for generic biobanking purposes and lacked the addition of preservative agents
commonly used in metabolomics research. For sample collection, BD Vacutainer 24-h urine
collection containers were used, and the time between sample collection and handing it
in was consistently below 48 h. Samples were subsequently stored at −20 ◦C for up to
four days after manual aliquoting and at −80 ◦C and atmospheric pressure for up to five
years until shipment (<72 h on dry ice in a security-sealed, insulated box compliant with
IATA, ADR, and 49 CFR (DOT) transport regulations). Finally, samples were stored at
−80 ◦C and atmospheric pressure for up to six months after shipment prior to analysis.
For this pharmacometabolomics study, we analyzed samples from 570 KTR who were
≥1 year post-transplantation and had already been transplanted prior to the start of the
TransplantLines study (study A), 163 KTR who were followed prospectively and for whom
samples were available at 3, 12, and 24 months post-transplantation (study B), 316 LTR
who were ≥1 year post-transplantation and had already been transplanted prior to the
start of the TransplantLines study (study C), and 176 (potential) LTR who were followed
prospectively and for whom samples were available before transplantation and/or at 3, 6,
12, or 24 months post-transplantation (study D).

2.3. LC-SWATH/MS-Based Pharmacometabolomics Analyses

Urine samples were thawed (overnight at −25 ◦C, <4 h at 2–6 ◦C), vortex-mixed (30 s),
and centrifuged (4 ◦C, 10 min, 14,000× g), after which 50 microliters of supernatant were
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transferred to glass inserts (BGB; Cat. No. 110501) placed in glass autosampler vials (BGB;
Cat. No. SF2). Next, 10 microliters of a 5 pmol/µL internal standard solution in 10%
methanol (see Table S1) were added to the samples; the vials were sealed with plastic caps
(BGB; Cat. No. 070301), and the samples were vortex-mixed (30 s). From the resulting
mixture, 24 microliters (≡20 microliters of urine, 20 pmol per internal standard) were
analyzed by reversed-phase liquid chromatography coupled to high-resolution quadrupole-
time-of-flight mass spectrometry operated in positive electrospray ionization and SWATH
data-independent acquisition (DIA) modes. A detailed overview of LC and MS parameters
is provided in Table S2, and more information on batch design and quality assurance is
presented in Method S2, Figures S2–S13, and Table S3.

2.4. Data Processing

CsA-positive samples were identified by spectral library matching (SLM) [24] us-
ing SCIEX PeakView software (version 2.2.0.11391; 71 Four Valley Drive, Concord, ON,
Canada, L4K 4V8) and an in-house generated reference spectrum for CsA (obtained with
SCIEX TripleTOF instruments at a collision energy of 40 eV and a collision energy spread
of 30 eV) (see Table S4 and Figure S14). Subsequently, an MS1-level feature-based eval-
uation of SLM results, as presented in [7], was employed to improve the reliability of
the SLM results, for which the corresponding features were extracted using SCIEX Mark-
erView software (version 1.3.1; 71 Four Valley Drive, Concord, ON, Canada, L4K 4V8) (see
Table S3). These same feature data were filtered based on m/z value (≥550) and retention
time (≥14.0 and ≤15.5 min), thus zooming in on the regions where CsA and its metabolites
were expected in our analytical study based on prior research findings [20]. Regarding
the latter, filtering particularly simplified data analysis given the numerous high abun-
dance signals present at lower retention times and originating from the polyethoxylated
castor bean oil used in CsA capsules. Subsequently, the feature data were used to identify
CsA-related signals by Mann–Whitney U test using CsA exposure status (exposed versus
nonexposed, based on SLM findings) as a grouping variable and a p-value of <0.05 (which
was Bonferroni-corrected) for assessing statistical significance. Next, significant hits were
evaluated manually to exclude isotope peaks, adducts (e.g., sodium, ammonium), and low
abundance features. Regarding the latter, a median abundance in CsA users of at least 1.0%
relative to the highest observed median was used as a cut-off for inclusion. In addition,
features with lower medians but showing a value of at least 5.0% (relative to the highest
observed median) in at least one of the study samples were evaluated as well. Subsequently,
representative samples were reanalyzed to yield “cleaner” fragment spectra by employing
the product ion scan acquisition mode with narrower precursor isolation windows of
1 m/z unit (compared to window widths of 15 m/z units in the lower mass range and
the two larger (>250 m/z units) windows in the higher mass range), while furthermore
utilizing the same collision energy ranging from 10 to 70 V. In addition, more reliable signal
intensities were extracted manually following an “SRM-like” targeted signal extraction
approach [7] utilizing the SCIEX MultiQuant software (version 2.1) with a ±2.5 mDa mass
extraction window and a 2.0-point Gaussian smoothing width. Finally, data analyses and
computations were performed using R version 4.3.2 (R Foundation for Statistical Comput-
ing, Vienna, Austria). Subject characteristics are presented as median (interquartile range
[IQR]) for continuous data and number with percentage (%) for categorical data. These
characteristics were stratified by PMx-confirmed CsA use in both KTR and LTR separately
and were investigated using the Mann–Whitney U test for non-parametric continuous
variables, and the Chi-square test was applied to categorical variables. A p-value of <0.05
was considered statistically significant.
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3. Results and Discussion
3.1. CsA Metabolites in Literature

