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Abstract: Background/Objectives: Respiratory viruses, including Influenza, RSV, and
COVID-19, cause various respiratory infections. Distinguishing these viruses relies on
diagnostic methods such as PCR testing. Challenges stem from overlapping symptoms
and the emergence of new strains. Advanced diagnostics are crucial for accurate detection
and effective management. This study leveraged nasopharyngeal metabolome data to
predict respiratory virus scenarios including control vs. RSV, control vs. Influenza A,
control vs. COVID-19, control vs. all respiratory viruses, and COVID-19 vs. Influenza
A/RSV. Method: We proposed a stacking-based ensemble technique, integrating the top
three best-performing ML models from the initial results to enhance prediction accuracy by
leveraging the strengths of multiple base learners. Key techniques such as feature ranking,
standard scaling, and SMOTE were used to address class imbalances, thus enhancing model
robustness. SHAP analysis identified crucial metabolites influencing positive predictions,
thereby providing valuable insights into diagnostic markers. Results: Our approach not
only outperformed existing methods but also revealed top dominant features for predicting
COVID-19, including Lysophosphatidylcholine acyl C18:2, Kynurenine, Phenylalanine,
Valine, Tyrosine, and Aspartic Acid (Asp). Conclusions: This study demonstrates the
effectiveness of leveraging nasopharyngeal metabolome data and stacking-based ensemble
techniques for predicting respiratory virus scenarios. The proposed approach enhances
prediction accuracy, provides insights into key diagnostic markers, and offers a robust
framework for managing respiratory infections.

Keywords: metabolomics; respiratory viruses; machine learning; diagnostic markers;
COVID-19

1. Introduction
Globally, the coronavirus disease 2019 (COVID-19) pandemic caused widespread

disruptions and a substantial loss of human lives. SARS-CoV-2, the virus that causes
COVID-19, enters the human body primarily via nasal epithelial cells [1]. The primary
immune reaction to the virus occurs within a distinct immune microenvironment known as
the nasopharynx-associated lymphoid tissue system, which is located in the nasal cavity [1].
Influenza, a widespread illness affecting both humans and animals, is caused by viruses that
have animal reservoirs and exhibit continuous antigenic change [2]. Both COVID-19 and
Influenza are contagious respiratory illnesses [3]. COVID-19 spreads through respiratory
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droplets, aerosols, and contaminated surfaces [3]. Influenza, caused by Influenza A or
B viruses, spreads primarily through respiratory droplets released during coughing or
sneezing [4]. Respiratory syncytial virus (RSV) is also a highly contagious virus causing
acute respiratory infections, with a global incidence of approximately 33 million cases in
children under 5 years; RSV infection often leads to severe bronchiolitis [5]. Molecular
testing, specifically polymerase chain reaction (PCR), has revolutionized the surveillance
and diagnosis of infectious diseases in clinical microbiology and virology laboratories over
the past decade [6,7]. Although these techniques are rapid and accurate, they continue to
have notable limitations, including cost, complicated procedure, inability to differentiate
active infection from latency or colonization and diminished sensitivity when applied to
direct patient specimens [6–8].

With varying degrees of success, the application of the “omics” method, compris-
ing genomics, proteomics, and metabolomics, has been investigated for diagnosing
COVID-19 and Influenza [9–14]. In contrast to conventional clinical virology diagnostics,
metabolomics, which examines small molecules on a large scale, identifies the metabolic
response of the host rather than explicitly identifying the pathogen [15]. Alterations in the
nasal metabolome that are specific to a particular virus have been observed to correlate
with viral load and disease severity [16].

The COVID-19 pandemic has underscored the urgent need for reliable tools to predict
disease severity, improve diagnosis, and guide treatment strategies. Advanced proteomic
and metabolomic profiling, combined with machine learning, has emerged as a powerful
approach to uncovering molecular alterations in COVID-19 patients, enabling the identifica-
tion of critical biomarkers [17]. Techniques such as TMT-labeled proteomics, UPLC-MS/MS,
and LC-MS-based metabolomics have successfully stratified severe and non-severe cases
by analyzing proteins, metabolites, and lipid profiles [17,18]. These studies have revealed
changes like increased creatinine levels and reduced arginine/kynurenine ratios, as well as
metabolic shifts in lysophosphatidylcholines (LPCs) and phosphatidylcholines (PCs) that
evolve with disease progression and revert to baseline upon recovery [18,19]. Metabolomics
facilitates early diagnosis, risk stratification, and disease monitoring when integrated with
machine learning algorithms, achieving diagnostic specificity exceeding 96% and sensitivity
over 83% [18]. However, significant challenges remain, including high costs, the complexity
of high-dimensional data analysis, variability in sampling phases, incomplete longitudinal
data due to patient discharge or mortality, and limited representation of newer SARS-CoV-2
variants [19,20]. Addressing these limitations through large-scale, diverse cohort studies is
essential to validate these promising biomarkers and ensure their clinical applicability.

