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Abstract: Background/Objectives: Dartmoor Estate Tea plantation in Devon, UK, is
renowned for its unique microclimate and varied soil conditions, which contribute to
the distinctive flavours and chemical profiles of tea. The chemical diversity of fresh leaf
samples from various garden locations was explored within the plantation. Methods:
Fresh leaf, which differed by location, cultivar, time of day, and variety, was analysed
using Flow Infusion Electrospray Ionisation Mass Spectrometry (FIE-MS). Results: Ran-
dom forest classification revealed no significant differences between Georgian N2 cultivar
garden locations. However, a significant degree of variability was observed within four
tri-clonal variants (Tocklai Variety) with TV9 exhibiting greater similarity to the Georgian
N2 cultivar compared to TV8 and TV11, while TV11 was found to be most like TV1. The
intraclass variability in leaf composition was similar between the varieties. We explored
the metabolic changes over the day in one variant (Camellia assamica Masters), yielding a
model with a significant R2 value of 0.617 (p < 0.01, 3000 permutations). Starch and sucrose
metabolism was found to be significant where the abundance of these chemical features
increased throughout the day and then began to decrease at night. Conclusions: This
research highlights the complex interplay of cultivars, geographical location, and temporal
factors on the chemical composition of tea. It provides insightful data on the metabolic
pathways influencing tea cultivation and production and underscores the importance of
these variables in determining the final chemical profile and organoleptic characteristics of
tea products.

Keywords: Camellia sinensis L.; Flow Infusion Electrospray Ionisation Mass Spectrometry
(FIE-MS); metabolomics; random forest classification; cultivars; geographical location;
temporal factors

1. Introduction
Tea is made from the leaves of the plant Camellia sinensis L. and is a widely consumed

UK beverage, with a rich cultural and agricultural heritage spanning thousands of years [1].
The scientific exploration of tea has been significantly advanced by contributions from
China and India, two of the largest tea-producing nations.

The regular consumption of tea promotes wellness, in particular, improved ageing,
and a reduction of cardiovascular diseases, cancers, hepatopathy, obesity, and diabetes
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mellitus [2,3]. These benefits are largely attributed to the diverse bioactive compounds
present in tea, which have been the subject of extensive research. Tea contains an array of
primary and secondary metabolites, including sugars, polyphenols, amino acids, alkaloids,
and volatile organic compounds, which contribute significantly to its health-promoting
properties [2,3]. Studies have highlighted the role of plucking season, shading, and soil
conditions, cultivar development, and the impact of climatic variations on secondary
metabolites, which contribute to tea’s metabolomic profile [4–7]. The importance of genetic
diversity, environmental influences, and targeted breeding objectives has been demon-
strated in understanding and enhancing the chemical composition and quality of tea [8].
These variables not only affect the chemical profile of tea but also its sensory attributes,
including flavour, aroma, and colour, and health-promoting attributes, underscoring the
complexity of tea as a functional food.

Advances in tea research have provided critical insights into the biosynthesis of
bioactive compounds such as polyphenols, amino acids, and alkaloids. Studies have
emphasised the impact of traditional practices, such as fermentation and processing, on tea
quality, authenticity, and flavour [9–11].

Metabolomics has emerged as a pivotal tool for evaluating the chemical compo-
sition, quality, and authenticity of tea and tea products. An advanced, non-targeted
metabolomics approach facilitates the unbiased screening of primary and secondary chem-
ical compounds [12], allowing researchers to investigate subtle variations between tea
samples based on their origin, processing methods, and storage conditions, alongside
multiple other factors. Studies have demonstrated the effectiveness of metabolomics in dis-
tinguishing tea varieties and assessing quality markers [13–15]. Additionally, metabolomic
approaches have been used to investigate the age-related differences of tea leaf metabo-
lites in the fresh leaves collected from tea plants aged 8 and 25 years [16]. By combining
metabolomics with traditional sensory evaluations and modern analytical techniques, a
comprehensive understanding of tea’s complexity and health benefits can be achieved.