The target drug CsA (see Figure 1) is a cyclic undecapeptide that is primarily cleared
hepatically, although its metabolites have been found both in feces and urine (see Table 1).
An early report detecting the presence of CsA in human samples (i.e., serum) was drafted by
Yee et al. in 1982 using high-performance liquid chromatography (HPLC) [25], a technique
that became critical for subsequent analyses of CsA and its metabolites in biological samples.
Building on this, Maurer et al. [26] described nine metabolites of CsA in human urine,
all representing CsA oxidation products having differentially hydroxylated (position 1, 6,
9), demethylated (position 4), and cyclized (position 1) amino acids. Also in urine, Meier
et al. [27] detected a variant that was hydroxylated and featured a saturated double bond
at the amino acid in position 1, and this variant was found in blood as well. Also in blood,
Rosano et al. [28] confirmed the presence of CsA together with three metabolites previously
found in urine [20], whereas Lensmeyer et al. [29] found six known and three additional
oxidation products with differently oxidized amino acids (position 1, 4, 9) in blood, notably
including a carboxylated variant.
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Figure 1. Chemical structure of cyclosporine A, with indication of amino acid (AA) positions shown
in red.

The carboxylated metabolite had already been detected earlier in bile by Hartman
et al. [30], together with unmetabolized CsA. In this same matrix, most of the metabolites
previously found in urine were detected by several other studies conducted in the late
1980s and early 1990s [31–33], which additionally detected various unreported variants.
Specifically, Wang et al. [31] detected a doubly hydroxylated (position 1, 9) variant featuring
a saturated double bond at position 1, whereas Henricsson [32] and Christians et al. [33]
detected phase II metabolites, respectively featuring a sulfate and glucuronide moiety at
position 1. The latter group of authors also reported several previously unreported (phase I)
metabolites but were generally unable to provide the exact positions of the added oxygens.
Lastly, it should be acknowledged that some of the biliary metabolites have not (yet) been
found in our target matrix (urine), but knowing about their existence will inevitably be
helpful when detecting previously unreported metabolites.
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Table 1. Overview of previously detected cyclosporine A metabolites sorted based on their molecular
weight.