Bennet et al. [16] utilized a targeted metabolomics approach based on LC-MS/MS
to analyze nasopharyngeal swabs from patients infected with SARS-CoV-2, Influenza A
(INFA), Respiratory Syncytial Virus (RSV), and healthy controls. The study aimed to
identify characteristic changes in the nasal metabolome of infected patients to discover
significant metabolites relevant to pathogenicity and potential therapeutic targets. A total of
210 individuals were included in the study, divided into four groups: 55 COVID-19 patients
(SARS-CoV-2 positive), 55 Influenza A patients, 56 RSV patients, and 44 unaffected controls.
Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), the researchers
quantified 141 analytes from the viral transport media (VTM) of nasopharyngeal swabs.
Utilizing their dataset, we proposed a comprehensive machine learning approach for
metabolomics profiling. Instead of relying on individual models, we implemented stacking-
based ensemble techniques that combined probabilities from the top three initial models.
To ensure explainability, SHAP (SHapley Additive exPlanations) was employed to assess
the contributions and impacts of top features on the model. The contributions of this study
are as follows:
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# We proposed stacking-based ensemble learning, which was applied with five-fold
cross-validation utilizing the publicly available LC–MS/MS dataset of the nasopha-
ryngeal metabolome of COVID-19;

# Top features were selected using the Random Forest algorithm, and statistical analyses
such as the chi-square test, T-test, and Ranksum test were performed;

# The proposed method was applied to the following classification scenarios: (A)
Control vs. RSV, (B) Control vs. Influenza A, (C) Control vs. COVID-19, (D) Control vs.
All respiratory viruses, and (E) COVID-19 vs. Influenza A/RSV, to discover significant
metabolites in each case;

# SHAP analysis was used to evaluate the contribution of significant features in each
case to identify the most important metabolites.

The rest of the paper is organized as follows: Section 2 presents the related works;
Section 3 describes the methodology, including the dataset description, models, and statis-
tical analysis; Section 4 provides the results and discussion; and Section 5 concludes the
paper with the conclusion.

2. Related Works
Machine learning (ML) has become a powerful tool for navigating the intricacies

of metabolomics data, thus facilitating efficient analysis, interpretation, and extraction
of valuable insights [21–24]. Recently, Kantz et al. [25] have created, fine-tuned, and
evaluated an ML pipeline that effectively classifies spectral features in non-targeted liquid
chromatography–mass spectrometry (LC/MS) metabolomics data by using both deep
neural networks and a simpler multiple Logistic Regression model. Jeany et al. [26]
introduced a novel approach that integrates mass spectrometry and ML using paired m/z
analysis for direct COVID-19 diagnosis from raw data. This method presents a flexible
tool for population screening and risk assessment in public health initiatives, addressing
ion competition effects and compatible with a range of mass spectrometers, such as flow-
injection mass spectrometry. This technique offers molecular insights into the pathogenesis
of COVID-19, with potential uses for managing patients during the pandemic and other
related disorders.

Metabolomics and ML strategies have the potential to revolutionize the diagnosis of
infectious diseases, specifically respiratory viruses. Hogan et al. [27] have applied liquid
chromatography quadrupole time-of-flight (LC/Q-TOF) and ML for Influenza diagnosis
based on nasopharyngeal swab samples. After an initial analysis of 236 samples, the
researchers extended their approach to a clinically applicable LC/MS analysis in a cohort
of 96 symptomatic individuals. Hasan et al. [28] have applied metabolomics strategies for
analyzing volatile organic compounds in exhaled breath and using mass spectrometry for
COVID-19 detection in nasopharyngeal swabs. The study highlights the differentiation
between targeted and untargeted approaches, thus stressing the need for standardization
and extensive clinical validation before the integration of volatile organic compound-based
tests into clinical practice. Recently, Bennet et al. [16] have systematically examined the
nasopharyngeal metabolome in patients with COVID-19 using a liquid chromatography
tandem mass spectrometry (LC–MS/MS) kit, quantifying 141 analytes. Through qRT-PCR
and the use of ML models, the study [16] has achieved remarkable accuracy in discerning
viral infections, specifically distinguishing COVID-19 from other respiratory viruses, and
identifying critical differentiating metabolites in the process. Juan et al. [29] most recently
employed machine learning (ML) and explainable artificial intelligence (XAI) to analyze
metabolic alterations in COVID-19 and post-COVID-19 patients, revealing heterogeneous
metabolic responses. In a cohort of 142 COVID-19, 48 post-COVID-19, and 38 control
patients, the study outperformed traditional methods such as PCA and PLS-DA by utilizing
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XGBoost enhanced with SHAP values. Valuable insights into disease progression and long-
term metabolic impacts were obtained by identifying key metabolites, including taurine,
glutamine, and LysoPC a C16:0. In a separate recent study [30], Maryne et al. demonstrated
that the prognostication and triage performance of COVID-19 patients can be substantially
enhanced by the combination of high-definition metabolomics and machine learning (ML).
In total, 64 PCR-positive COVID-19 patients underwent an analysis of their metabolomics
profiles and clinical parameters using high-resolution mass spectrometry. While the AUC
of standard clinical parameters (SpO2, respiratory rate, Horowitz quotient, and age) was
0.85 for predicting severity (need for mechanical ventilation), the prediction performance
was significantly enhanced by the incorporation of metabolomics data, resulting in an AUC
of 0.92.

