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Abstract: Several metabolomic software programs provide methods for peak picking, 

retention time alignment and quantification of metabolite features in LC/MS-based 

metabolomics. Statistical analysis, however, is needed in order to discover those features 

significantly altered between samples. By comparing the retention time and MS/MS data of 

a model compound to that from the altered feature of interest in the research sample, 

metabolites can be then unequivocally identified. This paper reports on a comprehensive 

overview of a workflow for statistical analysis to rank relevant metabolite features that will 

be selected for further MS/MS experiments. We focus on univariate data analysis applied in 

parallel on all detected features. Characteristics and challenges of this analysis are discussed 

and illustrated using four different real LC/MS untargeted metabolomic datasets. We 

demonstrate the influence of considering or violating mathematical assumptions on which 

univariate statistical test rely, using high-dimensional LC/MS datasets. Issues in data 

analysis such as determination of sample size, analytical variation, assumption of normality 
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and homocedasticity, or correction for multiple testing are discussed and illustrated in the 

context of our four untargeted LC/MS working examples.  

Keywords: univariate; metabolomics; mass spectrometry

 

1. Introduction 

The comprehensive detection and quantification of metabolites in biological systems, coined as 

‘metabolomics’, offers a new approach to interrogate mechanistic biochemistry related to natural 

processes such as health and disease. Recent developments in mass spectrometry (MS) and nuclear 

magnetic resonance (NMR) have been crucial to facilitate the global analysis of metabolites. The 

examination of metabolites, however, commonly follows two strategies: (i) targeted metabolomics, 

driven by a specific biochemical question or hypothesis in which a set of metabolites related to one or 

more pathways are defined, or (ii) untargeted metabolomics: driven by an unbiased approach (i.e., non-

hypothesis) in which as many metabolites as possible are measured and compared between samples 

[1]. The latter is comprehensive in scope and outputs complex data sets, particularly by using LC/MS-

based methods. Thousands of so called metabolite features (i.e., peaks corresponding to individual ions 

with a unique mass-to-charge ratio and a unique retention time or mzRT features from now on) can be 

routinely detected in biological samples. In addition, each mzRT feature in the dataset is associated 

with an intensity value (or area under the peak), which indicates its relative abundance in the sample. 

Overall, this complexity imposes the implementation of metabolomic softwares such as XCMS [2], 

MZmine [3] or Metalign [4] that can provide automatic methods for peak picking, retention time 

alignment to correct experimental drifts in instrumentation, and relative quantification. As a result, the 

identification of mzRT features that are differentially altered between sample groups has become a 

relatively automated process. However, the identification and quantization of a “metabolite feature” 

does not necessary translate into a metabolite entity. LC/MS metabolomic data presents high 

redundancy because of the recurrent detection of adducts (Na+, K+, NH3, etc), isotopes, or doubly 

charged ions that greatly inflate the number of detected peaks. Several recently launched open-source 

algorithms such as CAMERA [5] or AStream [6], and commercially available software such as Mass 

Hunter (Agilent Technologies) or Sieve (Thermo Scientific), are capable of filtering redundancy by 

annotating isotopes and adduct peaks, and the resulting accurate compound mass (i.e., molecular ion) 

can be searched in metabolite databases such as METLIN, HMDB or KEGG. Database matching 

represents only a putative metabolite assignment that must be confirmed by comparing the retention 

time and/or MS/MS data of a model pure compound to that from the feature of interest in the research 

sample. These additional analyses are time consuming and represent the rate-limiting step of the 

untargeted metabolomic workflow. Consequently, it is essential to prioritize the list of mzRT features 

from the raw data that will be subsequently identified by RT and/or MS/MS comparison. Relevant 

mzRT features for MS/MS identification are typically selected based on statistics criteria, either by 

multivariate data analysis or multiple independent univariate tests.  

The intrinsic nature of biological processes and LC/MS-derived datasets is undoubtedly multivariate 

since it involves observation and analysis of more than one variable at a time. Consequently, the 
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majority of metabolomics studies make use of multivariate models to report their main findings. 

Despite the conferred utility, powerfulness and versatility of multivariate models, their performance 

might be fraught by the high-dimensionality of such datasets due to the so-called ‘curse of 

dimensionality’ problem. Curse of dimensionality arises when datasets contain too much sparse data in 

terms of the number of input variables. This causes, in a given sample size, a maximum number of 

variables above which the performance of our multivariate model will degrade rather than improve. 

Hence, attempting to make the model conform too closely to this data (i.e., considering too many 

variables in our multivariate model) can introduce substantial errors and reduce its predictive power 

(i.e., overfitting). Therefore, using multivariate models require intensive validation work. Overall, 

multivariate data analysis is far from the scope of this paper and excellent reviews on multivariate 

tools for metabolomics can be found elsewhere [7,8]. On the other hand, data analysis can also be 

approached from a univariate perspective using traditional statistical methods that consider only one 

variable at a time [9]. The implementation of multivariate and univariate data analysis is not mutually 

exclusive and in fact, we strongly recommend their combined use to maximize the extraction of 

relevant information from metabolomic datasets [10,11]. Univariate methods are sometimes used in 

combination with multivariate models as a filter to retain those potentially “information-rich” mzRT 

features [12]. Then, the number of mzRT features considered in the multivariate model is significantly 

reduced down to those showing statistical significance in previous univariate tests (e.g., p-value < 

0.05). On the other hand, there are multiple reported metabolomics works using univariate tests applied 

in parallel across all the detected mzRT features to report their main findings. It should be note that 

this approach overlooks correlations within mzRT features and therefore information about correlated 

trends is not retained. In addition, applying multiple univariate tests in parallel to multivariate datasets 

involves the acceptance of mathematical pre-requisites and certain consequences such as the particular 

distributions of variables (e.g., normality) and increased risk of false positive results, respectively. 

