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Abstract: Background: Obstructive Sleep Apnea (OSA) is a prevalent sleep disorder
characterized by intermittent upper airway obstruction, leading to significant health conse-
quences. Traditional diagnostic methods, such as polysomnography, are time-consuming
and resource-intensive. Objectives: This study explores the potential of proton-transfer-
reaction mass spectrometry (PTR-MS) in identifying volatile organic compound (VOC)
biomarkers for the non-invasive detection of OSA. Methods: Breath samples from 89 par-
ticipants, including 49 OSA patients and 40 controls, were analyzed using PTR-MS. Sig-
nificance analysis was performed between OSA patients and controls to identify potential
biomarkers for OSA. To as-sess the differences in VOC concentrations between OSA pa-
tients and control subjects,the Wilcoxon rank-sum test was employed. partial least squares
discriminant analysis (PLS-DA) analysis and heatmap plot was conducted to visualize
the differentiation between OSA patients and control subjects based on their VOC pro-
files.In order to further investigate the correlation between identified biomarkers and the
severity of OSA measured by Apnea–Hypopnea Index (AHI), regression analysis was
conducted between biomarkers and AHI Index. Results: The results identified specific
VOCs, including m045 (acetaldehyde), m095.950, and m097.071, which showed significant
differences between OSA patients and controls. Advanced statistical analyses, including
PLS-DA and correlation mapping, highlighted the robustness of these biomarkers, with
m045 (acetaldehyde) specifically emerging as a potential biomarker associated with the
AHI Index. Conclusions: This study underscores the potential of VOCs as biomarkers
for identifying patients with severe AHI levels. The analysis of VOCs using PTR-MS
presents a rapid, non-invasive, and cost-effective method that could be seamlessly inte-
grated into clinical practice, allowing clinicians to better stratify patients based on their
need for polysomnography and prioritize those requiring earlier testing. Future studies
are necessary to validate these findings in larger cohorts and to explore the integration of
PTR-MS with other diagnostic modalities for improved accuracy and clinical utility.

Keywords: clinical diagnostics; PTR-MS; breath analysis; obstructive sleep apnea; biomarkers

1. Introduction
Obstructive Sleep Apnea (OSA) is a prevalent sleep disorder characterized by recurrent

episodes of partial or complete upper airway obstruction during sleep, leading to intermittent
hypoxia, sleep fragmentation, and daytime sleepiness [1,2]. It is associated with various risk
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factors, including obesity, craniofacial abnormalities, and advancing age [3–5]. The patho-
physiology of OSA involves the collapse or narrowing of the upper airway, often exacerbated
during sleep due to reduced muscle tone and altered respiratory control mechanisms [4]. Clini-
cal manifestations of OSA range from snoring and witnessed apneas to systemic complications
such as hypertension, cardiovascular disease, and cognitive impairment [6].

The accurate detection of OSA relies on a combination of screening questionnaires,
nasoendoscopy, and an overnight sleep study. Although questionnaires like the Ep-
worth Sleepiness Scale (ESS) and STOP-BANG criteria are widely accepted and validated
screening tools [7], they have limitations, particularly in terms of lower specificity [8].
Polysomnography (PSG) remains the gold-standard diagnostic tool, allowing for a com-
prehensive assessment of respiratory parameters, sleep architecture, and associated ab-
normalities during overnight sleep monitoring [9]. While PSG is highly sensitive and
specific for diagnosing OSA, it has limitations, such as cost, the availability of specialized
sleep centers, and patient discomfort during overnight monitoring [9]. Home sleep apnea
testing (HSAT) may be used as a more accessible and cost-effective alternative in certain
cases, particularly for uncomplicated OSA presentations [10,11]. HSAT, although more
convenient, may underestimate OSA severity in complex cases or fail to capture certain
sleep-related parameters accurately [12].

Volatile organic compounds (VOCs) are a diverse group of organic chemicals emitted
from various metabolic processes within the body and can be found in the breath [13–15].
These compounds, present in trace amounts, can serve as potential biomarkers for a range of
diseases, including Obstructive Sleep Apnea (OSA). Biomarkers are measurable indicators
of a biological condition or state, and in the context of breath analysis, they provide a non-
invasive means of disease detection and monitoring. VOCs have been successfully used
to detect a range of conditions [16], including cancer, metabolic disorders, and respiratory
and gastrointestinal diseases, due to their ability to reflect underlying changes in metabolic
and inflammatory processes.