3. Methods
This section contains a detailed explanation of the methods used to identify respiratory

viruses in small-molecule metabolomes including the dataset, preprocessing methods, and
model implementation.

Figure 1 provides an outline of the workflow process. The investigation began with
an analysis of clinical nasopharyngeal swabs, obtained from a publicly available dataset,
using a viral transport medium (VTM) and a TMIC Prime kit (The kit was acquired from
The Metabolomics Innovation Centre (TMIC), located in Edmonton, AB, Canada). This
procedure involved chemical derivatization and LC–MS/MS. Statistical analyses were
conducted, incorporating p-values, chi-square tests, and t-distributed stochastic neighbor
embedding t-SNE plots. Subsequently, a feature extraction process was executed, wherein
the top ten feature ranks were identified. A 5-fold dataset was generated to facilitate robust
model training. Various ML models were used, including tree-based models, instance-
based models, and neural networks. The stacking ensemble technique was applied to
create an optimal model for predicting the final output. To further elucidate the influential
metabolites associated with specific respiratory viruses, we conducted a SHAP analysis.
This analytical approach was aimed at identifying and quantifying individual metabolites
on the predictive models, thereby contributing to a comprehensive understanding of the
metabolomic landscape in relation to respiratory virus presence.
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3.1. Dataset Description

The dataset was reported by Bennet et al. [16], who conducted a study using na-
sopharyngeal specimens from individuals infected with COVID-19, Influenza A, and RSV,
along with unaffected controls. Using an LC–MS/MS-based screening system to quantify
141 analytes, the nasopharyngeal metabolome was characterized. SARS-CoV-2 positive,
Influenza A positive, and RSV positive patients comprised the remaining 210 members of
the dataset. Individuals were classified into unaffected controls and three distinct patient
groups. A thorough examination of the metabolomic distinctions between various respira-
tory viruses and control subjects was achieved by analysis of the small-molecule profiles in
viral transport medium extracted from nasal samples from each group. The demographic
characteristics of all patients are presented in Supplementary Table S1, including essen-
tial information, such as the number of individuals, collection year (including monthly
variation), age range, sex distribution expressed as a percentage, and median computed
tomography attenuation (CTa) with the corresponding range. A comprehensive list of all
metabolites assessed in the study, along with their detailed information, is documented in
Supplementary Table S2.

Figure 2 illustrates the comprehensive analysis of the dataset, including both the total
sample distribution and patient classes. The t-distributed stochastic neighbor embedding
(t-SNE) [31] plot visually depicts the distinct class separations, and provides insights into
the clustering patterns for both the control group and individual respiratory virus categories.
Additionally, a parallel coordination plot is presented, highlighting the class separability
across the top ten features for the four identified classes. This integrated approach provides
a thorough examination of the dataset, combining descriptive statistics, dimensionality
reduction, and feature visualization to enhance understanding of the underlying patterns
and relationships within the data.
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separability for ten selected feature spaces.
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3.2. Statistical Analysis

A statistical analysis in Python 3.9 was performed to evaluate the central values of
the features and the distribution of the data. The significance of individual features in
relation to the objective variable was determined with p-values calculated with a variety of
statistical tests, such as the chi-square test, Wilcoxon rank-sum test, and T test [32,33].

In the initial state, the dataset comprised 48 metabolite features. Through the imple-
mentation of a stringent feature selection method, the ten most promising features were
identified. The following section provides an in-depth analysis of their specific implica-
tions. The notable characteristics are outlined in Table 1, which presents a comparative
statistical analysis between the control group and the group of all respiratory viruses for
the top 10 features. These features include Lysophosphatidylcholine 18:2 (LysoPC 18:2),
Kynurenine (Kyn), Phenylalanine (Phe), Isoleucine (Ile), Aspartic Acid (Asp), Tyrosine
(Tyr), methionine sulfoxide (Met.SO), proline (Pro), valine (Val), and arginine (Arg).

Table 1. Statistical analysis of the characteristics of the metabolite features (control vs. all
respiratory viruses).