Many researchers often ignore these issues when analyzing untargeted metabolomic datasets using 

univariate methods, which eventually can compromise their results.  

This paper aims to investigate the impact of univariate statistical issues on LC/MS-based 

metabolomic experiments, particularly in small, focused studies (e.g., small clinical trials or animal 

studies). To this end, here we explore the nature of four real and independent datasets, evaluate the 

challenges and limitations of executing multiple univariate tests and illustrate available shortcuts. Note 

that we do not aim at writing a conventional statistical paper. Instead, our goal is to offer a practical 

guide with resources to overcome the challenges of multiple univariate analysis for untargeted 

metabolomic data. All methods described in this paper are based on scripts programmed either in 

MATLAB™ (Mathworks, Natick, MA) or R [13]. 

2. Properties of LC-MS Untargeted Datasets: High-Dimensional and Multicolinear  

Basic information about the four real untargeted metabolomics LC-MS-based working examples is 

summarized in Table 1. These examples do not resemble ideal datasets described in basic statistical 

textbooks, and illustrates the challenges of real-life metabolomic experiments. Working examples 

constitute retinas, serum and neuronal cell cultures under different experimental conditions (e.g., KO 

vs. WT; normoxia vs. hypoxia; treated vs. untreated) analyzed by LC-qTOF MS. Data were processed 
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using the XCMS software to detect and align features, and thousands of features were generated from 

these biological samples. Each mzRT feature corresponds to a detected ion with a unique mass-to-

charge ratio, retention time and raw intensity (or area). For example, each sample in example #3 exists 

in a space defined by 9877 variables or mzRT features. The four examples illustrate the high-

dimensionality of untargeted LC-MS datasets in which the number of features or variables largely 

exceeds the number of samples. The rather limited number of individuals or samples per group is a 

common trait of metabolomic studies devoted to understand cellular metabolism [14-16]. When 

working with animal models of disease, for instance, this limitation is typically imposed by ethical and 

economical restrictions. 

Table 1. Summary of working examples obtained from LC-MS untargeted metabolomic 

experiments. Further experimental details and methods can be obtained from references. 

(KO=Knock-Out; WT=Wild-Type). 

 Biofluid/Tissue Sample groups 
# samples 

/group 

# XCMS 

variables 
System Reference 

Example #1 Retina 
KO 11 

4581 LC/ESI-QTOF [17] 
WT 11 

Example #2 Retina 
Hypoxia 12 

8146 LC/ESI-QTOF [16] 
Normoxia 13 

Example #3 Serum 
Untreated  12 

9877 LC/ESI-TOF [18] 
Treated 12 

Example #4 
Neuronal cell 

cultures 

KO  15 
8221 LC/ESI-QTOF 

unpublished 

data WT 11 

 

Additionally, a second attribute of untargeted LC-MS metabolomic datasets is that they enclose 

multiple correlations among mzRT features (i.e., multicollinearity) [19]. Each metabolite produces 

more than one mzRT feature that result from isotopic distributions, potential adducts, and in-source 

fragmentation. Moreover, the evident biochemical interrelation among metabolites may also contribute 

to the multicollinearity. Namely, many metabolites participate in inter-connected enzymatic reactions 

and pathways (e.g., substrate and product; cofactors) and regulate enzymatic reactions (e.g., feed-back 

inhibition). Altogether, untargeted LC-MS metabolomics datasets are highly-dimensional and 

multicorrelated.  

3. Sample Size Calculation in LC-MS Untargeted Metabolomics Studies 

The number of subjects per group (i.e., sample size) is an important aspect to be determined during 

the experimental design of the study. A low sample size may lead to a lack of precision, which may 

fail to provide reliable clues about the biological question under investigation. In contrast, an 

unnecessarily high sample size may lead to a waste of resources for minimal information gain. Thus it 

is not surprising that funding agencies require power/sample size calculations in their grant proposals. 

However, choosing the appropriate sample size for high-throughput approaches involving multivariate 
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data is complicated. According to Hendriks et al. [8], there is currently nothing available for a priori 

sample size estimation of highly collinear multivariate data.  

