

Correction

Correction: Tai et al. Sea Bass Essence from *Lates calcarifer* Improves Exercise Performance and Anti-Fatigue in Mice. *Metabolites* 2022, *12*, 531

Hong-Jun Tai^{1,†}, Mon-Chien Lee^{2,†}, Yi-Ju Hsu², Chun-Yen Kuo³, Chi-Chang Huang^{2,*} and Ming-Fu Wang^{1,*}

- ¹ Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; yeast2136@gmail.com
- ² Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan;
 - 1061304@ntsu.edu.tw (M.-C.L.); ruby780202@ntsu.edu.tw (Y.-J.H.)
- ³ Program in Health and Social Welfare for Indigenous Peoples, Providence University, Taichung 43301, Taiwan; cykuo2@pu.edu.tw
 - Correspondence: john5523@ntsu.edu.tw (C.-C.H.); mfwang@pu.edu.tw (M.-F.W.); Tel.: +886-3-328-3201 (ext. 2409) (C.-C.H.); +886-4-042-632-8001 (M.-F.W.)
- ⁺ These authors contributed equally to this work.

1. Error in Figure/Table

First, in the original publication [1], there was a mistake in Table 1 as published. The data in Table 1 were wrong and the group name was wrongly marked; SBE-5X should be changed to SBE-4X. The corrected Table 1 appears below.

Table 1. Effects of SBE supplementation on serum levels of lactate after the 10 min swim test. The lactate production rate (B/A) was the value of the lactate level after exercise (B) divided by that before exercise (A). The clearance rate (B – C)/B was defined as the lactate level after swimming (B) minus that after 20 min of rest (C) divided by that after swimming (B). Data are expressed as mean \pm SD (n = 10 mice per group). Values in the same row with different superscript letters (a, b, c, d) differ significantly between groups, p < 0.05.

Group	os Vehicle	Isocaloric	SBE-1X	SBE-2X	SBE-4X				
Time Point		Lactate (mmol/L)							
Before swimming (A) After swimming (B) After a 20 min resting (C	$\begin{array}{c} 3.81 \pm 0.42 \ ^{a} \\ 6.56 \pm 0.93 \ ^{b} \\ 5.21 \pm 0.53 \ ^{d} \end{array}$	$\begin{array}{c} 3.69 \pm 0.46 \ ^{a} \\ 6.51 \pm 1.01 \ ^{b} \\ 5.25 \pm 0.72 \ ^{d} \end{array}$	$\begin{array}{c} 3.70 \pm 0.35 \text{ a} \\ 5.32 \pm 0.89 \text{ a} \\ 4.36 \pm 0.48 \text{ c} \end{array}$	$\begin{array}{c} 3.77 \pm 0.49 \ ^{a} \\ 5.01 \pm 0.28 \ ^{a} \\ 3.86 \pm 0.46 \ ^{b} \end{array}$	$\begin{array}{c} 3.86 \pm 0.51 \; ^{a} \\ 4.66 \pm 0.37 \; ^{a} \\ 3.41 \pm 0.26 \; ^{a} \end{array}$				
Rates of lactate production and clearance									
Production rate = B/A Clearance rate = $(B - C)/$	$\begin{array}{c} 1.73 \pm 0.25 \ ^{c} \\ B & 0.19 \pm 0.12 \ ^{a} \end{array}$	1.77 ± 0.21 $^{\rm c}$ 0.18 \pm 0.13 $^{\rm a}$	$\begin{array}{c} 1.45 \pm 0.28 \ ^{b} \\ 0.16 \pm 0.16 \ ^{a} \end{array}$	$\begin{array}{c} 1.34 \pm 0.14 \; ^{ab} \\ 0.23 \pm 0.09 \; ^{a} \end{array}$	$\begin{array}{c} 1.22 \pm 0.11 \; ^{a} \\ 0.26 \pm 0.08 \; ^{a} \end{array}$				

Second, in the original publication, there was a mistake in Table 2 as published. There was a unit error for ALB and TP and the group name was wrongly marked; SBE-5X should be changed to SBE-4X. The corrected Table 2 appears below.

Received: 1 November 2024 Accepted: 25 December 2024 Published: 13 January 2025

Citation: Tai, H.-J.; Lee, M.-C.; Hsu, Y.-J.; Kuo, C.-Y.; Huang, C.-C.; Wang, M.-F. Correction: Tai et al. Sea Bass Essence from *Lates calcarifer* Improves Exercise Performance and Anti-Fatigue in Mice. *Metabolites* 2022, *12*, 531. *Metabolites* 2025, *15*, 46. https://doi.org/10.3390/ metabo15010046

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).