Control vs. All Respiratory Viruses
Feature Name Control Respiratory Virus Total Technique p-Value
Sex
• Male (%)
• Female (%)
• Null (%)

25%
75%
0%

42.77%
47.59%
9.63%

53.33%
39.04%
7.62%

Chi-square test <0.05

LYSOC18.2
• Mean ± SD
• Median

0.86 ± 1.05
0.8725

1.57 ± 0.97
1.4427

1.42 ± 1.03
1.2314 Rank-sum test <0.0001

Ile
• Mean ± SD
• Median

19.57 ± 15.78
15.50

69.76 ± 42.48
66.90

59.24 ± 43.54
53.30 Rank-sum test <0.0001

Met.SO
• Mean ± SD
• Median

1.27 ± 1.97
0.5445

6.74 ± 6.29
5.90

5.59 ± 6.08
5.02 Rank-sum test <0.0001

Asp
• Mean ± SD
• Median

54.54 ± 25.06
49.350

139.60 ± 58.74
132.50

121.78 ± 63.70
116.00 T-test <0.0001

Phe
• Mean ± SD
• Median

24.54 ± 16.97
21.40

85.80 ± 44.40
84.05

72.97 ± 47.33
70.40 Rank-sum test <0.0001

Tyr
• Mean ± SD
• Median

23.24 ± 12.52
22.60

72.33 ± 43.25
62.95

62.04 ± 43.70
54.90 T-test <0.0001

Kynurenine
• Mean ± SD
• Median

3.88 ± 2.72
6.224

6.85 ± 7.05
5.190

6.22 ± 6.50
5.3550 Rank-sum test 0.0067

Val
• Mean ± SD
• Median

32.43 ± 29.98
26.250

122.04 ± 89.86
111.00

103.26 ± 88.86
85.85 Rank-sum test <0.0001

Citric acid
• Mean ± SD
• Median

3.26 ± 1.68
3.840

1.76 ± 4.21
1.070

2.08 ± 3.86
1.28 T-test 0.02169
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Table 1. Cont.

Control vs. All Respiratory Viruses
Feature Name Control Respiratory Virus Total Technique p-Value
Arg
• Mean ± SD
• Median

42.75 ± 24.27
36.150

134.68 ± 73.22
132.00

v115.42 ± 75.90
92.75 Rank-sum test <0.0001

3.3. Dataset Preprocessing

The dataset used in this study was originally reported by Bennet et al. To enhance
the efficacy of ML models during training, normalization of the input data was necessary,
to ensure that each feature contributed proportionately, thereby improving overall model
performance. In this context, the Standard Scaler method was used for normalization [34,35].
To promote robust training and facilitate generalization, the dataset was subjected to a
5-fold cross-validation, involving partitioning the data into training and testing sets (80%
and 20%, respectively). This strategic data-splitting method aided in assessing model
performance across different subsets of the dataset and contributed to a more reliable
evaluation of the model’s ability to generalize to unseen data.

To address the class imbalance within the dataset, wherein the counts for RSV,
COVID-19, Influenza, and control classes were 58, 55, 53, and 44, respectively, the pipeline
used Synthetic Minority Over-sampling Technique (SMOTE) augmentation [36]. This tech-
nique helps mitigate the effects of imbalanced class distribution during training by generat-
ing synthetic samples for the minority classes. By oversampling the minority classes, SMOTE
contributes to a more balanced representation across all classes, enhancing the model’s ability
to effectively learn from and generalize to each class during the training process.

Feature ranking is an essential preemptive measure in the field of ML [37], particularly
when datasets comprise a large number of features. This method is critical to prevent
overfitting, which occurs when a model overly adjusts to the complexities of the training
data, thereby impairing its performance when applied to novel datasets. For five separate
investigations, the XBGoost, Random Forest, and ExtraTrees algorithms were used to rank
the 48 features. The Random Forest algorithm initially ranked highest, surpassing the
performance of the other two approaches.

3.4. Classification Model Development

In our experiment, we used MLP Classifier, ElasticNet, Linear Discriminant Analysis,
XGBoost Classifier, Random Forest Classifier, Logistic Regression, ExtraTrees Classifier,
AdaBoost Classifier, KNN Classifier, and Gradient Boosting Classifier. The top-performing
models are described below.

3.4.1. Random Forest Classifier

The Random Forest (RF) [38] Classifier is a machine learning algorithm designed for
classification tasks. It is an ensemble method that makes predictions by combining the outputs
of multiple decision trees. The name “random forest” originates from its process of building a
“forest” of decision trees, each created randomly. These trees are formed by determining the
best splitting points in the data, often using metrics like Gini impurity or information gain.
Unlike traditional decision trees that consider all features at each split, the Random Forest
algorithm selects the split points from a randomly chosen subset of features at each node.

3.4.2. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [39] is a dimensionality reduction method and
supervised classification technique. It identifies a linear combination of features that most
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effectively distinguishes between two or more classes by maximizing the between-class
variance and minimizing the within-class variance. This is especially beneficial for datasets
that have distributed classes that are well separated. LDA functions by projecting the data
into a lower-dimensional space while preserving the most discriminative information. It is
mathematically elegant and computationally efficient because it presupposes that the data
in each class is normally distributed and shares the same covariance matrix.