Traditional univariate sample size determination is based in the concept of power analysis. Power, 

or the sensitivity of the test, is defined as 1-β, being β the chance of a false negative or Type II error in 

hypothesis testing. A Type II error is produced when a variable is claimed to not be significant when in 

fact it is. Therefore, power can be defined as the probability of a statistical test to allow detection of 

significant differences above a certain confidence. Classical power analysis to determine minimum 

sample size for a given variable (i.e., metabolite) requires the estimation of population means and 

standard deviations and effect sizes. However, for high-dimensional data such estimates need to be 

redefined. Average power is used instead of power, significance level needs to take multiple testing 

into account and both effect sizes and variances take multiple values. Ferreira et al. [20,21] extended 

the concept of power analysis to high-dimensional data using univariate approaches in combination 

with multiple testing corrections. They used the entire set of test statistics from microarray pilot data to 

estimate the effect size distribution, power and minimal sample size. This method have been recently 

generalized and adapted by van Iterson et al. [22] as a part of  the BioConductor package SSPA. Recall 

that using this method, data is treated as a set of multiple univariate responses and correlations between 

variables are ignored. On the other hand, this method was designed to guide experimental design 

decisions based on previously acquired pilot data. However, how realistic is to perform a pilot 

untargeted metabolomics study to determine minimum sample size? In practice, ethical and 

economical restrictions mainly determine the number of samples (i.e., animals) for each group.  

Although we recognize the limitations and controversy of post-hoc power analysis, for illustrative 

purposes we used SSPA to estimate effect sizes and perform power calculations of our untargeted 

metabolomics data. Figure 1A show a comparison of example #2 and example #4 estimated power 

values considering up to 30 samples per group. Considering example #2, a 70% power to detect 

hypoxia-induced metabolic differences was obtained with 10 retinas per groups. This power was 

associated with a markedly bimodal density of effects sizes (Figure 1B) indicating significant hypoxia-

induced metabolic variation. The density of effects sizes describes the effects observed in the data. 

Usually, a bimodal density is observed when the studied effect induces significant differences. In 

contrast, even considering up to 30 samples per group we end-up with low power to detect KO-

induced differences in example#4 (Figure 1C). This indicates that KO-induced effects are scarcely 

reflected in our metabolomics data as represented by its unimodal densities of effects sizes 

Accordingly, we would estimate a minimum of ten samples per group (n = 10) as the easiest way to 

boost the statistical power of univariate statistical tests when true metabolic differences exist between 

two groups (e.g., example #2 comparing normoxia vs. hypoxia). This post-hoc calculation of the 

statistical power and sample size could be taken as a rough estimation for follow-up validation studies 

using triple quadrupole (QqQ) instrumentation. 
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Figure 1. (A) Power curves for example #2 () and example #4 (�) with sample size on 

the x-axis and estimated power using 5% FDR on the y-axis. Estimated densities of effect 

sizes for example #4 (B) and example #2 (C) with the standardized effect size on x-axis 

and estimated densities on the y-axis. Bimodal densities as in example #2 reflect more 

pronounced effects.  

 

4. Handling Analytical Variation 

The first issue that must be resolved before considering any univariate statistical test on LC/MS 

untargeted metabolomic data is analytical variation. Most common sources of analytical variation in 

LC-MS experiments are due to sample preparation, instrumental drifts caused by chromatographic 

columns and MS detectors, and errors caused in data processing [23].  

The ideal method to examine analytical variation is to analyze quality control (QC) samples, which 

will provide robust quality assurance of each detected mzRT feature [24]. To this end, QC samples 

should be prepared by pooling aliquots of each individual sample and analyze them periodically 

throughout the sample work list. The performance of the analytical platform for each detected mzRT 

feature in real samples can be assessed by calculating the relative standard deviation of these features 

on pooled samples (CVQC) according to formula Equation (1), where S and X are respectively the 

standard deviation and the mean of each individual feature detected across the QC samples: 

100
X

S
(%)CV

_QC       (1) 
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Likewise, the relative standard deviation of these features on study samples (CVT) can be defined 

according to formula Equation (2), where S and X are the standard deviation and mean respectively 

calculated for each mzRT feature across all study samples in the dataset. 

100
X

S
(%)CV

_T       (2) 

The variation of QC samples around their mean (CVQC) is expected to be low since they are 

replicates of the same pooled samples. Therefore Dunn et al. [24] have established a quality criteria by 

which any peak that presents a CVQC > 20% is removed from the dataset and thus ignored in 

subsequent univariate data analyses. Red and green spots in Figure 2 illustrate the CVT and CVQC 

frequencies distributions respectively for example #3 in which QC samples were measured. As 

expected, the highest percentage of mzRT features detected across QC samples present the lowest 

variation in terms of CVQC (green line). Conversely, the highest percentage of the mzRT features 

detected across the study samples holds the highest variation in terms of CVT (red line). Notice that the 

intersection of red and green lines is produced around the threshold proposed by Dunn et al. [24]. 

Additionally, other studies performed on cerebrospinal fluid, serum or liver QC extracts also reported 

around 20% of CV on experimental replicates [25,26]. 

