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Abstract: Isotope-labeling is a useful technique for understanding cellular metabolism. 

Recent advances in metabolomics have extended the capability of isotope-assisted studies 

to reveal global metabolism. For instance, isotope-assisted metabolomics technology has 

enabled the mapping of a global metabolic network, estimation of flux at branch points of 

metabolic pathways, and assignment of elemental formulas to unknown metabolites. 

Furthermore, some data processing tools have been developed to apply these techniques to 

a non-targeted approach, which plays an important role in revealing unknown or 

unexpected metabolism. However, data collection and integration strategies for non-targeted 

isotope-assisted metabolomics have not been established. Therefore, a systematic approach 

is proposed to elucidate metabolic dynamics without targeting pathways by means of  

time-resolved isotope tracking, i.e., “metabolic turnover analysis”, as well as multivariate 

analysis. We applied this approach to study the metabolic dynamics in amino acid perturbation 

of Saccharomyces cerevisiae. In metabolic turnover analysis, 69 peaks including 35 

unidentified peaks were investigated. Multivariate analysis of metabolic turnover successfully 

detected a pathway known to be inhibited by amino acid perturbation. In addition, our 

strategy enabled identification of unknown peaks putatively related to the perturbation. 
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1. Introduction 

Isotope-labeling experimentation is a useful tool for understanding cellular metabolism. Tracking 

the fate of isotope-labeled substrates has played an important role in determination of metabolic 

pathways such as the Calvin-Benson cycle [1] and the Entner-Doudoroff pathway [2]. Furthermore, 

isotope-tracking experiments have been performed to elucidate the reverse reaction flow of known 

pathways including the reductive tricarboxylic acid cycle (TCA) cycle [3] and gluconeogenesis [4]. In 

these experiments, a limited number of metabolites was observed in the process of discovering a 

particular pathway. 

Recent advances in metabolomics enabled monitoring of a huge number of metabolites with high 

reproducibility [5]. Metabolomics technology extends the applicability of isotope-assisted experiments to 

a global scale to develop “isotope-assisted metabolomics” [6], which can be classified into three groups: 

(i) elucidation of existing pathways on a global scale by detection of isotope-labeled substrates [7–9];  

(ii) assignment of elemental formulas to all unknown metabolites by comparing isotopically labeled 

and non-labeled samples [10]; and (iii) estimation of the flux distribution at branch points of several 

metabolic pathways from the isotopic patterns of metabolites [7,11–13]. Furthermore, some data 

processing tools have been developed for non-targeted isotope-assisted metabolomics such as 

mzMatch-ISO, NTFD, and X13CMS [12,14,15]. Since metabolic pathways are still being updated even 

in the central metabolism of model organisms [16–18], the development of non-targeted approaches  

for isotope-assisted metabolomics is important. However, data collection and integration strategies of 

non-targeted isotope-assisted metabolomics to reveal unknown or unexpected metabolic pathways and 

intermediates have not been well developed. 

Recently, Huang et al. introduced non-targeted isotope-assisted metabolomics to elucidate 

perturbation-related pathways using X13CMS [14]. This concept was advanced for studying metabolic 

dynamics because systematic non-targeted approaches for revealing perturbation-related metabolism 

had not been proposed. However, this study compared the isotopomers between samples at only a 

single time point. Since the isotope labeling speed varies according to the pathway [19], snapshot 

analysis is not sufficient to elucidate perturbation-related pathways on a global scale. Although time 

resolved labeling experiments, i.e., “metabolic turnover analysis,” could overcome this problem [20–22], 

the data analysis strategy for metabolic turnover analysis has not yet been established. Therefore,  

a method for integration of both non-targeted turnover analysis and multivariate analysis is needed to 

facilitate the use of isotope-assisted metabolomics to increase understanding of biological processes. 

Here we suggest a systematic approach for elucidation of the unknown and unexpected pathways 

related to perturbation by means of non-targeted metabolic turnover analysis and multivariate analysis 

(Figure 1). This approach highlights perturbation-related metabolites from a complicated dataset 

containing metabolites with different labeling speeds, which assisted in the elucidation of metabolic 
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changes on a global scale. Gas chromatography coupled with electron impact mass spectrometry 

(GC/EI/MS) was utilized in this study for its well-established peak identification system [23], huge 

databases of fragment spectra [24,25], and software for structure prediction [23,26]. To demonstrate 

the potential of our approach, we investigated pathways related to amino acid perturbation in 

Saccharomyces cerevisiae. 