Breath tests offer a compelling diagnostic tool due to their non-invasive nature, ease of
sample collection, and the potential for rapid analysis [17–21]. The process involves collect-
ing exhaled breath from patients, which is then analyzed using advanced techniques, such
as proton-transfer-reaction mass time-of-flight spectrometry (PTR-TOF-MS). PTR-TOF-MS is
a highly sensitive method that allows for the real-time detection and quantification of VOCs
in breath samples, making it a valuable tool for identifying disease-specific biomarkers.

Breath analysis using PTR-TOF-MS and the identification of VOC biomarkers repre-
sent a promising frontier in medical diagnostics. This approach not only enhances our
understanding of the metabolic changes associated with various diseases but also opens
up new avenues for personalized medicine, where treatments can be tailored based on the
specific VOC profile of an individual patient.

Given the complexity and high dimensionality of VOC data, multivariate analysis tech-
niques such as PLS-DA, heatmaps, and correlation maps are essential for identifying patterns
and relationships within the dataset [22]. PLS-DA helps reduce data dimensionality, allowing
the visualization of group separations and identifying the VOCs contributing most signifi-
cantly to differences between OSA patients and controls. Heatmaps and correlation maps
further reveal specific clusters and associations, providing insights into the metabolic profiles
of disease states. Together, these methods enhance the interpretability of VOC data and aid in
pinpointing potential biomarkers, supporting the development of effective diagnostic tools.

The integration of VOCs into the diagnostic framework for OSA represents a sig-
nificant advancement in early detection and risk stratification [23]. This study aims to
evaluate the efficacy of breath analysis for detecting VOC biomarkers associated with OSA
and to propose its use as an adjunct to current questionnaire-based screening tools [24,25].
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By incorporating VOC breath analysis into current screening tools, we seek to enhance
the stratification of patients based on their risk of OSA. This approach will enable more
informed decisions regarding the need for hospital-based PSG or recommending patients
for HSAT, ultimately optimizing resource allocation and improving patient outcomes.

2. Method
2.1. Study Population

This study involved a total of 89 participants, divided into two distinct groups: 49 pa-
tients with Obstructive Sleep Apnea (OSA) and 40 controls. All participants were recruited
from Tan Tock Seng Hospital Singapore, a major healthcare institution renowned for its
comprehensive medical services and research facilities, between May 2022 and June 2024
after obtaining informed consent.

All study participants had undergone formal Level 1 polysomnography and were
invited to participate in this study during the review of their PSG results [26]. Participants
with an AHI of 15 or lower were recruited into the control group, while participants with
an AHI of more than 15 were recruited into the study group. Other relevant demographic
data, medical history, and clinical parameters were also collected for this study. The ex-
clusion criteria for this study include recent food or beverage consumption within the
past hour or adherence to a ketogenic diet, alcohol intake within the past 6 h, a history of
cancer, pregnancy, respiratory or heart failure, liver dysfunction or failure, renal failure,
and uncontrolled diabetes mellitus. These exclusion criteria were selected based on the
proposed framework for conducting and reporting studies on VOCs, with the aim of mini-
mizing confounding factors, particularly those affecting metabolic processes or respiratory
function, which could interfere with the detection of volatile organic compounds [27,28].

Relevant information about each participant was recorded, including demographic
data, polysomnography results, and relevant past medical history.

The trial was approved by the NHG Domain Specific Review Board (DSRB) (Ref:
2019/00367), and all enrolled subjects gave signed informed consent prior to the study.

2.2. PTR-TOF-MS Measurement and Analysis

Breath samples were measured using a PTR-MS TOF1000 (Ionicon Analytik GmbH,
Innsbruck, Austria). PTR-TOF-MS consists of an ionization section and a detection sec-
tion [29]. During the ionization process, protonated water ions (H3O+) were generated
through a hollow cathode discharge in the ion source. These H3O+ ions were subsequently
introduced into the drift tube by an electric drift field, facilitating the chemical ionization of
volatile organic compounds (VOCs) in breath samples via proton-transfer reactions (PTRs).
Only VOCs with a higher proton affinity (PA) value than that of H2O molecules under-
went ionization by H3O+ and proceeded to the detection section. The ionized VOCs were
then directed by an electric field toward the time-of-flight mass spectrometer (TOF-MS),
where they were differentiated and detected based on their mass-to-charge ratios (m/z).
Because of this ionization method, the molecular weight after ionization is one unit mass
greater than the molecular weight before ionization. By measuring the count rate of both
reagent ions and product ions, real-time quantification is achieved. PTR-TOF-MS can detect
compounds at parts per billion by volume or even parts per trillion levels in real time.