On the other hand, it is common that the nature of some biological samples and their limited 

availability complicates the analysis of QC samples. This was the case of mouse retinas in examples #1 

and #2. Under these circumstances, there are not consensus standard criteria on how to handle 

analytical variation. We partially circumvent this issue using the following argument: Provided that the 

total variation of a metabolite feature (CVT) can be expressed as a sum of biological variation (CVB ) 

and analytical variation (CVA) according to Equation (3), computed CVT should be at minimum larger 

than 20% (the most accepted analytical variation threshold) for a metabolite feature to comprise 

biological variation. 
  CVCVCV 2

B
2
A

2
T        (3) 

Therefore, when QC samples are not available we propose as rule of thumb to discard those features 

showing CVT < 20% since biological variation is bellow analytical variation threshold. Figure 2 shows 

the frequency distribution of CVT for working examples #1,2 and #4 where QC samples were not 

available. According to our criteria, those mzRT features to the left of the threshold will hold more 

analytical than biological variation and should be conveniently removed from further statistical 

analysis. This surely results in a too broad criterion since it assumes that the analytical variation of all 

metabolites is similar, which is of course not accurate given that instrumental drifts do not affect all 

metabolites evenly. It should be beard in mind, however, that tightly regulated metabolites presenting 

low variation such as glucose will likely be missed according to a 20% CVT cut-off criterion. Of 

mention, example #2 and example #4 show the higher and lower percentage of mzRT features with 

more than 50% CVT respectively. Therefore, there is more intrinsic variation in example #2 than in 

example#4. Whether such variation relates to the phenomena under study remain to be ascertained 

using hypothesis testing.  
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Figure 2. Comparison for our four working examples of the mzRT relative standard 

deviation (CV) frequency distributions calculated either across all the samples (CVT) or 

across QC samples (CVQC). Grey spots represent CVT for examples #1(), #2 () and #4 

(�) respectively. Green and red circles represent CVQC and CVT respectively for example 

#3. Blue line represents 20% CVT cut-off threshold established when QC samples are not 

available. 

 

5. Hypothesis Testing 

Untargeted metabolomics studies focused in this paper are aimed at the discovery of those 

metabolites that are varied between two populations (i.e., KO vs WT in examples #1 and 4 or treated vs 

untreated in example #3). In this sort of studies, random sample data from the populations to be 

compared are obtained in form of mzRT features dataset. Then, we calculate a statistic value (usually 

mean or median) and use statistical inference to determine whether the observed differences in the 

median or mean of the two populations are due to the phenomena under study or to randomness. 

Statistical inference is the process of drawing statements or conclusions about a populations based on 

sample data in a way that the risk of error of such conclusions is specified. These conclusions are 

based on probabilities arisen from evidences given by sample data [27].  

To characterize those varied mzRT features, data sets are usually specified via hypothesis testing. 

Conventionally, we first postulate a null difference between the means/median of metabolic features 

detected in the populations under study by setting a null hypothesis (H0). Then, we specify the 

probability threshold for this null hypothesis to be rejected when in fact it is true. This threshold of 

probability called  is frequently set-up at 5% and it can be though as the probability of a false positive 

result or Type I error. Then, we use hypothesis testing to calculate the probability (p-value) of null 
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hypothesis rejection. Whenever this p-value is bellow to this pre-defined threshold of probability (), 

we reject the null hypothesis. On the other hand, when calculated p-values are larger than  we do not 

have enough evidence to reject this hypothesis and we fail to reject it. Note that null hypothesis can 

never be proven, instead null hypothesis is either rejected or failed to reject. Conceptually, the failure 

to reject the null hypothesis (failure to find difference between the means) does not directly translate in 

to accept or prove it (showing that there is no difference in reality).  

A wide variety of univariate statistical tests to compare mean or medians are available. For a non-

statistician it can be daunting to figure out which one is most appropriate to implement with an 

untargeted metabolomic design and dataset. Helpful guidelines in basic statistics books can be 

consulted [27,28]. As summarized in Table 2, two important considerations should be taken in to 

account when deciding for a particular test. First one is the experimental design and second one  

data distribution.  

Table 2. Best suited statistical tests for datasets following normal distribution or far from 

the normal curve according to their experimental design. 

Experimental design 
Normal distribution Far from normal-curve 

Compare Means Compare Medians 

Compare two unpaired groups Unpaired t-test Mann-Whitney  

Compare two paired groups Paired t-test Wilcoxon signed-rank  

Compare more than two unmatched groups 
One-way ANOVA with 

multiple comparison 
Kruskal-Wallis  

Compare more than two matched groups Repeated-measures ANOVA Friedman  

Experimental design will depend on experimental conditions considered when the metabolomics 

study is designed. Once the experimental design is fixed, population distribution determines the type of 

the test. Depending on this distribution, there are essentially two families of tests: parametric and non-

parametric. Parametric tests are based on the assumption that data are sampled from a Gaussian or 

normal distribution. Tests that do not make assumptions about the population distribution are referred 

as to non-parametric tests. Selection of parametric or non-parametric tests is not as clear-cut as might 

be a priori though. Next section deals with the calculations necessary to guide such decision and 

exemplifies these calculations with our four working examples.  

6. Deciding between Parametric or Non-Parametric Tests 

6.1. Normality, Homogeneity of Variances and Independence Assumptions 

Deciding between parametric and non-parametric tests should be based on three assumptions that 

should be checked: normality, homogeneity of variances (i.e., homocedasticity) and independence. 

Nevertheless, some of these assumptions rely on very theoretical mathematical constructs hardly ever 

met by real-life datasets obtained from metabolomics experiments.  