2. Results and Discussion 

2.1. Strategy Overview 

The scheme for non-targeted metabolic turnover analysis is shown in Figure 1. Sample preparation 

and the gas chromatography/mass spectrometry (GC/MS) method for isotope tracing of metabolites are 

outlined in Processes I and II, respectively. In metabolic turnover analysis, time course sampling was 

performed to track the fate of isotope labels. Non-labeled and 13C-labeled samples were also prepared 

to facilitate peak picking. All detectable metabolites were monitored using scan-mode analysis on a 

mass spectrometer. Processes III and IV present the methods for data analysis including peak picking, 

isotope ratio calculation, and multivariate analysis. In Process III, the peaks containing carbon atoms 

are selected from the data set of both non-labeled and 13C-labeled samples. Then, the metabolic 

turnover of each peak was calculated. In Process IV, differential analysis was performed to elucidate 

perturbation-related pathways and rate the priority of the peaks. High priority peaks were annotated 

based on several aspects. Finally, the effect of biological perturbation is discussed in Process V. 

2.2. Non-Targeted Metabolic Turnover Analysis 

In order to perform non-targeted metabolic turnover analysis (Figure 1-III), the peak picking method 

for collecting the carbon-containing mass fragment information derived from yeast was required. 

Therefore, a comparative approach for mass spectra between non-labeled and 13C-labeled samples was 

used (Figure 1(1–7)). The non-labeled and 13C-labeled metabolites were extracted from the X2180 strain 

cultivated under minimal synthetic medium with natural isotopic glucose and 13C6-glucose, respectively. 

We identified 69 peaks with fragment ions containing carbon atoms (Table 1). 

Based on these peaks, non-targeted metabolic turnover analysis (Figure 1(1–8)) was performed on 

three samples: X2180 strain grown under minimal synthetic medium and X2180 and BY4742 strains 

grown under minimal synthetic medium with amino acid supplement. For the turnover analysis, 60 out 

of the 69 peaks were monitored while the remaining nine peaks (Peak-22, -35, -37, -41, -42, -44, -56,  

-58, and -65) were not observed consistently, probably due to a small metabolite pool. The isotopomer 

ratio (IR) of each metabolite was calculated using the following equation: ܴܫ(௧,) = /(௧,)ܣܲ  ௫(௧,ᇲ)ܣܲ
ᇲୀ  (1)

where PA represents peak area, t represents each sampling time, k represents the m/z of a fragment of 

the metabolite, min represents the m/z of 12C-fragments, and max represents 13C-fragments of the 

metabolite described on Table 1. The peak area used in this equation was from the m/z of the  
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12C-monoisotope to the 13C-monoisotope of a fragment ion. Only the IR(t,min) was used for further 

metabolic turnover analysis. In order to reduce the effect of the natural abundance of an isotopomer, 

the metabolic turnover was divided by the maximum IR of each metabolite. 

Figure 1. Non-targeted metabolic turnover analysis-based differential analysis of metabolic 

dynamics. Boxes on the left indicate the workflow of gas chromatography/electron 

ionization/mass spectrometry (GC/EI/MS)-based non-targeted metabolic turnover analysis. 

Procedural details are described in the boxes to the right. 
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Table 1. Carbon-containing peaks derived from S. cerevisiae. 

Peak No. RT * (s) RI ** 
Fragment (m/z) 