Groups Parameters	Vehicle	Isocaloric	SBE-1X	SBE-2X	SBE-4X
AST (U/L)	73 ± 11	71 ± 7	75 ± 8	72 ± 6	74 ± 5
ALT (U/L)	47 ± 5	47 ± 5	49 ± 5	47 ± 5	47 ± 5
ALB (g/dL)	3.44 ± 0.11	3.28 ± 0.23	3.37 ± 0.24	3.37 ± 0.32	3.35 ± 0.21
BUN (mg/dL)	27.1 ± 3.7	26.1 ± 1.9	26.3 ± 2.3	26.2 ± 2.6	26.3 ± 2.7
CREA (mg/dL)	0.43 ± 0.02	0.43 ± 0.02	0.44 ± 0.03	0.44 ± 0.03	0.43 ± 0.03
UA (mg/dL)	2.1 ± 0.8	2.1 ± 0.5	2.0 ± 0.5	2.2 ± 0.4	2.1 ± 0.8
TP(g/dL)	5.7 ± 0.4	5.7 ± 0.4	5.7 ± 0.3	5.8 ± 0.3	5.8 ± 0.3
TG (mg/dL)	130 ± 12	131 ± 16	131 ± 13	129 ± 12	129 ± 10
CK(U/L)	252 ± 48	269 ± 46	259 ± 47	269 ± 49	269 ± 46

Table 2. Effects of SBE supplementation on biochemical parameters.

Data are expressed as mean \pm SD (n = 10 mice per group). AST, aspartate aminotransferase; ALT, alanine transaminase; ALB, albumin; BUN, blood urea nitrogen; CREA, creatinine; UA, uric acid; TP, total protein; TG, triacylglycerol; CK, creatine kinase.

Third, in the original publication, there was a mistake in Table 3 as published. The group name was wrongly marked; SBE-5X should be changed to SBE-4X. The corrected Table 3 appears below.

Table 3. Effect of SBE supplementation on body weight, body composition, and water and diet intake.

Characteristics	Vehicle	Isocaloric	SBE-1X	SBE-2X	SBE-4X
Initial BW (g)	29.9 ± 0.7	29.7 ± 0.6	29.7 ± 0.9	29.7 ± 0.7	29.7 ± 0.4
1st wk BW	33.8 ± 1.1	33.5 ± 1.4	33.3 ± 0.7	33.4 ± 1.3	33.4 ± 1.2
2nd wk BW	35.5 ± 1.9	35.5 ± 1.4	35.2 ± 1.4	34.8 ± 1.6	34.4 ± 1.3
3rd wk BW	36.6 ± 2.0	36.8 ± 2.0	36.7 ± 2.0	36.2 ± 2.2	35.7 ± 1.5
4th wk BW	37.4 ± 2.4	37.6 ± 2.1	37.5 ± 2.2	36.9 ± 2.3	36.5 ± 1.7
5th wk BW	37.9 ± 2.5	38.4 ± 2.1	37.9 ± 2.3	37.4 ± 2.2	36.9 ± 1.7
Final BW (g)	38.8 ± 2.7	39.0 ± 2.2	39.0 ± 1.6	38.5 ± 2.2	38.0 ± 1.2
Water intake (mL/mouse/day)	7.1 ± 0.4	7.2 ± 0.4	7.2 ± 0.5	7.1 ± 0.6	7.2 ± 0.5
Diet (g/mouse/day)	6.1 ± 0.9	6.2 ± 0.9	6.3 ± 0.8	6.1 ± 0.9	6.3 ± 0.7
Calorie intake from diet (Chow 5001) (Kcal/mouse/day) (A)	20.5 ± 3.1	20.8 ± 2.9	21.2 ± 2.8	20.4 ± 3.0	21.1 ± 2.4
Calorie intake from supplements (Kcal/mouse/day) (B)	$0.0\pm0.0~^{a}$	0.1 ± 0.0 $^{\rm b}$	$0.1\pm0.0~^{\rm b}$	$0.3\pm0.0~^{c}$	$0.5\pm0.1~^{ m c}$
Total daily calorie intake (Kcal/mouse/day) (A) + (B)	20.5 ± 3.1	20.9 ± 2.9	21.3 ± 2.8	20.7 ± 3.0	21.7 ± 2.4
Liver (g)	2.34 ± 0.30	2.31 ± 0.30	2.25 ± 0.21	2.29 ± 0.31	2.35 ± 0.16
Kidney (g)	0.64 ± 0.06	0.64 ± 0.08	0.64 ± 0.05	0.63 ± 0.05	0.63 ± 0.04
Muscle (g)	0.37 ± 0.03	0.38 ± 0.02	0.39 ± 0.04	0.36 ± 0.05	0.36 ± 0.03
Heart (g)	0.21 ± 0.03	0.21 ± 0.02	0.23 ± 0.02	0.21 ± 0.02	0.21 ± 0.02
Lung (g)	0.26 ± 0.03	0.26 ± 0.03	0.26 ± 0.03	0.26 ± 0.03	0.26 ± 0.04
EFP (g)	0.44 ± 0.08	0.43 ± 0.07	0.44 ± 0.05	0.43 ± 0.07	0.43 ± 0.05
BAT (g)	0.11 ± 0.03	0.10 ± 0.02	0.11 ± 0.02	0.11 ± 0.02	0.09 ± 0.02
Relative liver weight (%)	5.98 ± 0.38	5.86 ± 0.54	5.73 ± 0.57	5.88 ± 0.59	6.14 ± 0.27
Relative kidney weight (%)	1.63 ± 0.20	1.63 ± 0.17	1.62 ± 0.07	1.64 ± 0.14	1.64 ± 0.10
Relative muscle weight (%)	0.96 ± 0.10	0.98 ± 0.05	0.98 ± 0.12	0.94 ± 0.12	0.95 ± 0.08
Relative heart weight (%)	0.55 ± 0.07	0.52 ± 0.06	0.58 ± 0.07	0.54 ± 0.05	0.54 ± 0.05
Relative lung weight (%)	0.67 ± 0.08	0.67 ± 0.09	0.66 ± 0.07	0.66 ± 0.05	0.68 ± 0.11
Relative EFP weight (%)	1.12 ± 0.18	1.10 ± 0.17	1.11 ± 0.12	0.95 ± 0.03	0.93 ± 0.08
Relative BAT weight (%)	0.28 ± 0.07	0.26 ± 0.05	0.27 ± 0.04	0.28 ± 0.06	0.24 ± 0.05