Normality is assumed in parametric statistical tests such as t-test or ANOVA. Normal distributed 

populations are those presenting classical bell-shape curves to illustrate their probability density 

function. The frequency distribution of a normal population is a symmetric histogram with most of the 
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frequency counts bunched in the middle and equally likely positive and negative deviations from this 

central value. The frequencies of these deviations fall off quickly as we move further away from this 

central point corresponding to the mean. Data sampled from normal populations can be fully 

characterized by just two parameters: the mean () and the standard deviation (σ). Normality 

assumption can be evaluated either statistically or graphically. We propose two tests to statistically 

evaluate normality: Shapiro-Wilk and Kolmogorov-Smirnov, the former better behaved in the case of 

small samples sizes (i.e., N < 50) [27]. It is worth recalling that the term normal just applies to the 

entire population and not to the sample data. Hence, none of these tests would answer whether our 

dataset is normal or not. Their derived p-values must be interpreted as the probability of the data to be 

sampled from a normal distribution. On the other hand, testing normality is a matter of paradox: for 

small samples sizes normality tests lack from power to detect non-normal distributions and as sample 

size increases normality becomes less troublesome thanks to the Central Limit Theorem. Since 

parametric tests are robust again mild violations of normality (and equality of variances as well), the 

practice of preliminary testing these two assumptions has been regarded as setting out in a rowing boat 

in order to test whether it is safe to launch an ocean liner [29]. Additionally, normality tests can be 

complemented with descriptive statistics such as Skewness and Kurtosis. On the other hand, graphical 

methods such as histograms, probability plots or Q-Q plots might result also helpful as tools to 

evaluate normality. Their use, however, is rather limited at exploratory stage of LC-MS untargeted 

metabolomic data since it is unfeasible to examine each one of these plots for each mzRT  

feature detected.  

Another of the assumptions of a parametric test is that the within-group variances of the groups are 

all the same (exhibit homoscedasticity or homogeneity of variances). If the variances are different from 

each other (exhibit heteroscedasticity), the probability of obtaining a "significant" result even though 

the null hypothesis is true may be greater than the desired alpha level. There are both graphical and 

statistical methods for evaluating homoscedasticity. The graphical method is the so-called boxplot but 

again, its use is rather limited because the impossibility to evaluate each one of them separately. The 

statistical methods are Levene’s and Bartlett tests, the former the less sensitive to departures from 

normality. In both cases, the null hypothesis states that the group variances are equal. Resulting  

p-value < 0.05 indicate that the obtained differences in sample variances are unlikely to have occurred 

based on random sampling. Thus, the null hypothesis of equal variances is rejected and it is concluded 

that there is a difference between the population variances. 

The third assumption refers to independence. Two events are independent when the occurrence of 

one event makes it neither more nor less probable that the other occurs. In our metabolomic context, 

the knowledge of the value of one sample entering the study provides no clue about the value of 

another sample to be drawn. 

6.2. Parametric and Non-Parametric Tests. Does It Really Matters in LC-MS Untargeted 

Metabolomics Data? 

Overall, the strength of violation of the three assumptions will determine the application of a 

parametric or non-parametric test. It should be noted that parametric tests are more powerful than  

non-parametric tests, i.e., the use of a non-parametric test might miss a statistically significant 
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difference that a parametric test would find. However, when dealing with non-normal populations, 

unequal variances, and unequal small sample sizes, a non-parametric test would perform better. This is 

the worst-case scenario for a parametric test to be non-robust. Although we recognize main weakness 

of normality testing, by way of example we have calculated the percentage of features that meet 

normality and homocedasticity assumptions in our four working examples (Table 3)  

Table 3. mzRT features percentages in which normality, homocedasticity or both 

assumptions are met. H0 (Shapiro-Wilk’s test)= Data are sampled from a Gaussian 

distribution. H0 (Levene’s test)=Variances are equal. Percentages represent those features 

in which there were not enough evidences to reject H0 at conventional =0.05 relative to 

the total number of features retained after handling analytical variation. 

  # mzRT  Groups 

Normality 

(Shapiro-Wilk's test)  

Homocedasticity 

(Levene’s test) 

Normality & 

Homocedasticity

Example #1 

(Retinas) 
3252 

KO  66% 
93% 

60% 

WT 60% 54% 

Example #2 

(Retinas) 
7654 

Normoxia 65% 
77% 

48% 

Hypoxia 79% 60% 

Example #3 

(Serum) 
6131 

Untreated  85% 
90% 

76% 

Treated 88% 78% 

Example #4 

(Neuronal cells) 
6831 

KO 72% 
91% 

64% 

WT 82% 73% 

 

According to Table 3 and considering the four examples on average, 65% of detected features meet 

normality and equality of variances assumptions. Therefore the use of a parametric test would be 

acceptable in 65% of the cases. Using a parametric test on the entire dataset would result in lack of 

robustness and consequent inaccurate p-values for the remaining 35% of features that do not meet 

parametric test assumptions. Alternatively, considering the use of a non-parametric would turn in loss 

of statistical power for those 65% of features. Alternatively we would transform those non-normally 

distributed data to normal or near to normal, for example taking logarithms when data come from a 

lognormal distribution. Nevertheless, data transformation should be handled carefully since it might 

hamper the interpretation of the results.  

To evaluate the consequences of using parametric or non-parametric tests in our datasets, we 

performed both types of tests and compare their outcomes. The Venn diagrams in Figure 3 show the 

percentage of features resulting in significantly different means/medians using parametric and  

non-parametric tests for the four working examples. Both tests share most of the significantly varying 

features and just a minor percentage of the total were specifically detected using either parametric or 

non-parametric tests. In general terms, analysis on the four working examples show a residual 

discrepancy between parametric or non-parametric test in terms of their outlined significant features. 