Substance
Code

Molecular
Formula

Monoisotopic
Mass

Modification Reported on Position Detected in

1 4 6 9 Unknown Bile Blood Urine

AM4N C61H109N11O12 1187.83 -CH3 [31,33] [28,29] [26]

CsA C62H111N11O12 1201.84 [30,31] [25,28,29] [26]

AM4N9 C61H109N11O13 1203.82 -CH3 +OH [33] [29] [26]

AM14N C61H109N11O13 1203.82 +OH -CH3 [33] [29]

UM32.8min C61H109N11O13 1203.82 +OH -CH3 [33]

AM1AL C62H109N11O13 1215.82 ald. [33]

AM1 C62H111N11O13 1217.84 +OH [31,33] [28,29] [26]

AM1c C62H111N11O13 1217.84 cycl. [31,33] [29] [26]

AM9 C62H111N11O13 1217.84 +OH [31,33] [28,29] [26]

AM4N69 C61H109N11O14 1219.82 -CH3 +OH +OH [33] [26]

UM21.2min C61H109N11O14 1219.82 +OH -CH3 +OH [33]

AM1DI C62H113N11O13 1219.85
+OH
+sat.

[31] [27] [27]

AM1A C62H109N11O14 1231.82 carbox. [30,33] [29]

AM1Ac C62H109N11O14 1231.82
carbox.

cycl.
[30]

AM19 C62H111N11O14 1233.83 +OH +OH [31,33] [29] [26]

AM1c9 C62H111N11O14 1233.83 cycl. +OH [33] [29]

AM49 C62H111N11O14 1233.83 +OH +OH [31,33] [26]

AM69 C62H111N11O14 1233.83 +OH +OH [31,33] [26]

AM11d C62H111N11O14 1233.83 +2×OH [33]

UM19.8min C61H109N11O15 1235.81 +OH -CH3 +2×OH [33]

UM23.0min C61H109N11O15 1235.81 -CH3 +3×OH [33]

AM1DI9 C62H113N11O14 1235.85
+OH
+sat.

+OH [31]

UM26.0min C62H109N11O15 1247.81 carbox. +OH [33]

UM20.6min C62H111N11O15 1249.83 +OH +2×OH [33]

UM22.4min C62H111N11O15 1249.83 +OH +2×OH [33]

UM24.4min C62H111N11O15 1249.83 +OH +2×OH [33]

UM25.5min C62H111N11O15 1249.83 +OH +2×OH [33]

AM1S C62H111N11O15S 1281.80 +sul. [32] [32]

AM1c-Glc C68H119N11O19 1393.87
cycl.

+glu.
[33]

Abbreviations: ald. = aldehyde; carbox. = doubly oxygenated amino acid leading to a carboxyl group; cycl. = single
oxygenation leading to a cyclized amino acid; glu. = glucuronic acid conjugate; sat. = saturation (reduction of carbon-
carbon double bond); sul. = sulfate conjugate; UM = unknown metabolite. Substance codes presented in italics reflect
previously unreported phase I metabolites for which exact positions of the added hydroxyl moieties were not provided.

3.2. Sample Analysis

The studied urine samples were obtained from the TransplantLines Biobank and
Cohort Study for kidney (KTR) and (potential) liver transplant recipients (LTR) and were
initially treated as four different substudies. Samples from study A were analyzed between
24 November and 3 December 2021, and this study included 570 KTR who had a functional



Metabolites 2025, 15, 39 7 of 14

graft for at least one year post-transplantation when samples were taken. Study B’s samples
were analyzed between 8 and 17 December 2021, and this study included samples of
163 KTR at 3, 12, and 24 months after transplantation. Samples from study C were analyzed
between 18 and 22 November 2021, and this study included 316 LTR who had a functional
graft for at least one year post-transplantation when samples were taken. Study D’s samples
were analyzed between 11 and 15 November 2021, and this study included samples of
176 (potential) LTR before and/or at various timepoints after transplantation (see Table S5).
Analytical performance was ensured following assessment of the reproducibility of signal
intensity values (see Figures S2–S5) and retention time stability of stable-isotope-labeled
standards (see Figures S6–S9). In addition, the expected clustering of samples (based on
immunosuppressive drug use [20]) in principal component analysis (PCA) was verified
(see Figures S10–S13).