Data are expressed as mean \pm SD (n = 10 mice per group). EFP, epididymal fat pad; BAT, brown adipose tissue. The different superscript letters (a, b, c) in the same row represent significant difference at p < 0.05.

Fourth, in the original publication, there was a mistake in Figure 4 as published. The group name was wrongly marked, SBE-5X should be changed to SBE-4X. The corrected Figure 4 appears below.

2. Text Correction

There was an error in the original publication. The group name was wrongly marked; SBE-5X should be changed to SBE-4X.

A correction has been made to Section 2; Results Section 2.3. Effect of SBE Supplementation on Fatigue-Related Biochemical Indicators after the 10-min Swim Test or a 90-min Swim Test and a 60-min Rest, Paragraphs 1 and 2:

We also evaluated the NH₃ and BUN concentration after the 10-min swim test. As shown in Figure 2A, the NH₃ levels in the vehicle, isocaloric, SBE-1X, SBE-2X, and SBE-4X groups were 167 \pm 18, 144 \pm 19, 145 \pm 17, 133 \pm 18, and 148 \pm 17 (umol/L), respectively. The SBE-1X, SBE-2X, and SBE-4X groups were significantly lower than the vehicle group, i.e., by 13.11% (p = 0.0089), 20.42% (p = 0.0001), and 11.38% (p = 0.0221), respectively, but no dose-dependent trend was observed.

We measured the serum BUN level after the 90-min swim test followed by 60 min of rest. As shown in Figure 2B, the BUN levels in the SBE-1X, SBE-2X, and SBE-4X groups were 46.5 ± 1.8 , 46.5 ± 2.0 , 38.5 ± 2.2 , 35.5 ± 2.2 , and 34.8 ± 1.5 (mg/dL), respectively. Compared with the vehicle group, the SBE-1X, SBE-2X, and SBE-4X groups were significantly lower by 17.26% (p < 0.0001), 23.78% (p < 0.0001), and 25.22% (p < 0.0001), respectively. In addition, they were significantly lower than the isocaloric group by 17.27% (p < 0.0001), 23.79% (p < 0.0001), respectively. For the trend analysis, serum BUN levels

after the 90-min swim test followed by 60 min of rest had decreased dose-dependently with SBE supplementation (p < 0.0001).

In addition, a correction has been made to Section 2; Results Section, 2.4. Effect of SBE Supplementation on Liver and Muscle Glycogen Contents, Paragraphs 1 and 2:

The liver glycogen content in the vehicle, isocaloric, SBE-1X, SBE-2X, and SBE-4X groups were 15.87 ± 0.93 , 15.69 ± 1.24 , 20.76 ± 3.65 , 23.24 ± 1.98 , and 23.97 ± 0.51 (mg/g liver), respectively. The SBE-1X, SBE-2X, and SBE-4X groups were significantly greater than the vehicle group by 1.31-fold (p < 0.0001), 1.46-fold (p < 0.0001) and 1.51-fold (p < 0.0001), respectively, and also were significantly greater than the isocaloric group by 1.32-fold (p < 0.0001), 1.48-fold (p < 0.0001) and 1.53-fold (p < 0.0001), respectively (Figure 3A).

The muscle glycogen content in the vehicle, isocaloric, SBE-1X, SBE-2X, and SBE-4X groups were 1.35 ± 0.08 , 1.36 ± 0.07 , 1.57 ± 0.08 , 1.67 ± 0.05 , and 1.73 ± 0.06 (mg/g muscle), respectively. The SBE-1X, SBE-2X, and SBE-4X groups were significantly greater than the vehicle group by 1.16-fold (p < 0.0001), 1.24-fold (p < 0.0001) and 1.28-fold (p < 0.0001), respectively, and were also significantly greater than the isocaloric group by 1.15-fold (p < 0.0001), 1.22-fold (p < 0.0001) and 1.26-fold (p < 0.0001), respectively (Figure 3A).

The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

 Tai, H.-J.; Lee, M.-C.; Hsu, Y.-J.; Kuo, C.-Y.; Huang, C.-C.; Wang, M.-F. Sea Bass Essence from Lates calcarifer Improves Exercise Performance and Anti-Fatigue in Mice. *Metabolites* 2022, 12, 531. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.