Although from these results we can not extrapolate a general methodology to choose between 

parametric and non-parametric tests, we recommend testing normality and equality of variances 
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assumptions prior hypothesis testing to gain deeper insights in population distributions. Then, 

performing both parametric and non-parametric tests and to compare their outcomes prevailing 

parametric test outcomes for further calculations. Notice that if parametric and non-parametric tests 

result in high discrepancy we should check for outliers in our dataset. 

Figure 3. Venn-Diagrams of the mzRT features showing statistical significance using 

either parametric or non-parametric tests. Venn-Diagrams’ areas are proportional to the 

percentage of the significantly varied features out of the number of total features retained 

after handling analytical variation (indicated in parenthesis) .The Mann-Whitney test 

(examples #1, 2 and 4) or Wilcoxon signed rank (example #3) tests were used for  

non-parametric groups median comparisons. Unpaired (examples #1, 2 and 4) or paired 

(example #3) t-tests were used for parametric groups mean comparisons.  

 

7. Using Multiple Related Tests that Cumulate the p-Value: The Multiple Testing Problem and 

the False Discovery Rate 

7.1. The Multiple Testing Problem 

In untargeted LC-MS-based metabolomics studies, the number of univariate-paralleled test equates 

to the number of mzRT features detected. As showed in our working examples, this number usually 

ranges in the thousands (it largely depends on experimental conditions). As the number of hypotheses 

tests increases, so as too does the probability of wrongly rejecting a null hypothesis because of random 

chance and therefore a substantial number of false positives (Type I error) might occur. This 

accumulation of false positives is termed the multiple testing problem and is a general property of a 

confidence-based statistical test when applied across multiple features. From a metabolomics research 

standpoint, Type I errors are particularly undesirable. A substantial amount of work and resources 

based on MS/MS confirmation experiment can be stimulated in favor of a false finding. In the worst 
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case, a follow-up validation study on a false positive finding would not replicate the original work with 

consequent waste of resources and time. In such situations the chance for false positive rates must be 

carefully handed. Otherwise false findings may seriously affect the outcome of this type of studies 

[30]. Therefore, retrieved p-values from multiple tests performed in parallel across the detected mzRT 

features should be corrected. This is to re-calculate those probabilities obtained from a statistical test 

which is repeated multiple times. We are going to discuss two possible ways of handling multiple 

testing problem: the Bonferroni and the FDR (False discovery Rate) corrections. 

7.2. Bonferroni Correction 

The family wise error (FWER) is defined as the probability of yielding one or more false positives 

out of all hypotheses tested. This error remains the most accepted parameter for ascribing significance 

levels to statistical test [31,32]. In multiple testing, if k independent comparison are performed FWER 

is increased at the rate of 1-(1-)k; where k is the number of hypothesis tests performed and  is the 

pre-defined threshold of probability in each individual test. Therefore, to maintain a prescribed FWER 

(i.e. 0.05) in an analysis involving multiple tests, the  assumed in each independent test must be more 

stringent than FWER. Bonferroni correction is the standard approach to control FWER by specifying 

what  values should be considered in each individual test using the Equation 4: 

 = FWER/k      (4) 

Considering our working example #1, 3252 mzRT features were retained after handling analytical 

variation. According to Bonferroni correction we should set a corrected =0.05/3252=1.05410-5 for 

each individual test to accept an overall FWER of 0.05. Hence, in each individual test, only those 

features with p-values  1.54  10-5 would be declared to be statistically significant. Assuming this 

correction, the probability of yielding one or more false positives out of all 3252 hypotheses tested 

would be FWER = 1-(1-1.54  10-5)3252 = 0.0488. Notice that this probability is much lower than the 

one obtained if no correction was applied: FWER = 1-(1-0.05)4581 ≈ 1. Bonferroni correction represents 

a substantial increase of the stringency of our testing leading to just 75 metabolite features out of the 

initially 3252 prescribing a FWER = 0.05. 

Bonferroni correction keep a strict control on making one or more Type I error (false positive) at 

expenses of Type II errors (false negative). However, false negative findings might cause to overlook 

metabolites of potential interest and they also affect the outcomes of an untargeted metabolomics 

study. Other approaches to multiple testing correction such as the FDR (False Discovery Rate) claims 

for a striking balance between the concern about making too many false discoveries and the concern 

about missing the discovery of a real difference [33]. Next section deals on FDR correction and its 

interpretation. 

7.3. The FDR Multiple Testing Correction 

The FDR compute the number of false positives out of the significantly varied metabolic features, 

i.e., the rate of significant features being false. This is different from the Bonferroni correction which 

focuses on the control on all falsely rejected hypotheses. In other fields such as microarray data 

experiments, the Bonferroni correction has been found to be too conservative and its use has led to 
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many missed features of interest [33]. It has been argued that controlling the rate of allowed false 

findings using FDR do not represent a serious problem in the context of an exploratory research when 

further confirmatory studies are undertaken [31-33]. In addition, it has been demonstrated that 

controlling the FDR at the screening stage of the research carries a benefit for the next research stages 

[34]. Nevertheless, some authors in the field of metabolomics advocate that although being the most 

conservative, a Bonferroni analysis is both conceptually easier to understand and numerically easier to 

implement [35].  