3.3. Characteristics of Kidney and Liver Transplant Recipients

For this specific study on the real-world metabolism of CsA, enlarged cohorts were
constructed for KTR and LTR, respectively, by combining study A with the 24-month post-
transplantation samples of study B and study C with the 12-month post-transplantation
samples of study D. This combination resulted in enlarged cohorts of 732 KTR and 350 LTR,
and corresponding PCA plots of pharmacometabolomics data reassuringly do not show
separation between participants from the respective substudies (see Figures S15 and S16).
A detailed overview of subject characteristics is provided in Table 2. Regarding these
characteristics, CsA use was confirmed using PMx in 126 out of 732 KTR (17%) and 38 out
of 350 LTR (11%). Of these 126 KTR, the median age was 59 (interquartile range [IQR]
51–66) years, and 49% were female. Of the 38 LTR, the median age was 60 (IQR 47–66) years,
and 47% were female. In KTR, the kidney function marker estimated glomerular filtration
rate (eGFR), serum albumin, and the liver function marker alanine aminotransferase (ALT)
were significantly lower in CsA users than in nonusers. Time since transplantation was
significantly longer in KTR who used CsA compared to KTR not using CsA. Furthermore,
the use of the immunosuppressive drugs tacrolimus and mycophenolate mofetil (MMF)
and the use of calcium blockers were significantly lower in CsA users than in nonusers. In
LTR, the time since transplantation was significantly longer for CsA users than nonusers.
Tacrolimus use and MMF use were significantly lower in LTR using CsA compared to those
not using CsA, whereas prednisolone use is significantly higher in CsA users compared
to nonusers.

Table 2. Characteristics of 732 kidney transplant recipients and 350 liver transplant recipients.

Kidney Transplant Recipients Liver Transplant Recipients

Characteristic
As Median (IQR) or n (%)

CsA Users
n = 126

CsA Nonusers
n = 606 p-Value CsA Users

n = 38
CsA Nonusers

n = 312 p-Value

Age (years) 59 (51, 66) 58 (48, 66) 0.09 60 (47, 66) 58 (46, 66) 0.95
Female sex 62 (49%) 230 (38%) 0.03 18 (47%) 134 (43%) 0.73

BMI (kg/m2) 26.7 (24.0, 29.6) 26.5 (23.9, 30.1) 0.68 25.7 (22.5, 27.5) 25.9 (23.3, 29.6) 0.34
Smoking status 0.92 0.27

Current 11 (11%) 48 (12%) 1 (3.3%) 31 (12%)
Former 38 (39%) 147 (37%) 12 (40%) 79 (30%)
Never 48 (49%) 202 (51%) 17 (57%) 154 (58%)

Alcohol units per week 0.5 (0.0, 3.5) 1.2 (0.0, 6.2) 0.13 0.0 (0.0, 0.9) 0.0 (0.0, 0.5) 0.20
eGFR (mL/min/1.73 m2) 48 (37, 62) 55 (41, 66) 0.009 75 (61, 97) 73 (57, 92) 0.37

Serum albumin (g/L) 43 (41, 45) 44 (42, 46) 0.02 44 (42, 47) 44 (42, 46) 0.83
ALT (U/L) 17 (13, 22) 19 (14, 24) 0.03 26 (18, 31) 25 (18, 35) 0.96

Serum CRP (mg/L) 1.8 (0.7, 5.0) 1.8 (0.8, 4.6) 0.88 1.8 (0.7, 4.2) 2.0 (0.9, 4.7) 0.41
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Table 2. Cont.

Kidney Transplant Recipients Liver Transplant Recipients

Characteristic
As Median (IQR) or n (%)

CsA Users
n = 126

CsA Nonusers
n = 606 p-Value CsA Users

n = 38
CsA Nonusers

n = 312 p-Value

Serum glucose (mmol/L) 5.6 (5.1, 6.5) 5.5 (5.0, 6.3) 0.28 5.6 (5.0, 6.4) 5.6 (5.2, 6.7) 0.80
Urinary albumin (mg/24 h) 41 (11, 179) 32 (11, 147) 0.50 14 (9, 53) 13 (7, 49) 0.41

Time since
transplantation (years) 9 (6, 17) 5 (2, 11) <0.001 14 (10, 22) 8 (3, 17) <0.001