3.4.3. XGBoost Classifier

XGBoost [40] is a highly efficient and scalable tree-boosting system widely used
for achieving state-of-the-art results in machine learning tasks. A key challenge in tree
learning is identifying optimal split points, which traditionally involves an exact greedy
algorithm that exhaustively evaluates all possible splits across features. However, this
approach becomes computationally expensive, particularly for continuous features. To
address this, XGBoost optimizes the process by sorting data based on feature values.
By processing the sorted data in ascending order, the algorithm efficiently accumulates
gradient statistics, which are essential for determining the optimal split and enhancing the
structure score. This ingenious strategy significantly reduces the computational burden
while maintaining accuracy.

3.4.4. Logistic Regression

Logistic Regression [41] is a statistical model that is frequently employed for binary
and multi-class classification assignments. It applies the sigmoid function to a linear com-
bination of input features to estimate the probability that a class belongs to a given input.
Logistic Regression is frequently employed as a baseline model in machine learning due to
its effectiveness in linearly separable data, despite its simplicity. It presupposes a linear re-
lationship between the log-odds of the objective variable and the input features. The model
is a popular choice in disciplines such as finance, social sciences, and medical research
due to its robustness to small datasets, interpretability, and computational efficiency. By
preventing overfitting, regularization techniques like L1 (Lasso) and L2 (Ridge) can further
enhance its performance.

3.4.5. ExtraTreesClassifier

ExtraTreesClassifier [42] (Extremely Randomized Trees) is a collaborative learning
approach that enhances the accuracy and robustness of classification by constructing
multiple decision trees. ExtraTrees, in contrast to Random Forest, incorporates additional
randomness during tree construction by randomly selecting split points for each feature and
subsequently selecting the best-performing split. This preserves predictive performance
and enhances computational efficiency while reducing model variance. ExtraTrees is
notably effective on high-dimensional data and noisy datasets due to its randomness,
which renders it resistant to overfitting. It is frequently employed for tasks that necessitate
the evaluation of feature importance, the identification of outliers, and the classification of
structured datasets.

3.4.6. KNeighborsClassifier

KNeighborsClassifier (K-Nearest Neighbors) [43] is a non-parametric, instance-based
learning algorithm that is designed for classification tasks. It functions by employing a
distance metric, typically Euclidean distance, to identify the K nearest neighbors of a data
point in the feature space. The class is then assigned based on a majority vote among the
neighbors. KNN is straightforward, and intuitive, and does not necessitate an explicit
training phase, as predictions are generated from the stored dataset. The efficacy of the
algorithm is contingent upon the data structure, the distance metric, and the selection of K.
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Although KNN is computationally expensive for large datasets, it is effective for smaller
datasets and when the decision boundaries are non-linear.

3.4.7. ElasticNet

For high-dimensional data with correlated features, ElasticNet [44] is a regularized
regression method that effectively incorporates both L1 (Lasso) and L2 (Ridge) penalties.
ElasticNet ensures model stability (via L2) while performing feature selection (via L1) by
balancing L1 and L2 penalties. By distributing the weight among groups of correlated
features, this method circumvents Lasso’s limitations, which include the ability to select
only one feature from a set of highly correlated features. In domains such as genomics,
finance, and healthcare, ElasticNet is frequently employed in classification and regression
problems where overfitting is a concern.

3.4.8. Stacking Ensemble Approach

In our experiment, we proposed a stacking-based ensemble technique instead of
relying on a single ML model. We selected the top 3 best-performing ML models from
the initial results and integrated them into a stacking framework. Stacking combines
multiple base learners (classical ML models) to leverage their individual strengths, thereby
enhancing overall prediction accuracy. This ensemble approach significantly improves
the model’s predictive capabilities compared to using individual models. Stacking is an
ensemble learning technique that combines the predictions of numerous base models to
enhance forecasting precision [45,46]. The initial phase involved training individual ML
models subsequently, the top three performing models were selected according to their
predictive capabilities. Notably, a random forest was chosen as the meta model. The core
of this technique involves using the meta-model to acquire and combine information from
many base models, thus enhancing prediction ability. The use of stacking, as exemplified
by Rahman et al. [47], has produced noteworthy results in evaluation metrics, continually
surpassing 90% in all assessment criteria.

A comprehensive probability distribution is constructed by combining predictions
from the base-level classifier set N with the input variable x.

PN(x) =
(

PN(c1|x), PN(c2|x), . . . . . . , PN(cm|x)
)

(1)

The set of potential class values is represented as (c, c2 . . . cm), and the probability
that example y belongs to class bi, as determined and forecasted by classifier M, is given
as P N(bi |x). Figure 3 illustrates a stacking-based approach where RandomForest serves
as the meta-model. The prediction probabilities generated by the top 3 base models are
combined as input to the meta-model, which then processes these probabilities to produce
the final prediction.
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3.5. Evaluation Metrics

The performance of the classifiers was assessed with receiver operating characteristic
(ROC) curves and the area under the curve (AUC), as well as precision, sensitivity, speci-
ficity, accuracy, and F1-Score. Furthermore, we used a five-fold cross-validation technique,
which involved splitting the dataset into 80% for training and 20% for testing. This process
was repeated five times to validate the complete dataset, on the basis of the fold number.
We used per-class weighted metrics and overall precision, because of the varying number of
instances across classes. Furthermore, the AUC value was used as an assessment criterion.
The mathematical representation of five evaluation measures (weighted sensitivity or recall,
specificity, precision, total accuracy, and F1 score) can be found in Equations (2)–(6).