FDR correction calculates a p-corrected value or q-value for each tested metabolic feature. This q-

value is a function of the p-values and the distribution of the entire set of p-values from the family of 

tests being considered [31]. For each feature, its associated q-value can be though as the expected 

proportion of false positives considered when such feature is declared to be significantly varied. 

Hence, a metabolic feature having a q-value of 0.05 implies that 5% of metabolic features showing p-

values as small as such feature are false positives. A useful consideration is that a p-value of 0.05 

implies that 5% of all tests will result in false positives and a q-value of 0.05 means that 5% out of the 

significant tests will result in false positives.  

A useful plot to evaluate the proportions of false positives is a frequency histogram illustrating the 

distribution of p-values obtained from paralleled tests across all mzRT features in a dataset. Figure 4 

illustrates such histograms for examples #1, #2 and #4. Those mzRT features with significant changes 

in their relative abundance will show small p-values and therefore the histogram will be skewed 

towards 0 (examples #1 and 2). On the contrary, metabolic features showing no change in their relative 

abundances will show a uniform random flatten frequency distribution (example #4). The green bar 

represents those metabolic features declared to be significant in the t-test binary group comparison for 

each example (p < 0.05). The actual FDR calculated proportion of such features resulting in false 

positives correspond to the red bar (q-values > 0.05).  

According to Figure 4, t-test comparison of KO and WT groups in example#1 lead to 708 

significantly changed metabolic features out of 3252. By setting our  threshold to 5% we accepted 

163 features to be false positives. This represents 23% out of the 708 features significantly varied. 

Notice that after FDR correction we obtained 453 mzRT features with q-values bellow 5% of false 

positives acceptance threshold. This means that 5% out of this 453 mzRT features (i.e., 23) are 

expected to be false positives. An acceptance of 5% chance of false positives results in a better 

situation than the one derived if no correction was applied (meaning 23% chance of false positives). 

Recall that in this same example, Bonferroni correction lead to consider just 75 features with an 

adjusted threshold p-value< 1.5410-5. Bonferroni provides the strongest control of the false positives 

and therefore a high confidence in the selected metabolic features. However, an important advantage of 

FDR approach is that it allows the researcher to select the error rate that they would assume in their 

subsequent studies. On the other hand, Figure 4 show that a t-test comparison of WT and KO groups 

on example#4 outlined 328 features all of them resulting in false positives after FDR correction. This 

indicates that all this significant outcomes derived from chance and no real effect was underlying on 

this example. Accordingly if no correction for multiple testing were considered we would have done 

subsequent MS/MS identification experiments on features that represent false positives. This would 

have been a pointless task with consequent waste of time and resources. To avoid situations like this, 

we would recommend correcting for multiple testing when dealing with multiple univariate analysis of 
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untargeted LC-MS datasets. Then, focus on those metabolites with lower FDR derived q-values for 

further MS/MS identification experiments. In addition, we would like to comment that whenever a 

follow-up targeted validation study was going to be attempted, we would recommend considering 

those metabolites showing statistical significance after strict Bonferroni correction. 

Figure 4. Frequency histogram showing the distribution of p-values typically expected 

from t-tests binary groups’ comparison in examples #1, 2 and 4. Green bar represent the 

total number of features declared to be significant assuming 5% false positives in a t-test 

comparison of the two groups. Red bar represent the FDR- estimated number of features 

being considered false positives out of the features declared significant in the t-test. The 

number of total significant features retained after FDR correction (q < 0.05) is  

also indicated.  

 

8. The Fold Change Criteria 

A common practice to identify mzRT features of relevance within a dataset is to rank these features 

according their fold change (FC). FC can be though as the magnitude of difference between the two 

populations under study. For each mzRT feature, a FC value is computed according to equation 5 in 

which X represents the average raw intensities across “case” group and Y represents the average raw 

intensities across “control” group. Whenever the raw intensities of the “control” group are larger than 

in the “case” group, this ratio should be inverted and sign should be conveniently changed to indicate a 

decrease of the case group relative to the control. Of mention, in paired-data designs, fold change 

should be calculated as the average of each individual fold change across all sample pairs. 
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_
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X
FC   , X > Y; _

_

mZRT

X

Y
FC   X < Y    (5) 

In formal statistical terms, a mzRT feature is claim to be varied among two conditions when its 

relative intensity values change systematically between these two condition regardless on how small 

this change is. However, significance does not contain information about the magnitude of this change. 

For a metabolomics standpoint, a metabolic feature is considered to be relevant only when this change 

result in a worthwhile amount. Hence, significantly varied mZRT are ranked according to their FC 

value. Subsequent MS/MS chemical structural identification experiments are performed on those 

metabolic features resulting above a minimum FC cutoff value. It has been demonstrated that a 2-FC 

cutoff for metabolomics studies using human plasma or CSF minimizes the effects of biological 

variation inherent in a healthy control group [26]. However, this cutoff value is set rather arbitrarily 

and based on similar FC cutoff values routinely applied in gene chip experiments. 