Tacrolimus use 0 (0%) 451 (74%) <0.001 2 (5.3%) 209 (67%) <0.001
Mycophenolate use 75 (60%) 463 (76%) <0.001 4 (11%) 86 (28%) 0.04

Azathioprine use 16 (13%) 65 (11%) 0.63 15 (39%) 74 (24%) 0.06
mTOR inhibitor use 1 (0.8%) 23 (3.8%) 0.15 1 (2.6%) 48 (15%) 0.06

Prednisolone use 125 (99%) 577 (95%) 0.07 23 (61%) 104 (33%) 0.002
Histamine H2-receptor

antagonist use 3 (2.4%) 25 (4.1%) 0.50 1 (2.6%) 26 (8.3%) 0.36

Calcium channel blocker use 29 (23%) 238 (39%) <0.001 8 (21%) 53 (17%) 0.69
ACE inhibitor use 40 (32%) 151 (25%) 0.14 3 (7.9%) 55 (18%) 0.20

Statin use 71 (56%) 336 (55%) 0.93 7 (18%) 70 (22%) 0.72

Abbreviations: CsA = cyclosporine A; BMI = body mass index; eGFR = estimated glomerular filtration
rate; ALT = alanine aminotransferase; CRP = C-reactive protein; mTOR = mammalian target of rapamycin;
ACE = angiotensin-converting enzyme. Characteristics are presented as median (interquartile range [IQR]) for
continuous data and n (%) for categorical data. The Mann–Whitney U rank sum test was used for non-parametric,
continuous variables, and the Chi-square test was applied to categorical variables. p-values in bold are statistically
significant. In the kidney transplant recipient group, data on smoking were missing in 238 patients (32.5%); data
on alcohol consumption were missing in 94 patients (12.8%); data on serum glucose were missing in 42 patients
(5.7%), and data on urinary albumin were missing in 80 patients (10.9%). All other variables had missing data
for <15 patients. In the liver transplant recipient group, data on smoking were missing in 56 patients (16%); data
on alcohol consumption were missing in 34 patients (9.7%); data on serum glucose were missing in 19 patients
(5.4%), and data on urinary albumin were missing in 41 patients (11.7%). All other variables had missing data for
<3 patients.

3.4. Feature Selection

Starting with 158,273 features in KTR, 663 were significantly associated with CsA use.
In LTR, 484 features out of 154,145 features were significantly associated with CsA use. Of
these features, the isotope peaks, adduct signals, in-source fragments, and low-abundance
features were removed (manually). This feature removal resulted in a total of ten prioritized
features, with nine features found in KTR and eight in LTR, of which seven overlapped
(Table 3). See Figure 2 for a schematic overview of the entire selection process.

Table 3. Overview of selected features.

Kidney Transplant Recipients Liver Transplant Recipients

m/z 1 RT (min) Rel. Median (%) 2 p-Value Rel. Median (%) 2 p-Value

594.92 15.0 2.2 4.3 × 10−152 2.6 4.2 × 10−63

601.92 15.2 1.9 1.4 × 10−150 2.0 3.3 × 10−60

602.92 14.6 4.0 1.1 × 10−150 3.9 3.9 × 10−48

608.92 14.6 3.4 2.8 × 10−138 - n.s.
608.92 14.8 - n.s. 3.2 4.1 × 10−66

609.92 14.8 100.0 6.5 × 10−142 100.0 2.7 × 10−40

616.92 14.6 2.0 3.9 × 10−154 3.2 1.4 × 10−67

617.92 14.2 30.3 1.1 × 10−150 34.5 3.5 × 10−66

624.91 14.2 1.0 9.8 × 10−152 - n.s.
670.43 14.1 1.4 3.9 × 10−154 2.0 2.9 × 10−72

Abbreviations: m/z = mass-to-charge ratio; n.s. = not significant; RT = retention time; rel. = relative. 1 CsA and
its metabolites were expected as doubly charged ions [M+2H]2+. 2 For both the KTR and the LTR, the highest
observed median intensity value of CsA users was set at 100%, and all other median values were expressed
relative to the highest value.
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Figure 2. Schematic overview of feature selection in kidney and liver transplant recipients. Features
were filtered based on m/z value (≥550) and retention time (≥14.0 min and ≤15.5 min). After filtering,
a Mann–Whitney U test was performed, and corresponding p-values were Bonferroni-corrected. A
p-value < 0.05 was considered statistically significant. Finally, significant features were assessed
manually to exclude isotope peaks, adducts, and low abundance features.