Accuracyclass_x =
TPclass_x + TNclass_x

TPclass_x + TNclass_x + FPclass_x + FNclass_x
(2)

Precisionclass_x =
TPclass_i

TPclass_x + FPclass_x
(3)

Recall/Sensitivityclassx =
TPclassi

TPclassx + FNclassx

(4)

F1_scoreclassx = 2
Precisionclassx × Sensitivityclassi

Precisionclassx + Sensitivityclassx

(5)

Speci f icityclass_x =
TNclass_x

TNclass_x + FPclass_x
(6)

Here, the terms “true positive”, “true negative”, “false positive”, and “false negative”
are abbreviated as TP, TN, FP, and FN, respectively.

3.6. Model Explainability

The ability to comprehend and interpret the decisions or predictions generated by an
ML model, referred to as “explainability”, encompasses a range of methods and strategies
that reveal the process through which a model derives its outcomes, thereby enhancing
the model’s transparency. SHAP [48], a method for explaining models that measure the
individual effect of each attribute on the model’s prediction, offers valuable information
regarding how specific characteristics affect the output of the model, thus improving the
comprehensibility and clarity of intricate ML models.

4. Results and Discussion
This section includes the following: (i) feature ranking, (ii) detailed outcomes of the top-

performing model, (iii) results pertaining to model explainability, and (iv) a comprehensive
discussion and comparative analysis. This structured presentation is aimed at providing a
nuanced understanding of the study’s outcomes and their implications.

4.1. Feature Ranking

In this investigation, three advanced ML feature selection models—XGBoost, random
forest, and extra trees—were used. After a thorough preliminary exploration, the random
forest model was found to exhibit superior performance, achieving the highest rankings.
From the initial set of 48 features, the top ten features emerged as particularly impactful,
delivering optimal results with a minimal subset of features. Figure 4 indicates the top
features, ranked through the random forest feature selection algorithm, across distinct
comparisons: (A) control vs. RSV, (B) control vs. Influenza, (C) control vs. COVID-19,
(D) control vs. all respiratory virus, and (E) COVID-19 vs. Influenza/RSV. These visual
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representations offer a concise provision of insight into the discriminative power of selected
features in differentiating among the specified conditions.
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4.2. Classification Model Results

The comprehensive evaluation process comprised five distinct scenarios: control vs.
RSV, control vs. Influenza A, control vs. all respiratory viruses, COVID-19 vs. all respiratory
viruses, and Influenza A/RSV. In the initial phase, 13 variants of machine learning models
were trained using a five-fold dataset. The three best models selected from the initial
stage were used to provide probabilities as inputs for training the meta-models in the
stacking-based ensemble.

The application of stacking achieved notable improvements in the evaluation metrics,
particularly for scenarios involving control vs. all respiratory viruses and COVID-19 vs. all
Influenza A/RSV. However, for the remaining scenarios, no improvement in metrics was
observed. Figure 5 visually presents the top ten performing stacking-based models across
the five scenarios, providing a clear and concise overview of the models’ performance in
each distinct case.
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Influenza A/RSV.

Figure 5A indicates the outcomes for the control vs. RSV scenario, with linear discrimi-
nant analysis emerging as the top-performing model. Demonstrating superior performance
across various evaluation metrics, this model achieved an accuracy of 96.08%, precision of
96.13%, recall of 96.08%, specificity of 95.38%, F1-score of 96.07%, and an AUC of 95.92%.
Figure 5B reveals the exceptional performance of SVM as the leading model in the control
vs. Influenza A scenario. SVM outperformed other models, with an accuracy of 97.94%,
precision of 98.01%, recall of 97.94%, specificity of 97.51%, F1-score of 97.93%, and an
impressive AUC of 99.69%. In Figure 5C, the control vs. COVID-19 scenario highlights
SVM as the preeminent model, exhibiting an accuracy of 95.96%, precision of 96.02%,
recall of 95.96%, specificity of 95.4%, F1-score of 95.95%, and AUC of 97.23%. Figure 5D
reveals random forest as the top performer in the control vs. all respiratory virus scenario,
achieving an exceptional 98.1% accuracy, 98.09% precision, 98.1% recall, 94.48% specificity,
F1 score of 98.08%, and an AUC of 97.78%. In Figure 5E, Logistic Regression emerges as the
superior performer in the COVID-19 vs. Influenza A/RSV scenario, with commendable
metrics, including an accuracy of 86.14%, precision of 85.97%, recall of 86.14%, specificity
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of 80.3%, F1 score of 85.97%, and an AUC of 87.68%. Notably, the lower accuracy in this
case was attributed to the class imbalance issue for COVID-19, with 55 samples, compared
with 110 samples for Influenza A/RSV.