Modern analytical technologies, such as high-resolution metabolomics, provide in-
sights into plant metabolism and the biosynthesis of secondary metabolites [17]. These
methods allow the exploration of the complex mechanisms of plant growth, development,
and responses to environmental stimuli, thereby advancing our understanding of plant
chemistry. Flow Infusion Electrospray Ionisation Mass Spectrometry (FIE-MS) can be used
to produce a non-targeted comprehensive overview of the chemical content of biologically
derived material as a high throughput metabolite fingerprinting tool [18]. Data obtained
can be analysed using spectral binning [19] and further down-stream analysis. Machine
learning using computational algorithms that can learn patterns, relationships, and insights
from metabolomic data and create hypotheses. Hydrophilic Interaction Liquid Chromatog-
raphy (HILIC) has the ability to separate polar compounds, such as sugars, amino acids,
and organic acids, which are key metabolites in tea. This technique complements the
global fingerprinting provided by FIE-MS by enabling confirmation of specific metabolites
through retention time matching and MS/MS analysis.

Tea represents a cultural heritage but is also a functional beverage with significant
health-promoting properties. Ongoing research into the varying bioactive compounds of
tea continues to shed light on its multifaceted benefits, ensuring its enduring relevance
in both dietary and therapeutic contexts. These findings provide a broader context for
understanding the unique characteristics of tea grown in non-traditional regions such as
the UK, which is the focus of this study.

This current study leverages advanced analytical techniques and machine learning
to investigate the chemical diversity of tea grown in the UK. The Dartmoor Estate Tea
plantation, located in Devon, UK, is known for its unique microclimate and soil diversity,
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which provide an unconventional setting for tea cultivation. This study focuses on six tea
varieties grown at the estate, including the Georgian N2 cultivar (GRGN) and four Tocklai
Tri-clonal variants (TV08, TV09, TV11, TV01), as well as Camellia assamica (Sin.Ass). These
varieties were selected for their adaptability to diverse environmental conditions and their
potential for chemical diversity.

2. Materials and Methods
2.1. Tea Plants

Six tea varieties were available at Dartmoor Estate Tea, UK (located at coordinates
50.49643894722191◦ N, −3.769534518786335◦ W) in September: GRGN (Georgian N2 culti-
var, 535 plants available, and 48 plants were randomly sampled between two gardens), TV
08, 09, 11, and 01 (Camellia Sinensis L. Tocklai Tri-clonal Variants, 860 available plants and
128 plants were randomly sampled between two gardens), and Sin.Ass = Camellia assamica
Masters; syn C. sinensis var assamica variety (1560 available plants in one garden, 64 plants
were randomly sampled). A randomised sampling map was computer-generated before
the investigation to account for batches, location (garden/plot) and time taken (Figure S1).

Tocklai has developed numerous high-yielding and disease-resistant Camellia sinensis
L. tea clones and seed stock. These include improved varieties tailored for specific climatic
and soil conditions, enabling better tea production. TV1 (Tocklai Variety 1) is known for its
high yield potential, adaptable to diverse agro-climatic conditions, and moderately resistant
to common pests and diseases. TV8 (Tocklai Variety 8) offers a balanced profile of yield
and cup quality, performs well in moderately acidic soils, typical of tea-growing regions in
Assam and North Bengal, and exhibits moderate resistance to certain pests and diseases.
TV9 (Tocklai Variety 9) is a high yielding clone, tolerates waterlogged conditions better
than many other clones, making it ideal for flood-prone areas, and offers good resistance to
certain fungal diseases. TV11 (Tocklai Variety 11) has a high yield and vigorous growth
under diverse climatic conditions, moderate resistance to pests and diseases, and performs
well under organic cultivation practices.

Tea originating from Georgia, a Chinese hybrid called Keymin, classified as a Georgian
N2 cultivar (GRGN) which is heavy frost resistant. They were created in the 1940s as an
Indo-Chinese hybrid by an agronomist Ksenia Bakhtadze. Lastly, Camellia assamica Masters;
syn C. sinensis var assamica cultivar (Sin.Ass) from the Himalayan region of India [20].

2.2. Fresh Leaf Sample Collection

For metabolome samples we took six laminar leaf punches using a single hole punch
from three plants (biological replicates) for each experimental point, selecting the top two
youngest leaves ensuring standardisation. These punches avoided any major leaf veins. We
placed the leaf punches into a 2 mL Eppendorf tube containing a 5 mm diameter steel ball
bearing using tweezers and then immediately placed the Eppendorf tubes into a Dewar to
snap freeze in liquid nitrogen. We cleaned the single hole punch after each use by spraying
with 70% ethanol.