3.5. Metabolite Identification (As Level 3 “Putatively Characterized Compound Classes”,
According to the Metabolomics Standards Initiative, MSI [22])

A manual assessment of cyclosporine-positive samples using the m/z values and
retention times of the ten prioritized features (see Table 3) revealed thirteen distinct signals
associated with cyclosporine exposure (see Table 4 and Figures S17–S26). One signal
corresponded to cyclosporine itself and had a relative median metabolite abundance of
1.01% and 0.73% in KTR and LTR, respectively.

Table 4. Overview of (putatively) identified cyclosporine metabolites (as level 3 “putatively charac-
terized compound classes”, according to the Metabolomics Standards Initiative, MSI [22]).

Substance
Molecular
Formula

Monoisotopic
Mass

m/z 1 RT (min)

Median
Metabolite

Abundance 2 in
KTR (%)

Median
Metabolite

Abundance 2 in
LTR (%)

Demethylcyclosporine C61H109N11O12 1187.83 594.92 15.0 1.41 1.38
Cyclosporine C62H111N11O12 1201.84 601.92 15.2 1.01 0.73

Demethylhydroxycyclosporine C61H109N11O13 1203.82 602.92
14.6
14.8

2.37
1.36

2.52
0.98

Cyclosporine aldehyde C62H109N11O13 1215.82 608.92
14.6
14.8

0.75
1.27

0.73
1.25

Hydroxycyclosporine C62H111N11O13 1217.84 609.92 14.8 64.01 60.66
Demethyldihydroxycyclosporine C62H113N11O13 1219.85 610.92 14.3 1.10 1.19

Cyclosporine carboxylic acid C62H109N11O14 1231.82 616.92 14.6 0.61 1.15

Dihydroxycyclosporine C62H111N11O14 1233.83 617.92
14.2
14.7

20.29
4.35

21.99
4.75

Hydroxycyclosporine
carboxylic acid

C62H109N11O15 1247.81 624.91 14.2 0.76 1.54

Unknown metabolite C65H118N12O15S 1338.86 670.43 14.1 0.71 1.13

Abbreviations: m/z = mass-to-charge ratio; RT = retention time; KTR = kidney transplant recipients; LTR = liver
transplant recipients. 1 CsA and its metabolites were expected and detected as doubly charged ions [M+2H]2+.
2 Median metabolite abundance values presented in the table reflect the median values (per study) of the relative
quantitative readouts that were calculated by dividing the signal intensity of each substance individually by the
sum of signal intensities of all substances found per cyclosporine user.

The major phase I metabolites of cyclosporine we expected to find in urine based on
our literature study, demethylcyclosporine (AM4N) and hydroxycyclosporine (AM1), were
identified based on the expected mass differences and lower retention times compared to
CsA. For demethylcyclosporine, the median metabolite abundances were 1.41% and 1.38%
in KTR and LTR, respectively. The median metabolite abundances for hydroxycyclosporine
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were 64.01% in KTR and 60.66% in LTR, making hydroxycylosporine the most abundant
substance in both cohorts. It should, however, be noted that only one (rather broad) peak
reflecting monohydroxylated CsA was detected, which possibly also captured the lower
abundance CsA metabolites AM1c and AM9. The latter likely also applies to the five
doubly oxygenated CsA metabolites (AM19, AM1c9, AM49, AM69, AM11d) for which only
two signals were found, measuring the second and third highest median metabolite abun-
dances (RT 14.2 min: 20.29% for KTR and 21.99% for LTR; RT 14.7 min: 4.35% for KTR and
4.75% for LTR). For the remaining expected urinary metabolites, signals corresponding to
demethyldihydroxycyclosporine (AM4N69) and demethylhydroxycyclosporine (AM4N9)
were found with median metabolite abundances below 3%, whereas cyclic hydroxycy-
closporine (AM1c) and saturated hydroxycyclosporine (AM1DI) were not found, possibly
not reaching the minimal abundance threshold.