Automatically Identified Name *** 12C 13C 

Peak-01 222.0 - 171 172  
Peak-02 282.3 1043.8 174 177 Pyruvate + Oxalacetic acid::C00022 + C00036 
Peak-03 318.6 1094.2 116 118 Alanine_2TMS::C00041 
Peak-04 332.3 1115.3 102 103 Glycine_2TMS::C00037 
Peak-05 365.0 1165.8 130 133 2-Aminobutyric acid::C02261 
Peak-06 393.0 1207.3 144 148 Valine_2TMS::C00183 
Peak-07 420.0 1252.8 116 118 Serine_2TMS::C00065 
Peak-08 441.0 1286.2 158 163 Isoleucine_2TMS::C00407 
Peak-09 442.6 1288.6 117 119 Threonine_2TMS::C00188 
Peak-10 446.4 1294.5 142 146 Proline_2TMS::C00148 
Peak-11 449.4 1299.1 174 175 Glycine_3TMS::C00037 
Peak-12 453.3 1306.2 247 251 Succinic acid (or aldehyde)::C00042 
Peak-13 474.0 1343.8 245 249 Fumaric acid::C00122 
Peak-14 477.0 1349.2 204 206 Serine_3TMS::C00065 
Peak-15 480.0 1354.4 188 190 Alanine_3TMS::C00041 
Peak-16 491.4 1374.2 218 221 Threonine_3TMS::C00188 
Peak-17 516.0 1418.5 160 163  
Peak-18 526.2 1438.3 218 221 Homoserine_3TMS::C00263 
Peak-19 538.8 1462.1 232 234  
Peak-20 546.0 1475.6 233 236 Malic acid::C00149 
Peak-21 550.8 1484.4 188 193  
Peak-22 558.0 1497.5 112 118  
Peak-23 562.8 1507.2 232 235 Aspartic acid_3TMS::C00049 
Peak-24 565.8 1513.5 176 180 Methionine_2TMS::C00073 
Peak-25 568.8 1519.7 156 160 Pyroglutamic acid::C01879 
Peak-26 571.8 1525.9 174 178 4-Aminobutyric acid::C00334 
Peak-27 574.2 1530.8 155 159  
Peak-28 576.6 1535.8 227 231  
Peak-29 589.2 1561.3 247 251  
Peak-30 591.0 1564.8 275 281  
Peak-31 600.6 1583.9 227 231  
Peak-32 609.0 1600.3 142 146  
Peak-33 612.0 1606.9 246 250 Glutamic acid_3TMS::C00302 
Peak-34 619.8 1624.1 192 200 Phenylalanine_2TMS::C00079 
Peak-35 628.6 1643.1 116 118  
Peak-36 631.8 1650.0 275 279  
Peak-37 634.3 1655.3 234 238  
Peak-38 636.6 1660.3 116 118 Asparagine_3TMS::C00152 
Peak-39 639.0 1665.4 290 293  
Peak-40 647.4 1683.0 275 279  
Peak-41 653.7 1696.2 173 177  
Peak-42 661.7 1714.4 227 231  
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Table 1. Cont. 

Peak No. RT * (s) RI ** 
Fragment (m/z) 

Automatically Identified Name *** 12C 13C 

Peak-43 664.4 1720.4 205 207  
Peak-44 667.0 1726.5 274 280  
Peak-45 672.0 1737.9 231 235  
Peak-46 677.7 1750.8 217 220  
Peak-47 683.4 1763.6 156 160 Glutamine_3TMS::C00064 
Peak-48 699.6 1799.5 273 278 Citric acid + Isocitric acid::C00158+C00311 
Peak-49 701.4 1803.8 142 146 Ornithine::C00077 
Peak-50 706.8 1817.0 117 119  
Peak-51 719.7 1847.9 174 175 Lysine_3TMS::C00047 
Peak-52 723.6 1857.2 319 323 Allose_1_Major::C01487 
Peak-53 737.1 1888.9 205 207  
Peak-54 740.4 1896.5 319 323 Glucose_2_Minor::C00031 
Peak-55 745.2 1908.5 174 175 Lysine_4TMS::C00047 
Peak-56 747.5 1914.3 319 323  
Peak-57 749.4 1919.2 254 259 Histidine_3TMS::C00135 
Peak-58 753.8 1930.3 218 220  
Peak-59 757.7 1940.3 217 220  
Peak-60 762.6 1952.5 204 206  
Peak-61 782.9 2003.1 204 206  
Peak-62 807.8 2068.6 204 206  
Peak-63 837.0 2147.1 326 331  
Peak-64 871.7 2243.7 144 148  
Peak-65 981.4 2578.0 217 220  
Peak-66 1015.6 2691.5 204 206  
Peak-67 1021.5 2711.8 361 367 Trehalose::C01083 
Peak-68 1057.4 2837.7 361 367 Melibiose_1_Major::C05402 
Peak-69 1074.6 2899.1 204 206  

* Retention time (RT);** Retention index (RI) was calculated in the range from 1000 to 4000; *** Peak 

identification was performed using AIoutput. 