Key operational parameters of the PTR-MS instrument included a drift tube voltage of
600 V, a temperature of 80 ◦C, a drift tube pressure of 2.3 mbar, and an E/N ratio of 139 Td.
Additionally, the sampling line and buffer tube were maintained at 70 ◦C. The sampling line
and buffer tube were maintained at a temperature of at least 70 ◦C to minimize the condensation
of water vapor and reduce the risk of contamination by viruses and other particulate matter.
Elevated temperatures help to prevent the accumulation of moisture, which can act as a carrier
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for pathogens, thus improving the accuracy and safety of the sample collection process. Table 1
shows the key operational parameters for data collection using PTR-MS.

Table 1. Technical specifications of PTR-MS.

Mass resolution >1500 m/∆m (FWHM) for m/z > 79
Response time <100 ms
Sensitivity >200 cps/ppbv for m/z 181
Detection limits <10 pptv for m/z 181 (averaged over 1 min)
Linearity range 10 pptv–1 ppmv
Adjustable flow 50–800 sccm

After participants registered their personal data and signed consent forms, they were
instructed by a study team member to exhale into a gas sampling bag (Tedlar PVF film),
which was then sealed and transported to the research laboratory on the same day. Be-
fore measurements, the device was calibrated. The bag was connected to the PTR-MS device
and sealed using laboratory film (Parafilm). Initially, the PTR-MS was connected to the
external environment until the pressure parameters stabilized. Once stable, the valve of the
sampling bag was opened, and the device began drawing air from the bag. Observing the
pressure parameters ensured they were stable before data collection commenced. This pro-
cedure minimizes pressure fluctuations in the drift tube, ensuring accurate readings [27,28].

The described procedure addresses several potential issues and streamlines the collec-
tion process. Starting measurements from normal atmospheric pressure avoids the lengthy
stabilization period required if starting from lower pressures, which can sometimes result
in the device reaching only half the target pressure and significantly skewing the data.
Consequently, we avoid switching from standby mode to active measurement mode. Since
the Tedlar bag valve is initially closed, if the bag is connected from the start, the lack of gas
input prevents the PTR-MS pressure from rising until the valve is opened. This situation is
akin to starting from standby mode, which we aim to avoid.

The PTR-MS calculates the concentration of all VOCs and saves the data in .h5 files [29].
These raw concentration data were processed using Viewer software 4.2.0 (Ionicon Analytik
GmbH, Innsbruck, Austria) for mass calibration and peak data calculation. The software
identified background air and exhaled breath, selecting and averaging data points from
the end-tidal phase for the three exhalations from each subject. VOCs with concentrations
lower in breath than in the background were excluded from subsequent data analysis.
An Excel file containing the list of VOCs and their concentrations (in parts per billion, ppb)
was generated for each sample.

3. Results
Data analysis was performed using R (4.3.0). Multiple dimensions of the data were

analyzed, and significance analysis was performed to rank m/z values based on their
p-values to identify potential biomarkers. The data were also visualized using PLS-DA
plots, heatmaps, and correlation maps.

3.1. Study Characteristics

Table 2 shows the demographics and AHI values, comparing the OSA and control groups.
The OSA group consists of 49 individuals with a mean age of 52.61 ± 11.36 years, while the
control group includes 40 individuals with a mean age of 43.38 ± 12.70 years. The gender
distribution in the OSA group is 67.3% male and 32.7% female, whereas the control group
has a distribution of 60.0% male and 40.0% female. The AHI is markedly higher in the OSA
group, with a mean value of 50.98 ± 26.05, compared to 6.68 ± 3.96 in the control group.
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Table 2. Study population.

OSA Control

Number 49 40
Age (mean ± SD) 52.61 ± 11.36 43.38 ± 12.70
Gender M/F (%) 33/16 (67.3%/32.7%) 24/16 (60.0%/40.0%)
AHI (mean ± SD) 50.98 ± 26.05 6.68 ± 3.96

3.2. OSA vs. Control Analysis
3.2.1. Significance Analysis

Significance analysis was performed to identify potential biomarkers for OSA. To as-
sess the differences in VOC concentrations between OSA patients and control subjects,
the Wilcoxon rank-sum test was employed. This non-parametric test is suitable for ana-
lyzing small datasets or cases when the assumption of normality is not met, providing a
reliable method to compare two independent groups. Table 3 presents the biomarkers with
their corresponding p-values. For instance, m063, m095.950, and m097.071 were identified
as significant, with p-values of 0.042750951, 0.001048342, and 0.011163276, respectively.
These markers suggest specific VOCs that are notably different in concentration between
OSA patients and control subjects.