Further detailed results for each case are presented in Supplementary Table S3 to
Supplementary Table S7. These tables illustrate both the initial results and the detailed
performance of the stacking-based models. A clear improvement in predictive accuracy is
observed with the stacking-based approach, with at least a 1% enhancement in performance
compared to the initial models, as evidenced by the data in these tables. The confusion
matrices and AUC curves for the top-performing models in each scenario are presented, as
illustrated in Supplementary Figures S1 and S2.

4.3. Model Explainability According to Shap Values

SHAP [49] helps understand the impact of each feature on the model’s output for a
particular prediction, offering valuable insights into the model’s decision-making process.
This method uniquely highlights the individual contribution of each feature towards a
specific prediction, thereby providing a nuanced understanding of the global and local
behaviors inherent in the model. By emphasizing transparency and elucidating the decision-
making process, SHAP is aimed at instilling trust in the ML approach among end-users.
SHAP not only enhances interpretability but also promotes a more informed and confident
engagement with the model’s predictions.

We conducted SHAP analysis in three distinct scenarios for our research, considering
all relevant attributes. Figure 6 demonstrates the impact of SHAP values on the model
outputs across these scenarios. The horizontal axis represents the direction of the effect,
with positive impacts indicated by red and negative impacts by blue. In this context, red
corresponds to higher feature values, while blue corresponds to lower feature values. SHAP
can identify the significant features or metabolites with their corresponding impacts.

In Figure 6A, for the control vs. RSV scenario, the SHAP analysis highlights distinct
feature effects on model predictions. Specifically, Met.SO (Methionine sulfoxide) had a
substantial positive effect on RSV predictions, indicative of the higher concentrations in
RSV cases than control. Notably, Ile, Val, Asp, Phe, and showed considerable positive
effects, thus emphasizing their influential roles in predicting RSV cases. In Figure 6B,
focusing on the control vs. Influenza A scenario, the SHAP analysis revealed LYSOC18:2
as the predominant metabolite feature with the greatest effect on predicting Influenza A
cases. In Figure 6C for control vs. COVID-19, LYSOC18:2 again emerges as the dominant
feature, in agreement with previous findings by Bennet et al. [16], thereby establishing
its value in distinguishing COVID-19 cases. Other notable metabolite features, including
Kynurenine, Phe, Val, Tyr, and Asp, contributed significantly to the predictive model. For
the control vs. all respiratory virus scenario, as depicted in Figure 6D, LYSOC18:2 was the
most dominant feature, thus indicating its crucial role in discriminating cases involving
respiratory viruses collectively.

Finally, in the control vs. RSV/Influenza A scenario represented in Figure 6E, Carno-
sine emerged as the most dominant feature for predicting COVID-19 cases. This detailed
analysis provided valuable insights into the specific metabolite features driving the predic-
tive capability of the model across various respiratory virus classification scenarios.
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4.4. Discussion

Respiratory viruses, including Influenza A, RSV, and COVID-19, pose major health
challenges [50–52]. Our work focused on leveraging LC/MS-MS metabolomics data to
predict the presence of respiratory viruses in individuals, by discerning dominant metabo-
lites, contributing to accurate classification. Applying a similar method to various diseases
allowed us to explore distinct metabolite profiles and gain insights into the underlying
biochemical dynamics across different pathological conditions. ML models can discern
complex patterns within the data [53] and identify subtle metabolic changes associated
with specific viral infections. This approach enables a more nuanced understanding of
disease dynamics.

A comprehensive statistical analysis was conducted for control, normal, and all respi-
ratory virus scenarios, by using chi-square tests, rank sum tests, and T-tests. Twenty ML
models were trained for five distinct scenarios: control vs. RSV, control vs. Influenza A,
control vs. COVID-19, control vs. all respiratory viruses, and COVID-19 vs. Influenza
A/RSV. Feature ranking techniques were applied to select the top ten features. Standard
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scaling was used to normalize the data, and a five-fold dataset was created. Before model
fitting, the SMOTE was used to address class imbalance.

Among the 13 variants of ML models, the top ten performers were selected, and a
stacking ML model was trained by using the three most successful models. The outcomes
of each model are illustrated in Figure 5. Notably, linear discriminant analysis excelled
in the control vs. RSV scenario, whereas SVM stood out in the control vs. Influenza A
scenario. The control vs. COVID-19 and control vs. all respiratory virus scenarios indicated
SVM and random forest as the leading models, respectively. Logistic Regression emerged
as the superior performer in the COVID-19 vs. Influenza A/RSV scenario.