The IRs of 60 metabolites are shown in Figure 2. Hierarchical cluster analysis (HCA) was used to 

group the metabolic turnovers of the peaks into six clusters. Clusters 1 and 2 appeared to not reach the 

isotopic steady state within the time limit, and Cluster 2 was almost not labeled. Clusters 4 and 5 were 

slowly labeled and almost reached the isotopic steady state. Clusters 3 and 6 were rapidly labeled. 

2.3. Differential Analysis and Peak Annotation 

Differential analysis (Figure 1(1–9)) was performed to select important peaks related to amino  

acid perturbation. The metabolic turnover of detected peaks was similar in all samples (Figure 2). 

Therefore, principal component analysis (PCA) was applied based on the difference in isotopomer 

ratios to mine fluctuated pathways. The differential isotopomer ratio (DIR) of each metabolite was 

calculated by subtracting the average at each time point as follows: 
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(௦,௧)ܴܫܦ = (௦,௧)ܴܫ − 1݊  ቀ௦′,௧ቁܴܫ
௦′ୀ  (2)

where s represents each sample, t represents the sampling time, and n represents the sample number 

including all sample types at time t. The DIR was then applied to PCA, taking every sampling time for 

each sample as an independent class and DIR as the element. Since the differences among the DIRs of 

the samples were important, preprocessing was not performed. 

Figure 2. Metabolic turnover of detected peaks. The heat map indicates the ratio of the 
12C-monoisotopic mass at each sampling time. The color gradation is indicated at the upper 

left. The data are standardized by the maximum value of each isotopomer. Peak clusters 

were calculated by hierarchical cluster analysis (HCA) using Euclidian distances and 

Ward’s method linkage criteria. 

 
  

Peak-45
Peak-53
Melibiose
Glucose
Peak-59
Peak-60
Peak-61
Peak-62
Peak-46
Peak-66
Pyruvate+Oxalacetic acid
Peak-30
Isoleucine_2TMS
Citric acid + Isocitric acid
Fumaric acid
Peak-50
Peak-21
Threonine_2TMS
Glycine_3TMS
Threonine_3TMS
Trehalose
Peak-19
Methionine
Peak-39
Asparagine
Phenylalanine
Aspartic acid
Peak-17
Peak-43
Malic acid
Homoserine
Alanine_3TMS
Alanine_2TMS
Valine_2TMS
Serine_2TMS
Serine_3TMS
Histidine
Peak-63
Lysine_3TMS
Lysine_4TMS
Peak-64
Peak-01
Ornithine
Peak-32
Peak-69
Succinic acid
Peak-28
Peak-40
Peak-36
Peak-29
Glutamine_3TMS
Pyroglutamic acid
4-Aminobutyric acid
Glutamic acid
Allose
Glycine_2TMS
2-Aminobutyric acid
Proline
Peak-27
Peak-31

BY4742
SD medium
with amino acid

X2180
SD medium
with amino acid

X2180
SD medium
without amino acid

0 10 20 40 80 16
0

32
0

64
0

12
80

25
60 0 10 20 40 80 16

0
32

0
64

0
12

80
25

60 0 10 20 40 80 16
0

32
0

64
0

12
80

25
60

Ti
m

e 
(s

)
sa

m
pl

e

1

0 1

2

3

4

5

6



Metabolites 2014, 4 729 

 

 

Statistical tests provide alternative analyses with the following considerations: (i) the sampling point; 

(ii) the sampling number; and (iii) the analysis of successive data. The two-sample t-test can be applied 

to analyze several replicates; however, the appropriate time point for differential analysis is difficult to 

estimate since the isotopically non-stationary phase depends on the metabolites, labeling sources, 

conditions, and organisms employed. In addition, a t-test of successive data requires a data integration 

process for effective detection and an estimation of appropriate data points to avoid multiple 

comparison problems. The Friedman test is another alternative for the analysis of successive data. 

However, its sensitivity also depends on the sampling time and number because the turnover data has a 

nonparametric and standardized data structure. Particularly, the sampling number of the isotopically 

stationary phase probably affects to the detection power because the DIR approaches zero at those 

points. To avoid these problems, we used PCA in this study. 