For temporal sampling, the same method was applied, and samples were collected at
09:00, 12:00, 18:00, and 00:00, of the Sin.Ass variety, over one single day.

All leaf disc samples were frozen in liquid nitrogen immediately when they were
collected in the field, then transported in liquid nitrogen and then stored at −80 ◦C.

2.3. Sample Preparation and Extraction

All procedures were carried out on ice. Mixer mill sample holders were pre-chilled at
−80 ◦C. Bligh and Dyer extraction mix (chloroform:methanol:water 2:5:2) was prepared in
advance and chilled to −20 ◦C, then stored on ice during use.
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It was vitally important not to allow the samples to defrost during milling, so all
sample tubes were first placed in liquid nitrogen before transferring to pre-chilled mixer
mill holders. The samples were milled for 30 s at 30 Hz then placed in liquid nitrogen once
more. If necessary, the milling process was repeated until a fine powder was obtained.
The ground leaf material was immediately extracted by adding 1 mL of Bligh and Dyer
extraction mix to each tube. The weight of milled material in each tube was not recorded, as
a degree of uniformity was expected because each tube contained six leaf discs of uniform
size. All samples were vortexed then shaken at 4 ◦C for 20 min before centrifugation
at 13,000× g and 4 ◦C for 5 min. The supernatants were transferred into new labelled
Eppendorf tubes and stored at −80 ◦C prior to analysis.

2.4. Sample Preparation for Analysis

The tea leaf extracts were defrosted, vortexed, and spun down (13,000× g and 4 ◦C for
5 min) before aliquoting. A preliminary trial had demonstrated that the optimum dilution
for the samples was 1:10, so dilutions were prepared using Bligh and Dyer extraction mix
before aliquoting 100 µls into HPLC vials with 200 µL inserts. For each sequence run, a
quality control sample was prepared by combining 20 µL aliquots from all diluted samples
in the run in a separate 5 mL Eppendorf tube and mixing before transferring 200 µL into an
HPLC vial. Bligh and Dyer extraction mix (200 µL) was used as the control.

2.5. Flow Infusion Electrospray Ionisation Mass Spectrometry (FIE-MS)

FIE-MS was performed using an Exploris 120 mass analyser equipped with a Dionex
Vanquish UHPLC system (Thermo Scientific, Waltham, MA, USA). Metabolite fingerprints
were generated in both positive and negative ionisation modes, in a single run.

All samples were randomised to minimise batch effects using a computer-generated
randomisation sequence. This ensured that samples from different locations, cultivars, and
time points were evenly distributed across analytical runs. Samples (20 µL) were injected
into a flow of 100 µL min−1 methanol:water (70:30, v/v). Quality control (QC) samples were
prepared by pooling aliquots from all sample extracts, and these were injected at regular
intervals during each sequence to monitor instrument performance. Ion intensities were
acquired between m/z 55 and 1200 for 3.5 min at a resolution setting of 120,000, resulting
in 3 (±1) ppm mass accuracy. Tuning and ESI source parameters were set according to
the manufacturer’s recommendations. Following data acquisition, Chromeleon.cmbx files
were first exported to .raw files and then converted to the .mzML open file format and cen-
troided [21] using msconvert (TransProteomicPipeline) [22]. Spectral binning was applied
using the R package binneR [19] and then standard post-acquisition processing routines
were applied, including occupancy and QC filtering (Figure S2). Data were normalised and
log2 transformed. Putative molecular formulas were generated by using MZedDB [23], an
Aberystwyth University database for accurate mass annotation to 3 (±1) ppm accuracy.
The ionisation products of the assigned molecular formulas were first searched against the
KEGG compound database specific to Camellia sinensis for putative matches. Initial data
analysis including classification was performed in R package metabolyseR (0.15.4).