Table 3. Biomarkers identified for OSA with their corresponding p-values.

Biomarker (m/z) p-Value Compound

m063 0.042 Ammonium formate
m095 0.001 Trifluoro acetonitrile
m096 0.041 dichloroethylene
m097 0.011 2,4-hexadienal, 1,3-dimethylpyrazole, or cycloheptene
m224 0.045 -
m225 0.047 N-hexadecane
m355 0.025 -
m356 0.028 -
m357 0.028 -
m371 0.048 -
m372 0.047 -
m375 0.048 -

3.2.2. Partial Least Squares Discriminant Analysis (PLS-DA)

PLS-DA was conducted to visualize the differentiation between OSA patients and
control subjects based on their VOC profiles. The PLS-DA plot (Figure 1) demonstrates a
clear separation between the two groups, indicating distinct metabolic signatures. The first
two principal components accounted for a significant portion of the variance, highlighting
the effectiveness of VOCs in distinguishing OSA from controls.

3.2.3. Heatmap Analysis

The heatmap (Figure 2) presents the relative abundance of identified VOCs in both
the OSA and control groups, revealing distinct clustering patterns based on VOC concen-
trations. In this visualization, the X-axis represents individual VOCs, while the Y-axis
corresponds to each sample, either from OSA patients or controls. The color gradient,
scaled from −2 to +2, indicates normalized VOC concentrations: positive values represent
higher concentrations, while negative values reflect lower concentrations relative to the
dataset’s mean. The heatmap shows certain VOCs with markedly elevated concentrations
in the OSA group, underscoring their potential as biomarkers. This distinct clustering
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between OSA patients and controls further supports the differentiation capability of these
VOCs in identifying OSA.

Figure 1. PLS−DA plot for OSA vs control.

Figure 2. Heatmap plot for OSA vs control.
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3.2.4. Correlation Map

A correlation map (Figure 3) was generated to examine the relationships between each
participant’s VOC profiles. The X- and Y-axes of the heatmap represent the individual
participants, with correlations between the participants’ VOC concentrations visualized
in the matrix. The map visualizes the correlation between the valid VOC concentrations
measured for both OSA patients and controls. In this heatmap, red shades represent
positive correlations, while blue shades indicate negative correlations. Strong correlations
between certain participants can be observed along the diagonal, with varying degrees
of correlation scattered across the matrix. The patterns in the map suggest that there are
distinct differences in VOC profiles between OSA patients and control subjects. This visual
representation aids in identifying clusters of participants whose VOC signatures may reflect
common metabolic alterations associated with OSA, supporting further investigation into
specific VOCs as potential biomarkers for disease severity and diagnosis. These patterns
suggest that there are consistent metabolic differences between the two groups, offering
insights into VOCs that may serve as potential biomarkers for NPC diagnosis.

Figure 3. Correlation map for OSA vs. control.

3.2.5. Correlation Between VOCs and AHI Score

Two Figure 4 illustrate the relationship between the identified VOCs and AHI scores in
OSA patients. Figure 5 shows the scatter plot of the identified biomarkers’ concentrations
against AHI scores, highlighting a significant positive correlation for markers such as m045.
Figure 6 presents a regression analysis, further confirming the strong association between
these VOCs and the severity of OSA as measured by the AHI.
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Figure 4. Bar plot of VOC concentrations versus AHI scores in OSA patients. Significant positive
correlations are observed.

Figure 5. Regression analysis showing the relationship between m045 and AHI scores, indicating a
strong association. Each red dot in the figure represents an OSA patient.
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Figure 6. Regression analysis showing the relationship between m041 and AHI scores, indicating a
strong association. Each red dot in the figure represents an OSA patient

4. Discussion
The results of this study underscore the potential of proton-transfer-reaction mass

spectrometry (PTR-MS) in identifying volatile organic compound (VOC) biomarkers that
are potentially altered in patients with Obstructive Sleep Apnea (OSA). Significant dif-
ferences in VOC profiles between OSA patients and controls were observed, identifying
specific biomarkers that can distinguish between people with and without OSA.