PCA projects the data to principal components defined by the magnitude of variance. The first 

principal component was calculated to maximize sample differences based on DIR variance, and the 

second was calculated to orthogonally maximize the sample differences to the first coordinate. Since 

the DIR approaches zero at early time points and at late, isotopically stationary time points, 

isotopically non-stationary time points are scattered from the origin on the score plot (Figure 3a). 

Moreover, the DIRs of metabolites on less perturbed pathways approach zero and are clustered around 

the origin on the loading plot. In contrast, the DIRs of metabolites on perturbed pathways maintain 

high values over time and are separated from the origin. 

Candidate metabolites from fluctuated pathways were selected using the PCA loading plot (Figure 3b). 

Recently, Yamamoto et al. reported a statistical procedure for selecting metabolites using factor 

loadings [27]; separation of the score plot by sample types and sampling times herein permitted use of 

this criterion for metabolite selection. As detailed previously, variables significantly correlated with 

the principal components were calculated as follows: ݐݏ݁ݐ = ݊√(ݎݎܿ) − 2ඥ1 − ଶ (3)(ݎݎܿ)

where p(corr) and n represent the factor loading and the sample number, respectively. The test 

statistic, test, has a t-distribution with (n − 2) degrees of freedom. 

The resulting PCA score plot displays the different sample types and sampling times (Figure 3a), and 

the PCA loading plot indicates the peaks that contribute to the difference (Figure 3b). Different sample 

types showed distinct profiles over the time course from 80 to 2560 s. The peaks that contributed to the 

separation were selected according to Equation (3) (Table S1). To elucidate the negative effect of the 

amino acid supplement, peaks that positively correlated to PC1 and/or PC2 were selected for further 

analysis (labeled peaks in Figure 3b). The largest difference in isotopomer ratio among samples occurred 

at different times for different metabolites (Figure 3c). This result demonstrates the importance of 

metabolic turnover analysis to study global metabolism compared with snapshot analysis. 
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Figure 3. Principle component analysis (PCA) of metabolic turnover differences. (a) PCA 

score plot of each sampling time of three respective sample types: BY4742 under SD 

medium with amino acid supplement (open square), X2180 under SD medium with amino 

acid supplement (open triangle), and X2180 under SD medium without amino acid 

supplement (open circle). Numbers 0–9 indicate sampling times: 0, 10, 20, 40, 80, 160, 

320, 640, 1280, and 2560 s, respectively. The horizontal axis indicates principal component 

(PC) 1, and the vertical axis indicates PC 2. The values in parentheses are the percent 

variances of each PC; (b) loading plot of peaks used in PCA. The labeled peaks represent 

metabolites that are significantly correlated with the PCs (Table S1). Axes are labeled as  

in (a); (c) Time courses of isotopomer ratios of 12C-monoisotopic lysine and isoleucine 

peaks. The horizontal axis indicates the sampling time, and the vertical axis indicates the 

isotopomer ratios. Sample type symbols are the same as for (a). 
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was higher for 2-isopropyl malate (Table S2, Figure 4a). Next, Peak-30 was estimated to have more 

than six carbon atoms, which was determined from the maximum difference (6) of the 12C and 13C 

isotopomers of the detected fragments (Figure 4b,c). Since 2-isopropyl malate and 2-oxoglutarate are 

composed of seven and five carbons, respectively, this makes 2-oxoglutarate an unlikely candidate. 

Nineteen substructures were predicted by a decision tree on GMD [26] with more than 90% probability, all 

of which completely matched the substructures of 2-isopropyl malate (Table S3). In addition, PCA was 

performed on the metabolic turnover data of X2180 in order to visualize the metabolic distance (Figure 5), 

which is an indicator of the distance between glucose and metabolites on the metabolic map [28]. On 

the PCA score plot, Peak-30 is located closer to glucose than the amino acids or most TCA cycle 

metabolites, indicating that Peak-30 is probably a metabolite near the central metabolism and not a 

derivation of TCA cycle metabolites. Together, these results led to annotation of Peak-30 as 2-isopropyl 

malate. This annotation was further tested by spiking in an authentic standard during analyses  

(Figure S2a), which confirmed the level 1 identification of Peak-30 as 2-isopropyl malate [29]. 