Confirmational analysis (level 1) was performed on a TSQ Quantum Ultra EMR QQQ
mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a heated
electrospray ionisation source. Samples were delivered using an Accela UHPLC system
(Thermo Fisher Scientific, San Jose, CA, USA) consisting of autosampler, column heater, and
quaternary UHPLC-pump. Chromatographic separation was performed on a ZIC-pHILIC
(Hydrophilic Interaction Liquid Chromatography polymeric 5 µm, 150 × 4.6 mm) column
(Merck, Rahway, NJ, USA) as described [24,25].
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2.6. Data Analysis

To provide a compositional overview of the samples, consensus structural classifica-
tions were compiled for each of the m/z features that were assigned a molecular formula. To
do this, the molecular formulas were first searched against the KEGG compound database.
Matching compounds were filtered based on their potential to form the relevant adduct
under electrospray ionisation using the MZedDB ionisation rules [23]. Where no compound
matches were identified in the KEGG compound database, the molecular formula was
instead searched in the PubChem compound database using the same approach. The
structural chemical classifications, based on the CHEMONT chemical taxonomy, were
retrieved from the ClassyFire database for the matched compounds [26]. For each adduct
of each assigned molecular formula, putative structural classifications were assigned to a
depth based on a 66% or above consensus between the matched compounds.

Random forest (RF) regression was used to identify m/z features related to processing
steps. RF was selected as the primary machine learning model due to its ability to handle
high-dimensional, non-linear data and its robustness to overfitting when applied to rela-
tively small sample sizes. Additionally, its interpretability through variable importance
measures allowed us to identify key metabolites contributing to sample differentiation.

Confidence intervals (95%) were reported for key statistical tests to provide a range
for expected variability.

K-means clustering was performed on the percentage relative abundance of the ex-
planatory features. Functional and structural enrichment analysis was performed on each
of the clusters to potentially derive both chemical classes and biological functions related to
the cluster trends. Functional enrichment was performed on each of the clusters using the
PageRank approach of the FELLA R package [27,28]. Structural enrichment was performed
on each of the clusters using over-representation analysis with Fisher’s exact test.

Metabolite identification was achieved at Level 2 (putative annotations based on
accurate mass matching) for most features, with selected compounds confirmed at Level
1 using authentic standards. The maximum error was 3 (±1) ppm. Matches were cross-
referenced against KEGG and PubChem databases for annotation confidence.

3. Results
3.1. Structural Composition of the Tea Samples

The ionisation products of the assigned molecular formulas were first searched against
the KEGG compound database specific to Camellia sinensis for putative matches. Any the
structural classifications for any metabolite matches were retrieved from the Classyfire
database. For the ionisation products of each assigned molecular formula, a consensus
structural classification was assigned based on all the possible database matches using
a consensus threshold of 66%. For ionisation products that did not match to the KEGG
compound database, these were then matched against the PubChem database and consen-
sus structural classifications assigned accordingly. Figure 1 shows a Sankey plot, which
provides an overview of the structural composition of the tea samples. There was a high
frequency of m/z features putatively classified as phenylpropanoids and polyketides, or-
ganic oxygen compounds, organic acids and derivatives, lipids and lipid-like molecules,
and benzenoids.

3.2. Variability Within the Georgian Tea

RF classification was performed to assess the difference of the Georgian tea plants
between the two gardens. As shown in the multi-dimensional scaling plot (MDS) in Figure 2,
there was no significant difference found between the plants in these gardens with a margin
value of 0.00443 (p = 0.572, 3000 permutations). Very similar intraclass variability was
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also observed in both the gardens as shown by the intraclass distance distributions, where
gardens 3 and 4 had median distance values of 0.656 and 0.687, respectively (Figure 3).

 
 
 
 

 

Figure 1. Consensus structural classes of assigned molecular formulas in tea samples. This Sankey
plot illustrates the distribution of m/z features into consensus structural classes based on assigned
molecular formulas in tea metabolomic data. Each bar represents the frequency of m/z features
classified under the respective structural class. Grey bars denote the proportional contributions to the
overall sample composition. Structural classes were derived using the ClassyFire database based on
a 66% consensus threshold.
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classification model. Where the eclipse shows the 95% confidence interval for each variety, estimated
using the multivariate normal distribution.
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Figure 3. Density distributions of interclass distances between samples of the Georgian tea plants,
taken from different gardens. Where interclass distance based on the sample proximity values from a
multinomial random classification model, supervised by garden.