Furthermore, the SHAP value analysis provides a detailed understanding of feature
importance in distinguishing various respiratory conditions. In the control vs. RSV case,
Met.SO, Ile, and LYSOC18.2 emerge as dominant biomarkers, with Met.SO showing the
most substantial positive impact. For control vs. Influenza A, similar patterns are observed,
where Met.SO and LYSOC18.2 remain critical, alongside Asp, Kynurenine, and Phe, indicat-
ing their significant roles in identifying Influenza A. In differentiating control vs. COVID-19,
LYSOC18.2 and Kynurenine stand out as key features, while metabolites like Phe, Val, and
Ile also contribute notably. When comparing control vs. all respiratory viruses, the features
LYSOC18.2, and Met.SO consistently demonstrate their importance across multiple cases,
with contributions from Kynurenine, Ile, and Citric Acid, reinforcing their significance in
detecting respiratory infections. Finally, in distinguishing COVID-19 vs. Influenza A/RSV,
Carnosine emerges as a unique and dominant biomarker, with additional impacts from
Met.SO and beta-Hydroxybutyric acid, highlighting its role in differentiating COVID-19
from other viral infections. Overall, Met.SO, LYSOC18.2, and Kynurenine repeatedly prove
to be critical biomarkers across multiple conditions, while Carnosine demonstrates unique
utility in identifying COVID-19 specifically, showcasing the distinct metabolic profiles
associated with different respiratory viruses.

We utilized a stacking-based ensemble technique to improve predictive performance,
rather than relying on a single machine learning model. The stacking approach utilizes
the prediction probabilities from the top three best-performing models identified during
the initial evaluation phase. These models were selected based on their superior accuracy
and other evaluation metrics. By integrating them into a stacking framework, we aimed to
combine the individual strengths of the base learners (classical machine learning models),
thus enhancing the overall predictive accuracy. Furthermore, we conducted a comparative
analysis of the proposed stacking-based approach with and without the use of the Synthetic
Minority Over-sampling Technique (SMOTE) to address the class imbalance. The com-
parison in Table 2 highlights the effectiveness of our proposed stacking-based ensemble
technique compared to traditional supervised machine learning models. Bennett et al. [16]
achieved notable performance with supervised methods; however, their models showed
limitations in specificity and sensitivity. The random forest model with SMOTE outper-
formed its counterpart without SMOTE, achieving higher accuracy (98.10% vs. 96.67%),
sensitivity (98.10% vs. 96.66%), and specificity (94.48% vs. 92.44%), demonstrating the
importance of addressing the class imbalance. Logistic Regression showed moderate
results, with significant declines in performance without SMOTE. Our stacking-based
ensemble, which integrates prediction probabilities from the top three best-performing
models, consistently improved accuracy and sensitivity, particularly when paired with
SMOTE, outperforming individual models. These findings emphasize the robustness of
stacking combined with SMOTE for enhanced predictive performance.
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Table 2. Comparison of evaluation metrics with other studies.

Model Cases Accuracy Sensitivity Specificity

Bennet et al.
[16]

Supervised machine
learning

Control vs. all respiratory virus 96% 98% 86%

COVID-19 vs. influenza A/RSV 85% 74% 90%

Stacking-Based
Ensemble
Approach

RandomForest (With SMOTE)
Control vs. all respiratory virus

98.10% 98.10% 94.48%

RandomForest (Without SMOTE) 96.67 96.66 92.44

Logistic Regression (With SOMOTE)
COVID-19 vs. influenza A/RSV

86.14% 86.14% 80.3

Logistic Regression (Without SMOTE) 84.94 84.94 77.86

5. Conclusions
This study concludes that leveraging machine learning with nasopharyngeal metabolome

data effectively distinguishes the control group from various respiratory viral infections,
including COVID-19, RSV, and Influenza A. We proposed a stacking-based ensemble tech-
nique that integrates the top three best-performing machine learning models, enhancing
prediction accuracy by leveraging the strengths of multiple base learners. Using a combina-
tion of stacking, feature selection, and SMOTEs significantly improved model performance,
achieving superior accuracy, sensitivity, and specificity. Statistical analyses, including rank
sum tests, T-tests, and chi-square tests, were performed to identify significant metabolites.
Metabolites such as Met.SO, LYSOC18.2, and Kynurenine emerged as critical biomarkers
across multiple conditions, while Carnosine uniquely distinguished COVID-19 from other
viral infections. SHAP analysis provided explainable insights into feature contributions,
identifying key metabolites influencing positive predictions and reinforcing the clinical
potential of metabolomics and machine learning for accurate diagnostics. Notably, our
approach outperformed existing methods and revealed dominant features for predicting
COVID-19, including Lysophosphatidylcholine acyl C18:2, Kynurenine, Phenylalanine,
Valine, Tyrosine, and Aspartic Acid (Asp), which are essential in metabolic pathways.
Our XAI (Explainable AI) analysis further proposed the top significant features for each
respiratory virus case, demonstrating the robustness and interpretability of our model in
identifying key diagnostic markers.
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