Figure 4. Mass spectra of Peak-30. (a) Mass spectra of Peak-30 in the sample (upper)  

and 2-isopropyl malate in the Golm Metabolome Database (lower); (b) Mass spectra of 
12C- (upper) and 13C-labeled (lower) Peak-30; (c) Magnification of the boxed section in (b). 

Gray numbers indicate the m/z values. 
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Figure 5. Score plot for principal component analysis (PCA) of metabolic turnover in  

S. cerevisiae X2180. The horizontal axis indicates principal component (PC) 1, and the 

vertical axis indicates PC 2. The values in parentheses are the percent variances of each 

PC. Open circles, and open squares indicate identified and unidentified peaks, respectively. 

Growth conditions: SD medium without amino acids. 
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2.4. Biological Discussion from the Results 

The S. cerevisiae BY4742 strain is often used as a parental strain, such as in the single gene 

knockout collection of the European S. cerevisiae archive for functional analysis (EUROSCARF) [30]. 

The BY4742 strain grows slowly under minimal medium compared to the reference strain X2180 

(Figure 6a). However, the growth of X2180 is also slow after addition of supplemental nutrition 

(leucine, lysine, histidine, and uracil), which is essential for BY4742. Therefore, we investigated the 

effect of these supplements on metabolism using non-targeted metabolic turnover analysis. On the 

differential analysis score plot (Figure 3a), samples taken between 160 to 2560 s were separated by 

nutritional condition. In addition, the loading plot (Figure 3b) indicated that the greatest contributors to 

the separation belonged to the branched chain amino acid pathway or the TCA cycle. Whereas 

metabolic turnover of most contributing metabolites was slowed by supplemental nutrition, lysine and 

histidine were not labeled within 2560 s (Figures 1 and 3c), indicating that these amino acids might not 

be synthesized in this condition. 

Figure 6. Growth curve and metabolic pathway of branched chain amino acid biosynthesis 

of S. cerevisiae. (a) Growth curve of each sample. The horizontal axis indicates the 

sampling time, and the vertical axis indicates the cell density on a logarithmic scale. The 

black, dotted, and gray lines indicate BY4742 under synthetic dextrose (SD) medium with 

amino acid supplement, X2180 under SD medium with amino acid supplement, and X2180 

under SD medium without amino acid supplement, respectively; (b) Metabolic pathway of 

valine, leucine, and isoleucine in S. cerevisiae (29). Capital letters indicate the 

corresponding enzymes for the reactions. Dotted lines indicate feedback inhibition  

by leucine. 

 

Leucine is known to inhibit many reactions on the branched chain amino acid pathway [31], and our 

results may reflect this phenomenon. Additionally, previous research demonstrated that the growth of 

X2180 cells decreased with the addition of leucine but was recovered by adding valine and isoleucine [32]. 

The same study also showed that addition of both histidine and lysine maintained growth, while the 
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presence of only one of the two retarded growth. Therefore, it is likely that the main reason for slow 

growth of BY4742 is feedback inhibition by leucine. Our result also indicated that the TCA cycle was 

affected by the amino acid supplement. However, the reason for and the effect of the slow turnover of 

TCA cycle intermediates require further investigation. 

Time courses of isotopomer ratios were analyzed in this study. On the other hand, the labeling 

patterns at isotopically stationary phase are often used to elucidate metabolic dynamics. The labeling 

pattern provides information about branches and confluences on the metabolic map. Therefore, the 

patterns are used to calculate the flux in central metabolic pathways, specifically glycolysis, the 

pentose phosphate pathway, and the TCA cycle [6,13]. However, the approach does not extend well to 

more peripheral pathways, including amino acid synthesis, probably because fewer branches and 

confluences are present. Furthermore, initial information about the metabolic pathway is necessary to 

elucidate the dynamics. In contrast, time course data provide the dynamics of specific metabolites 

without prior knowledge of their metabolic pathways. The flux or kinetics of the pathway also can be 

analyzed with additional information [19,33,34]. In the present study, unknown peaks were analyzed 

without a metabolic map; therefore, time course monitoring was necessary. 