3.3. Variability Within the Tocklai Tri-Clonal Variants

Before assessing the variability within the Tocklai tri-clonal variants, it was first
important to establish the relative difference across all the varieties sampled. Pairwise
comparisons of RF classification were performed between all the varieties to assess the
chemical relatedness between the tea varieties. Figure 4 shows a dendrogram of hierarchical
cluster analysis for the resulting RF margin values. All these pairwise comparisons returned
significant margin values (p < 0.05, 3000 permutations). This shows TV9 was more similar
the Georgian varieties than TV8 and TV11, with TV11 showing the greatest similarity
to TV1.

 
 
 
 

 
Figure 4. The similarity of tea varieties based on metabolomic fingerprinting. Where similarity based
on supervised random forest classification margin values of binary comparisons between each of the
tea varieties.

To quantify the intraclass variability within the Tocklai tri-clonal variants, all the
sampled varieties were compared together using a single multinomial RF classification
model. The MDS plot is shown in Figure 5 that is based on the sample proximity values from
the RF model. This model gave a weak but significant margin value of 0.0183 (p < 0.001,
3000 permutations). The area of the ellipses (95% confidence interval) provides an estimate
of the intraclass variability of the collected samples. These ellipses are of similar size across
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all the varieties, which suggests the observed intraclass variability in leaf composition is
similar between the varieties.
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Figure 5. Intraclass variability in tea metabolites across tea varieties. Multi-dimensional scaling
plot of field samples similarity (proximity) from a multinominal random forest classification model.
Where the eclipse shows the 95% confidence interval for each variety, estimated using the multivariate
normal distribution.

3.4. Metabolic Changes over the Day in One Variant

RF regression was used to identify m/z features related to sampling time point in
C. sinensis var. assamica. This yielded a very strong model with a significant R2 value of
0.617 (p < 0.01, 3000 permutations). There were 174 features (m/z) found to be explanatory
(% increase in mean squared error, p < 0.05, 3000 permutations). k-means clustering was
performed on the log2 abundance ratios of the explanatory features taken relative to the
first time point (9 a.m.). This grouped the explanatory features into five clusters of features
showing similar trends across the sampling time points. The clusters in Figure 6 show the
clustering of metabolites based on their temporal abundance patterns. Cluster 1, which
includes sucrose, showed a clear diurnal rhythm, indicating its association with daytime
photosynthetic activity. Clusters 3 and 5, which include amino acids and flavonoids, may
represent biosynthetic pathways that are less directly linked to diurnal cycles and more
influenced by other physiological processes.

Functional and structural enrichment analysis was performed on each of the clusters
to potentially derive both chemical classes and biological functions related to the cluster
trends. This identified significant metabolic pathways (Table 1). Structural enrichment
was performed with over-representation analysis using Fisher’s exact test (Table 2). Both
the structural subclass ‘Carbohydrates and carbohydrate conjugates’ and the metabolic
pathway ‘Starch and sucrose metabolism’ were found to be significant for cluster 1, where
the abundance of these features increase throughout daylight hours, peaking at 18:00 and
then began to decrease. Figure 7 highlights the diurnal variation in sucrose abundance in
Camellia sinensis var. assamica. The observed increase during daylight hours followed by a
decline at night suggests a link between sucrose metabolism and photosynthetic activity.
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This aligns with the identification of starch and sucrose metabolism as a key pathway
(Table 1, cluster 1). Sucrose was confirmed to Level 1 with standards using HILIC.
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Figure 6. Clusters of explanatory m/z feature trends across the sampling time points in Camellia
sinensis var. assamica using k-means clustering. Where the abundance radios were calculated using
the m/z feature median values relative to the 09:00 sampling time point. The clusters were identified
using k-means clustering. Cluster averages are shown in red.

Table 1. Functional enrichment analysis was performed on each of the clusters to potentially derive
both biochemical pathways and biological functions related to the cluster trends.