A key contribution of this research is its novel application of PTR-MS for the non-
invasive detection and screening of OSA. The identification of significant VOCs, such
as m095.950 and m097.071 for OSA, highlights the sensitivity and specificity of this
method [30].

Here, it is important to clarify the potential identities of the m/z values detected by
PTR-MS and their relevance to Obstructive Sleep Apnea (OSA). The m/z 045, 095.950,
and 097.071 ions are significant, and understanding their chemical identity is crucial to
interpreting their biological roles.

Firstly, m045 (with an m/z of 45) cannot be attributed to carbon dioxide since it
has a lower proton affinity than water and therefore cannot be ionized by PTR-MS [31].
Instead, acetaldehyde is a more plausible candidate for m045 due to its molecular weight
of approximately 44 Da and its established role as a VOC commonly produced during
oxidative stress and inflammation. Acetaldehyde is primarily known as a byproduct of
alcohol metabolism, and it may also be generated through other metabolic processes, such
as those associated with lipid peroxidation, although direct evidence for its production
through lipid peroxidation is lacking.

Given that OSA is characterized by chronic intermittent hypoxia, acetaldehyde may
be elevated in OSA patients due to increased oxidative stress [32]. Intermittent hypoxia can
promote the generation of reactive oxygen species (ROS), which contribute to oxidative
stress and inflammation. Insufficient sleep and intermittent hypoxia have also been shown
to enhance the expression of genes related to oxidative stress and immune responses,
further contributing to the altered metabolic profiles in OSA patients. This oxidative stress
may indirectly influence the production of VOCs such as acetaldehyde.
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For m095.950 and m097.071, we currently do not have conclusive evidence to identify
these compounds with certainty. It is possible that m095.950 corresponds to dichloroethy-
lene, and m097.071 could be linked to 2,4-hexadienal, 1,3-dimethylpyrazole, or cycloheptene.
However, further research is required to definitively identify these compounds and to under-
stand their specific roles in the metabolic pathways associated with OSA. More investigation
is necessary to clarify their exact origins and implications for OSA pathophysiology.

This study also enhances the understanding of the metabolic changes associated
with OSA. The correlation analyses reveal potential metabolic pathways involved in OSA,
providing insights for future research and therapeutic strategies. For instance, the strong
correlation between certain VOCs and the AHI suggests that these compounds could serve
as biomarkers for monitoring OSA severity and treatment efficacy.

Improvements over previous studies include a comprehensive analysis of multiple
VOCs and the application of advanced statistical techniques to validate the findings. PLS-
DA, heatmaps, and correlation maps provide a robust framework for visualizing and
interpreting the data, enhancing the reliability of the results.

While traditional diagnostic methods for OSA, such as polysomnography, are still
necessary to confirm the diagnosis, they are often time-consuming, costly, and associated
with long wait times. In many healthcare settings, the diagnosis of OSA is often delayed
due to long wait times for polysomnography [33]. The advent of portable devices [34]
and home-based sleep studies [35] has significantly reduced these delays, yet concerns
persist regarding the diagnostic accuracy of these methods, particularly given their cost
and the potential need for a repeat Level 1 polysomnography in cases with borderline
AHI results [36,37]. Therefore, an improved and more robust screening tool, in addition
to existing questionnaires, may be key to optimizing resource allocation and improving
patient outcomes. The analysis of volatile organic compounds (VOCs) using PTR-MS could
be the solution, offering a rapid, non-invasive, and cost-effective adjunct that could be
easily integrated into current clinical settings.

Our study suggests that VOCs could be valuable in identifying patients with severe,
markedly elevated AHI scores, potentially allowing for patient stratification and prioriti-
zation for earlier in-hospital Level 1 polysomnography, while others may be adequately
assessed using HSAT. A proposed workflow for assessing patients for sleep apnea is shown
in Figure 7. For patients deemed high-risk based on history, physical exam, and ques-
tionnaires, a sleep study will be recommended, and clinicians can strongly encourage
consideration of a home-based sleep study given the high pretest probability of sleep apnea.
For patients with low to intermediate risk factors, the workflow suggests obtaining the
VOC breath profile. If the breath profile indicates significant VOCs, a formal sleep study
will be recommended; otherwise, no further action will be recommended.