In this experiment, 69 peaks were detected as carbon containing peaks. In spite of non-target analysis, 

less than a hundred peaks were observed. This is probably caused by three reasons. Firstly, the intensity 

of the metabolites is not sufficient for the analysis. Since the metabolite abundance of S. cerevisiae is 

relatively low under minimum medium, the detected peaks are limited [35]; Secondly, some 

metabolites do not provide any carbon containing peaks. Sometimes, the highest fragment of a 

compound is derived from derivatization and no or low fragments derived from the compound are 

observed. Thirdly, the peak detection strategy is not fully developed. The problems will be solved by 

development of analytical system including sample preparation, analytical platform, and data analysis. 

Especially, automation of peak detection is an important issue for further development. 

In the present study, we analyzed a well-known perturbation and successfully detected the 

metabolic pathway known to be affected in a single measurement. However, multiple measurements or 

supplementary techniques will be required for the analysis perturbations with unknown effects to 

accurately and precisely detect candidate pathways. Since our approach may suggest ideas contrary to 

common knowledge, we recommend that conclusions be verified with established techniques. 

3. Experimental Section 

3.1. Reagents 

Yeast extract, peptone, and a yeast nitrogen base without amino acid were purchased from BD 

(Franklin Lakes, NJ, USA). D-glucose was purchased from Nacalai Tesque (Kyoto, Japan). 13C6-D-

glucose was purchased from Cambridge Isotope Laboratory (Cambridge, MA, USA). For metabolite 

extraction and analysis, HPLC-grade methanol, HPLC-grade chloroform, HPLC-grade distilled water, 

and pyridine were purchased from Wako (Osaka, Japan). Methoxyamine hydrochloride was purchased 

from Sigma-Aldrich (St. Louis, MO, USA). N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSATFA) 

was purchased from GL Sciences (Tokyo, Japan). 
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3.2. Yeast Cultivation 

Saccharomyces cerevisiae BY4742 (MATα, his3Δ 1, leu2Δ 0, lys2Δ 0, ura3Δ 0) and reference strain 

X2180 (MAT a/α, SUC2, mal, mel, gal2, CUP1) were used for the experiment. The strain from the 

glycerol stock was streaked onto a yeast extract peptone dextrose (YPD) agar plate (10 g/L yeast 

extract, 20 g/L peptone, and 20 g/L glucose) to obtain a single colony isolate. For metabolic turnover 

analysis, cells from a single colony were picked and pre-cultured by inoculation onto 5 mL of synthetic 

defined (SD) medium (6.7 g/L yeast nitrogen base without amino acid, 20 g/L D-glucose) with or 

without amino acid supplement (80 mg/L histidine, 400 mg/L leucine, 80 mg/L lysine, and 80 mg/L 

uracil) and incubated overnight at 30 °C. The culture was then inoculated to 50 mL of fresh medium  

of the same composition as the pre-culture to an OD590 of 0.01 and grown at 30 °C in a rotary shaker 

(200 rpm) to an OD590 of 1.5. For the 0 s time point, 5 mL of culture was collected using a plastic 

syringe and syringe filter (25 mm diameter, 0.45 µm pore size, GL Sciences, Tokyo, Japan). The 

syringe filter was immediately soaked in liquid nitrogen to quench metabolism. The other cells were 

harvested rapidly by vacuum filtration using a polytetrafluoroethylene (PTFE) membrane filter  

(47 mm diameter, 1 µm pore size, Millipore, MA, USA). The filter was immediately placed onto  

50 mL of fresh medium to re-suspend the cells. The medium composition was the same as the  

pre-culture except that D-glucose was replaced with 10 g/L U-13C6-D-glucose. The cells were incubated 

at 30 °C, and 5 mL of culture was collected at 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 s after  

the suspension point using a syringe filter with the procedure described above. The samples were 

freeze-dried and stored at −80 °C until extraction. 

For reference samples of 12C-peaks and 13C-peaks, cells of the X2180 strain from a single colony 

were inoculated to 5 mL of SD medium containing 12C-glucose or 13C-glucose and incubated overnight 

at 30 °C as a pre-culture. The culture was inoculated to 50 mL of fresh medium of the same 

composition as the pre-culture to an OD590 of 0.01 and grown at 30 °C in a rotary shaker (200 rpm) to 

an OD590 of 1.5. The cells were then collected by centrifugation (10,000× g, 4 °C, 5 min), freeze-dried, 

and stored at −80 °C until extraction. 