Cluster KEGG id KEGG Name p-Score

1 csin00020 Citrate cycle (TCA cycle) 0.0000

1 csin00040 Pentose and glucuronate interconversions 0.0000

1 csin00053 Ascorbate and aldarate metabolism 0.0000

1 csin00500 Starch and sucrose metabolism 0.0000

1 csin00600 Sphingolipid metabolism 0.0000

1 csin00603 Glycosphingolipid biosynthesis 0.0000

1 csin00660 C5-Branched dibasic acid metabolism 0.0000

1 csin00760 Nicotinate and nicotinamide metabolism 0.0000

1 csin02010 ABC transporters 0.0000

1 csin04016 MAPK signaling pathway 0.0000

3 csin00030 Pentose phosphate pathway 0.0472

3 csin00040 Pentose and glucuronate interconversions 0.0054

3 csin00240 Pyrimidine metabolism 0.0110

3 csin00250 Alanine, aspartate and glutamate metabolism 0.0000

3 csin00280 Valine, leucine and isoleucine degradation 0.0000

3 csin00330 Arginine and proline metabolism 0.0001

3 csin00410 beta-Alanine metabolism 0.0001

3 csin00470 D-Amino acid metabolism 0.0408

3 csin00511 Other glycan degradation 0.0394

3 csin00561 Glycerolipid metabolism 0.0000

3 csin00620 Pyruvate metabolism 0.0000

3 csin00670 One carbon pool by folate 0.0000

3 csin00740 Riboflavin metabolism 0.0000
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Table 1. Cont.

Cluster KEGG id KEGG Name p-Score

3 csin00970 Aminoacyl-tRNA biosynthesis 0.0000

3 csin01200 Carbon metabolism 0.0000

3 csin04148 Efferocytosis 0.0000

4 csin00941 Flavonoid biosynthesis 0.0000

4 csin00999 Biosynthesis of various plant secondary metab... 0.0001

5 csin00030 Pentose phosphate pathway 0.0000

5 csin00040 Pentose and glucuronate interconversions 0.0000

5 csin00053 Ascorbate and aldarate metabolism 0.0000

5 csin00250 Alanine, aspartate and glutamate metabolism 0.0000

5 csin00270 Cysteine and methionine metabolism 0.0000

5 csin00290 Valine, leucine and isoleucine biosynthesis 0.0000

5 csin00330 Arginine and proline metabolism 0.0042

5 csin00750 Vitamin B6 metabolism 0.0000

5 csin01230 Biosynthesis of amino acids 0.0019

5 csin04016 MAPK signaling pathway 0.0000

Table 2. Structural enrichment analysis was performed on each of the clusters to potentially derive
both chemical classes and biological functions related to the cluster trends.