Furthermore, we detected three additional metabolites in the urine of KTR and LTR
that had not been detected in urine previously. Among these were the cyclosporine
aldehyde (AM1AL) and a carboxylated CsA variant that have been detected in blood and/or
bile before [29,30,33]. Interestingly, only one aldehyde variant has been reported before,
while we found two distinct signals with median abundances around 1%. Conversely, two
carboxylated variants (AM1A, AM1Ac) have previously been reported in blood and/or
bile [29,30,33], and we only found one distinct signal. The report on AM1Ac in bile [33] may,
however, have listed a wrong m/z value for their carboxylated and cyclized metabolite,
which would logically match the low abundance hydroxycyclosporine carboxylic acid
metabolite that we found.

In addition to the second CsA aldehyde variant, we found another unreported sub-
stance with an m/z value of 670.434. We did not assign an identity to this substance, yet its
mass difference compared to CsA (+137.011) matches the mass of hydroxycysteine, thus
potentially suggesting the involvement of glutathione conjugation. We were also unable to
detect some metabolites previously only found in blood and/or bile, which could be due
to their absence in urine but also due to the abundance threshold we employed. In this
regard, cyclosporine glucuronide and cyclosporine sulfate could be detected in the urine of
both KTR and LTR; yet, these metabolites did not pass the median abundance threshold
and were, therefore, excluded from our analyses. These findings do, however, underscore
the identification potential of the presented PMx workflow, demonstrating that even for a
widely studied drug like CsA, multiple unreported metabolites could be detected.

Lastly, a notable strength of this study is the use of urinary PMx data of a large number
of real-world cyclosporine users, allowing for insights into characteristics that may influ-
ence the variability in drug metabolism, particularly demographic, dietary, genetic, lifestyle,
and physiological factors. However, this real-world setting also introduces a limitation, as
these data inevitably encompass variability that remains unidentified and, therefore, cannot
be explored in detail. Furthermore, participants included in our study come from a rather
confined geographical area and, accordingly, may not be representative of populations in
other regions. In addition, the biobank samples and untargeted analytical techniques uti-
lized in our study (operated in a nonregulatory environment and without regulatory-grade
method validation) may introduce certain (pre)analytical biases or complicate metabolite
identification. The use of the SWATH data-independent acquisition mode, for example,
generally produces more complex composite spectra compared to other acquisition modes
and prompted us to generate cleaner product ion scan spectra for signals of interest as
well. Moreover, the median abundance threshold of 1.0% relative to the highest measured
median abundance as a cut-off value may be arbitrary, as some substances were, therefore,
excluded from further analyses. Additionally, the detected metabolite patterns may not
fully represent those at the time of urine excretion, as is the main trade-off associated with
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the wealth of information provided by 24-h urine sampling. Importantly, it was not our
primary aim to completely characterize novel metabolites, and we acknowledge that such
efforts would require the use of complementary techniques like nuclear magnetic resonance
(NMR) and more comprehensive data analysis. Finally, current PMx research faces several
challenges, including the need for more transparency, improved control of (pre)analytical
factors, (more) validated protocols, larger sample sizes, accessible and reliable software,
and enhanced analytical sensitivity to improve the accuracy and reproducibility of find-
ings [11,13,34–36]. Variability in sample collection methods and metabolite identification
strategies further complicate data interpretation [12,13,34,37–40]. Future efforts should
focus on advanced data analysis and integration, for example, combining machine learning
algorithms with innovative metabolomics methods, yielding more robust metabolomics
findings and facilitating the translation of findings into clinical practice [12,13,37,41].