Figure 7. Workflow for breath test validation in low-risk OSA patients, guiding sleep study recom-
mendations based on clinical assessment and VOC profile.
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A second proposed workflow for assessing patients for sleep apnea in the context of
health screening is shown in Figure 8. The VOC breath profile can be obtained from asymp-
tomatic patients as part of their routine health screening. If the profile is positive, patients
can be strongly encouraged to seek medical consultation for a sleep study. If negative,
patients should be further assessed for sleep apnea risk factors, similar to the workflow
outlined above, and a sleep study should be recommended for those with significant risk
factors. Our study team believes this novel approach would be especially beneficial in a
health screening setting, given the low awareness of OSA in many societies [38]. A positive
VOC finding in a patient’s breath profile could have a strong impact, motivating them to
pursue a formal sleep study, much like how patients with a positive Fecal Occult Blood
Test are more likely to undergo a colonoscopy [39].

Figure 8. Workflow for OSA health screening using VOC breath test, with additional risk factor
assessment for VOC-negative patients.

The integration of VOC biomarkers into OSA diagnostic workflows has the potential
to overcome several limitations of existing tools, particularly in terms of accessibility and
early detection. Traditional diagnostic methods like polysomnography and HSAT rely
heavily on the presence of physical symptoms or clinical thresholds, often leading to delays
in diagnosis. VOC analysis, by contrast, offers a non-invasive method to detect biochemical
markers that reflect underlying metabolic disturbances associated with OSA, potentially
identifying high-risk patients earlier in the diagnostic process. This could improve patient
stratification, allowing clinicians to prioritize individuals who may benefit most from
an in-depth sleep study, while also identifying those who may not require immediate
intervention. By providing an objective, rapid, and cost-effective means of detection, VOC
profiling could serve as an effective screening tool, bridging the gap between initial risk
assessments and definitive diagnoses and ultimately optimizing both patient outcomes
and resource allocation in the management of sleep apnea.

However, several limitations need to be addressed for the clinical translation of PTR-
MS-based breath analysis. First, the high cost and complex operational requirements of
PTR-MS limit its accessibility and widespread adoption in routine clinical settings. Second,
while PTR-MS shows promise, its diagnostic accuracy may not yet rival that of traditional
gold-standard methods, making it necessary to use it in conjunction with other diagnostic
techniques. Third, the potential confounding effect of age differences between participants
in this study has not been fully addressed. Since age can influence metabolic processes
and VOC profiles, future studies should consider matching participant groups for age or
statistically adjusting for its effects to improve the reliability of findings.

Additionally, the data generated by PTR-MS are sensitive to noise from factors such as
diet, race, smoking status, and gender, which could influence VOC profiles and reduce the
specificity of OSA biomarkers. Further research is required to mitigate these influences and
validate the VOCs identified across larger and more diverse populations [40]. The relatively
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small sample size in this study is another limitation, potentially affecting the generalizability
of the findings. Expanding the sample size in future studies will be crucial for confirming
the robustness of the identified biomarkers and for assessing their performance across a
broader population.

Lastly, future studies should focus on integrating VOC analysis with other diagnostic
modalities to enhance diagnostic accuracy. It is also important to investigate the temporal
stability of these biomarkers and their response to treatment interventions, which could
provide valuable insights into disease progression and treatment efficacy [27]. Address-
ing these limitations will be essential for advancing the clinical utility of PTR-MS-based
breath analysis.

Moreover, understanding the biological origins of these VOCs and their association
with specific metabolic pathways could open new avenues for research and therapeutic in-
tervention. This could include studying the impact of diet, medication, and environmental
factors on VOC profiles to further refine the diagnostic capabilities of PTR-MS.

5. Conclusions
This study demonstrates that proton-transfer-reaction mass spectrometry (PTR-MS)

can effectively identify volatile organic compounds (VOCs) for the non-invasive detection of
Obstructive Sleep Apnea (OSA). Significant VOCs, such as m045, m095.950, and m097.071,
were identified, showing clear differences between OSA patients and controls. Notably,
m045, corresponding to acetaldehyde, emerged as a potential biomarker associated with
the AHI, highlighting its relevance in assessing the severity of OSA. The use of advanced
statistical methods validated the robustness of these biomarkers, supporting the feasibility
of PTR-MS breath analysis in clinical diagnostics. Further validation in diverse populations
and integration with other diagnostic tools are necessary to establish clinical utility and
improve patient outcomes through early intervention.
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