Cluster Classification p-Value Adjusted p-Value

1 Organic compounds 0.000 0.002

1 Organic acids and derivatives 0.002 0.052

1 O-glycosyl compounds 0.003 0.056

1 Carbohydrates and carbohydrate conjugates 0.003 0.068

1 Keto acids and derivatives 0.003 0.072

1 Glycosyl compounds 0.004 0.078

1 Organooxygen compounds 0.010 0.224

1 Organic oxygen compounds 0.010 0.224

1 Tricarboxylic acids and derivatives 0.010 0.225

1 Medium-chain keto acids and derivatives 0.011 0.246

1 Pentoses 0.022 0.490

1 Gamma-keto acids and derivatives 0.022 0.490

1 Carboxylic acids and derivatives 0.025 0.554

1 Alpha amino acids 0.044 0.969

2 Cyclic alcohols and derivatives 0.005 0.126

2 Cyclitols and derivatives 0.005 0.126

2 Quinic acids and derivatives 0.005 0.126

2 Alcohols and polyols 0.005 0.126

2 Organic compounds 0.006 0.154

2 Organooxygen compounds 0.009 0.227

2 Organic oxygen compounds 0.009 0.227

2 Sphingolipids 0.011 0.286

2 Long-chain ceramides 0.011 0.286

2 Ceramides 0.011 0.286

2 Non-metal oxoanionic compounds 0.017 0.427

2 Inorganic compounds 0.017 0.427
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Table 2. Cont.

Cluster Classification p-Value Adjusted p-Value

2 Non-metal phosphates 0.017 0.427

2 Homogeneous non-metal compounds 0.017 0.427

2 Cinnamic acids and derivatives 0.040 0.986

2 Coumaric acids and derivatives 0.040 0.986

2 Hydroxycinnamic acids and derivatives 0.040 0.986

3 Hydroxy acids and derivatives 0.001 0.005

3 Organic acids and derivatives 0.006 0.057

3 Aspartic acid and derivatives 0.013 0.132

4 No database hits 0.001 0.009

5 Amino acids and derivatives 0.014 0.206

5 Alpha amino acids and derivatives 0.014 0.206

5 Amino acids, peptides, and analogues 0.014 0.206

5 Hydroxy fatty acids 0.019 0.280

5 Aspartic acid and derivatives 0.019 0.280

5 Alpha amino acids 0.025 0.372

5 Fatty Acyls 0.031 0.463

5 Fatty acids and conjugates 0.031 0.463

5 Carboxylic acids and derivatives 0.049 0.727

 
Figure 7. Temporal variation of sucrose abundance in Camellia sinensis var. assamica. Box plot
showing the relative abundance of sucrose [M-H]− across different time points in Camellia sinensis
var. assamica. Data were normalised and log2 transformed. The box represents the interquartile range
(IQR), with the median indicated by a horizontal line. Whiskers denote 1.5 times the IQR and dots
represent outliers.

4. Discussion and Conclusions
Studies have demonstrated the effectiveness of metabolomics in distinguishing tea

varieties and assessing quality markers [13–15]. Our study adds to this research and
provides a detailed exploration of the chemical diversity and variability in tea samples
from the Dartmoor Estate plantation in Devon, UK, highlighting the influence of cultivar,
geographical location, and temporal factors. The findings demonstrate that while no
significant differences were observed between Georgian garden locations, substantial
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chemical variability exists within tri-clonal Tocklai tea variants. Specifically, TV9 showed a
greater similarity to Georgian cultivars than TV8 and TV11, with TV11 most closely related
to TV01. These results underscore the role of genetic variation in influencing tea’s chemical
composition and the potential for tailoring cultivation strategies to optimise specific traits.
While statistical significance was achieved across most analyses, it is essential to interpret
these results in the context of effect sizes and model power. However, future studies
with larger sample sizes are warranted to confirm these findings and further enhance
model robustness.

Temporal analyses of Camellia sinensis var. assamica revealed dynamic metabolic
changes over the course of the day, particularly in starch and sucrose metabolism (cluster 1).
The abundance of related metabolites increased during daylight hours before declining at
night, demonstrating the importance of diurnal rhythms in influencing tea leaf composition.
This highlights the potential for targeted harvesting schedules to maximise desired chemi-
cal profiles. This temporal regulation may influence not only the chemical composition of
tea but also its flavour profile and quality. In another published study, High Performance
Liquid Chromatography showed sucrose concentrations in the third and fourth tea leaves
were significantly higher (p ≤ 0.05) than that of the bud, first, and second leaves. However,
there was no significant effect of time of plucking affecting sucrose, concentrations in fresh
leaves [29], unlike our results. On the other hand, it has been demonstrated the significant
impact of seasonal changes on tea metabolite profiles, highlighting the intricate relationship
between gene expression and metabolite biosynthesis [30]. Our observed chemical variabil-
ity aligns with studies from traditional tea-growing regions. Significant climatic impacts
on tea metabolite profiles in Assam have been reported [7], while seasonal changes were
found in the amino acid concentrations in tea [31]. The enrichment of flavonoids in cluster
4 suggests a potential link to stress responses or secondary metabolism, which may be less
directly tied to diurnal rhythms. These patterns align with known metabolic adaptations in
plants to optimise growth and defence under variable environmental conditions.

The application of non-targeted metabolomics, FIE-MS, uncovered subtle composi-
tional differences and identities of key metabolic pathways. By integrating metabolomics
with functional and structural enrichment analyses (machine learning), this research ad-
vances our understanding of the complex interplay of environmental, genetic, and temporal
factors in tea cultivation.