4. Conclusions
This study using cyclosporine as a model demonstrates how pharmacometabolomics

can support real-world drug metabolism research. This study also highlights the com-
plementary role of pharmacometabolomics in providing a real-world and phenotypic
perspective on drug metabolism, which can enrich pharmacogenomics research and the
corresponding clinical practices. Although the metabolism of cyclosporine has been ex-
tensively studied, our analysis revealed multiple metabolites previously undetected in
urine, including metabolites that were previously identified in blood and/or bile, as well
as “novel” metabolites (as level 3 “putatively characterized compound classes”, according
to the Metabolomics Standards Initiative, MSI [22]). The observed metabolic patterns
also allowed for the comparison of drug metabolism across different patient populations,
revealing no notable differences between relatively large cohorts of kidney and liver trans-
plant recipients. Assessing such profiles in other populations, for example, with varying
geographic origins, genetic makeup, and comedication, could expand the phenotypic view
of drug metabolism we provided. Hence, more studies are warranted to assess more
patient heterogeneity and determine the clinical relevance of the novel metabolites and the
metabolite profiles in terms of drug safety and effectiveness, ultimately leading to more
personalized medicine.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/metabo15010039/s1, Method S1: PubMed search strategy; Method S2:
Preparation, use, and evaluation of intra-lab, long-term QC samples; Table S1: Overview of internal
standards; Table S2: Overview of LC–MS analytical parameters; Table S3: Overview of MarkerView
data (pre)processing settings; Table S4: Overview of PeakView chemical identification settings;
Table S5: Overview of sample combinations for study D; Figure S1: PRISMA flow chart of study
inclusion; Figure S2: Nonnormalized MS1-level absolute feature areas of the included internal
standards, as were detected in the intra-lab, long-term QC samples included in study A; Figure S3:
Nonnormalized MS1-level absolute feature areas of the included internal standards, as were detected
in the intra-lab, long-term QC samples included in study B; Figure S4: Nonnormalized MS1-level
absolute feature areas of the included internal standards, as were detected in the intra-lab, long-term
QC samples included in study C; Figure S5: Nonnormalized MS1-level absolute feature areas of
the included internal standards, as were detected in the intra-lab, long-term QC samples included
in study D; Figure S6: Retention times of the MS1-level signals extracted for the included internal
standards, as were detected in the intra-lab, long-term QC samples included in study A; Figure S7:
Retention times of the MS1-level signals extracted for the included internal standards, as were
detected in the intra-lab, long-term QC samples included in study B; Figure S8: Retention times of
the MS1-level signals extracted for the included internal standards, as were detected in the intra-lab,
long-term QC samples included in study C; Figure S9: Retention times of the MS1-level signals
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extracted for the included internal standards, as were detected in the intra-lab, long-term QC samples
included in study D; Figure S10: Pareto-scaled scores plots for unsupervised principal component
analysis of unnormalized MS1-level feature data of study A; Figure S11: Pareto-scaled scores plots
for unsupervised principal component analysis of unnormalized MS1-level feature data of study B;
Figure S12: Pareto-scaled scores plots for unsupervised principal component analysis of unnormalized
MS1-level feature data of study C; Figure S13: Pareto-scaled scores plots for unsupervised principal
component analysis of unnormalized MS1-level feature data of study D; Figure S14: Exemplary
spectral library matching-based identification of hydroxylated cyclosporine A, as was found in urine
of a kidney transplant recipient; Figure S15: Pareto-scaled scores and loadings plots for unsupervised
principal component analysis of unnormalized MS1-level feature data of all samples of study A and the
24 months post-transplantation samples of study B; Figure S16: Pareto-scaled scores and loadings plots
for unsupervised principal component analysis of unnormalized MS1-level feature data of all samples
of study C and the 24 months post-transplantation samples of study D. Figures S17–S26: Exemplary
extracted ion chromatograms and fragment spectra of cyclosporine A (as “identified compound”) and
putative cyclosporine A metabolites (as “putatively characterized compound classes”).
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