9. Univariate LC-MS Untargeted Analysis Workflow 

The typical univariate data analysis flow diagram for untargeted LC-MS metabolomics experiments 

is summarized in Figure 5. The ultimate goal is to constraint the number of initially detected mzRT 

features to an amenable number for further MS/MS identification experiments. Only those mZRT 

features showing both statistically significant changes with delimited chance for false positives in their 

relative intensity and a minimum FC are going to be retained. Steps 1-5 are below summarized: 

STEP1: Use quality control check to get rid-out of those mZRT features that do not contain 

biological information. Ideally QC samples should be measured. Then, compute CVQC and proceed to 

retain only those metabolic features presenting CVQC < 20%. If QC samples are not available, an 

alternative procedure is to compute CVT and retain those mZRT with CVT > 20%.  

STEP2: Mind the experimental design to select the best suited statistical test to apply. Check 

whether your data is paired or not, i.e., whether your groups are related such as in our example#3 

(individuals prior to treatment are uniquely matched to the same individual after the treatment). 

Afterwards, check normality and equality of variances assumptions. Be aware that performances of the 

normality tests might be hampered by low samples sizes dataset commonly found in LC-MS 

untargeted metabolomics studies. Despite this, working on such tests might be useful to gain some 

insights in to the data distribution.  

STEP 3: Compare mean or medians of your dataset performing statistical inference and trying to 

apply statistical tests thoughtfully instead of mechanically. Try to be aware of the tests weaknesses 

when applying it. Once we have taken the decision on whether using parametric or non-parametric 

tests, it is important to stick on the same approach through the rest of the data analysis procedure. This 

is to plot our results in the form of medians instead of means whenever we choose to use a non-

parametric statistical test.  

STEP4: Account for multiple testing. Report the number of positive false findings after FDR 

correction. Plot histograms of p-values frequency distribution to get an overview of whether a dataset 

contains significant differences. Decide a FDR threshold to accept. A general consensus is to accept 
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5% of FDR level but there is nothing special about this value and each researcher might justify their 

assumed FDR value, which should be fixed before data is collected.  

Figure 5. General flow chart for univariate data analysis of untargeted LC-MS-based 

metabolomics data. Different colors for the four working examples indicate the initial 

number and the retained number of mzRT features in each step. FDR and FC value are 

fixed at 5% level 1.5-cutoff values respectively. 

  
 

STEP5: Compute mean or median FC depending on the test used to perform statistical inference. 

Fix a cutoff FC value. From our in-house experience we recommend an arbitrary 1.5-FC cutoff value 
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meaning a minimum of 50% of variation in the two groups compared. Rank your significant list of 

features according the FC value. Retain those significant features with higher FC values for MS/MS 

experiments and follow-up validation studies. 

Following steps 1-5 described above, those metabolites identified using MS/MS experiments for 

example #2 are summarized in Table 4. Of mention all metabolites identified meet the statistical 

criteria described above regardless of using either parametric or non-parametric tests. Notice the small 

number of properly identified metabolites as compared to the high number of features surviving 

statistical criteria. It is important to mention that in the best optimistic case the number of metabolite 

identifications showing MS/MS confirmation use to be in the tens after a formal untargeted 

metabolomics experiment. Conversely, in case of putative identifications based on exact masses, the 

number of metabolites reported is much higher. However, recall that such metabolites are just 

putatively identified. Considering that replication experiments are necessary to undeniably ascertain 

the role of the metabolites found to be relevant in the untargeted study, a strict identification of the 

metabolites is essential. In this sense, our work-flow data analysis represents the first step for a 

successful identification of those metabolites.  

Table 4. Statistics summary of those metabolites identified using MS/MS experiments in 

working example #2. Unpaired t-test and Mann-Whitney test were used for parametric and 

non-parametric hypoxic and normoxic retinas comparison respectively. Correction for 

multiple testing was performed assuming 5% FDR.  

 Parametric Test  Non-parametric 

 p-value q- value FC (mean)  p-value q-value 

FC 

(median) 

Hexadecenoylcarnitine 3.3110-13 1.0510-10 5.0  2.4910-05 3.1810-04 4.9 

Acetylcarnitine-

derivative 1.1010-13 5.0210-11 7.2 

 

2.4910-05 3.1810-04 7.5 

Tetradecenoylcarnitine 1.2910-13 5.2910-11 8.8  2.4910-05 3.1810-04 8.8 

Decanoylcarnitine 7.7910-11 1.0310-08 5.7  2.4910-05 3.1810-04 5.6 

Laurylcarnitine 8.4810-11 1.0610-08 9.2  2.4910-05 3.1810-04 8.7 

7-ketocholesterol 4.0010-09 1.9210-07 3.1  2.4910-05 3.1810-04 3.3 

5,6β-epoxy-cholesterol 2.1210-08 6.6110-07 5.1  2.4910-05 3.1810-04 7.0 

7-hydroxycholesterol 3.8810-08 1.0710-06 4.1  2.4910-05 3.1810-04 4.5 

All-trans-Retinal 1.2610-05 9.2410-05 -3.0  4.0110-05 3.9810-04 -2.8 

Octanoylcarnitine 9.2110-05 4.2810-04 5.5  5.0910-03 1.1410-02 17.2 
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