3.3. Metabolite Extraction 

For metabolic turnover analysis, 1 mL of mixed solvent (chloroform:methanol:water = 2 : 5 : 2) was 

applied to a syringe filter containing the yeast cells. The filtrate was collected and reapplied to the 

same filter. This procedure was performed two times. Then, 500 μL of distilled water was added to the 

filtrate and the mixture was vortexed. The sample was centrifuged (10,000 × g, 4 °C, 5 min), and the 

supernatant was collected in a 1.5-mL plastic tube. The sample was centrifugally dried and freeze-dried. 

The pellet was stored at −80 °C until GC/MS analysis. 

3.4. Metabolites Derivatization 

The sample was derivatized by oximation and silylation reagents. For oximation, 50 μL of 

methoxyamine hydrochloride in pyridine (20 mg/mL) was added before incubation at 30 °C for  

90 min. For trimethyl silylation, 50 μL of MSTFA was added before incubation at 37 °C for 30 min. 
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3.5. GC/MS Analysis 

GC/MS analysis was performed using a GC-2010 Plus gas chromatograph (Shimadzu) with an 

AOC-20is series injector/autosampler (Shimadzu, Kyoto, Japan) and a GCMS-QP2010 Ultra mass 

spectrometer (Shimadzu). A 30 m long × 0.25 mm inter diameter fused silica capillary column  

coated with 0.25 μm CP-SIL 8 CB low bleed/MS (Agilent Technologies, Santa Clara, CA, USA)  

was used. The front inlet temperature was 230 °C. The helium gas flow rate through the column was 

1.12 mL/min. The column temperature was held isothermally at 80 °C for 2 min and then ramped  

from 80 to 330 °C by 15 °C/min and held isothermally for 6 min. The transfer line and ion-source 

temperatures were 250 and 200 °C, respectively. Twenty scans per second were recorded over the 

mass range 85–500 m/z. 

3.6. Data Analysis 

For metabolic turnover analysis, peaks and fragment ions labeled by carbons were manually 

selected by comparing data from non-labeled and 13C-labeled reference samples using GCMSsolution 

4.11 (Shimadzu). The mass spectra of co-eluting peaks in both references were compared. The peaks 

were assigned as carbon containing peaks when the topologies of these two spectra were similar with 

higher m/z of some fragments in the 13C-labeled sample (e.g., Figure 4b). The shifted fragments were 

assigned as carbon-containing fragments. When the m/z of multiple fragments were shifted in a peak, 

the highest fragment and fragments that did not co-elute were used for further analysis. For peak area 

determination, the baseline of a fragment was set based on the most visible isotopomer. Peaks without 

visible isotopomers were excluded from turnover analysis. Negative peak areas were treated as zero. 

The isotopomer ratio (IR) was calculated using Equation (1). The data were standardized by the 

maximum value of each metabolite. 

MetAlign [36] and AIoutput [23] were used for automatic metabolite identification. The identified 

peaks were also verified manually by comparing the spectra of samples to the library. Only the data 

from non-labeled samples were used for peak identification. 

SIMCA 13 (UMETRICS, Umeå, Sweden) was used for principal component analysis (PCA). For 

differential analysis, values were calculated using Equation (2). 

4. Conclusions 

To achieve an unbiased understanding of metabolic dynamics, a non-targeted approach to  

isotope-assisted metabolomics is necessary. Time-resolved monitoring of isotopomers is essential for the  

analysis of global metabolism because the isotope labeling speed differs in a metabolite-dependent manner. 

Herein, we developed a framework for a non-targeted approach to metabolic turnover analysis using 

GC/MS. The combination of metabolic turnover analysis and multivariate differential analysis efficiently 

visualized the important perturbation-related peaks. By combining isotope and turnover data, metabolites 

were informatively annotated. In the present study, we focused on GC/MS analysis; however, this approach 

can be applied to the other analytical platforms such as liquid chromatography-MS and capillary 

electrophoresis-MS. We expect that this approach will provide new insight into perturbation-related 

metabolism, especially for chemicals, genes, and diseases that are biologically not well understood. 
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