The review by [32] highlights the role of metabolomics in tea cultivation and pro-
cessing, emphasising its ability to provide comprehensive chemical profiles that inform
breeding strategies, cultivation practices, and processing methods. Our insights contribute
to this broader knowledge of tea science, emphasising the importance of precision in agri-
cultural and processing practices. They also offer valuable guidance for optimising tea
production, enhancing its sensory qualities and bioactive potential, and preserving its
cultural and economic significance in the global tea industry. While our study primarily
focused on the metabolomic profiling of fresh tea leaves, it is well-documented that drying,
fermentation, oxidation, and heat treatment significantly influence the chemical compo-
sition and sensory attributes of tea [33]. We have recently published insightful data on
the metabolic pathways influencing tea processing, underscoring the importance of these
variables in determining the final chemical profile and organoleptic characteristics of tea
products [34].

The preparation of tea leaves for analysis traditionally considers developmental phases,
from the collection of tender tips to fully mature leaves, which are known to influence
chemical profiles and tea quality. While our study focused on standardised sampling of
leaves across different cultivars and locations to minimise variability due to developmental
stages, future research could include a stratified approach to analyse tips, flushes, and
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mature leaves separately to better capture the dynamic metabolomic changes during leaf
development. Additionally, environmental factors such as soil composition, sunlight
exposure, and altitude, which were monitored in this study, could be explored to see their
impact on metabolomic profiles and tea quality.

A direct comparison of the metabolomic profiles of UK-grown tea with those from
traditional tea-growing regions such as Georgia, India, and China would provide valuable
insights into the influence of geography and cultivation practices on tea chemistry. Such
comparative studies could highlight similarities and differences in secondary metabo-
lite composition, contributing to an understanding of how environmental factors affect
tea quality.

This research contributes to the growing field of metabolomics by providing a com-
prehensive chemical profile of tea grown in a non-traditional region. The integration of
metabolomics with machine learning, specifically RF classification, enabled us to identify
significant chemical variability across cultivars and time points. These findings offer new
insights into the adaptability of tea plants and their potential for cultivation in emerging
regions, contributing to global food security and agricultural diversification. This approach
highlights the potential of machine learning tools in metabolomics for uncovering complex
patterns in high-dimensional data. The approach used in this paper is robust for generating
hypotheses and identifying broad trends; however, annotations based solely on molecular
formulas remain tentative until confirmed by standards.

While this study provides valuable insights, it has certain limitations. The sampling
was confined to a single growing season and location, limiting the ability to generalise find-
ings across multiple climates or years. Additionally, the metabolomic analysis was based
on fresh leaves and the effects of processing methods, such as drying and fermentation,
were not explored. Future research should include multi-seasonal sampling, comparisons
with traditional tea-growing regions, and analysis of processed tea to provide a more
comprehensive understanding of tea chemistry.

To ensure robust biomarker discovery in metabolomics, replication across different
harvest years and environmental conditions is critical. Variability in metabolomic profiles
can arise due to biological factors such as plant age and environmental factors like soil
composition, weather conditions, and harvest timing. High replication numbers, typically
ranging between 9 and 24 replicates, are often necessary to increase confidence in observed
trends while accounting for such variability. However, increasing replication beyond this
range may inadvertently decrease the standard error to levels that favour outcomes arising
by chance, thus underscoring the importance of balancing replication with experimental
design rigor.

In this study, the replication numbers vary significantly, ranging from 3 at certain time
points to 48 for specific varieties (e.g., Georgian). This variability reflects the exploratory
nature of the research, which aimed to generate hypotheses regarding the chemical diversity
of tea grown in a non-traditional region. While such variability is inherent to early-stage
studies, it introduces potential biases that should be addressed in future investigations.
For instance, future experiments could include replication across multiple harvest years
under consistent conditions to verify that the observed patterns are not due to temporal or
environmental chance events.

These considerations align with our objective to refine this metabolomics approach for
hypothesis generation rather than clinical or diagnostic applications [35,36]. To address
these potential biases and enhance robustness, future studies should prioritize controlled
experimental designs with balanced replication and incorporate additional environmental
and biological parameters to validate the findings presented here.
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Future studies should aim to further investigate the relationship between chemical
composition and sensory attributes, as well as the role of microbial and environmental
interactions in influencing tea quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo15010052/s1, Figure S1. Randomised sampling map was
computer-generated before the investigation to account for batches, location (garden/plot), and time
taken. Figure S2. Pre-treatment parameters.
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