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Abstract: Metabolomic studies with a time-series design are widely used for discovery and validation
of biomarkers. In such studies, changes of metabolic profiles over time under different conditions
(e.g., control and intervention) are compared, and metabolites responding differently between the
conditions are identified as putative biomarkers. To incorporate time-series information into the
variable (biomarker) selection in partial least squares regression (PLS) models, we created PLS models
with different combinations of bilinear/trilinear X and group/time response dummy Y. In total, five
PLS models were evaluated on two real datasets, and also on simulated datasets with varying
characteristics (number of subjects, number of variables, inter-individual variability, intra-individual
variability and number of time points). Variables showing specific temporal patterns observed visually
and determined statistically were labelled as discriminating variables. Bootstrapped-VIP scores were
calculated for variable selection and the variable selection performance of five PLS models were
assessed based on their capacity to correctly select the discriminating variables. The results showed
that the bilinear PLS model with group × time response as dummy Y provided the highest recall
(true positive rate) of 83–95% with high precision, independent of most characteristics of the datasets.
Trilinear PLS models tend to select a small number of variables with high precision but relatively high
false negative rate (lower power). They are also less affected by the noise compared to bilinear PLS
models. In datasets with high inter-individual variability, bilinear PLS models tend to provide higher
recall while trilinear models tend to provide higher precision. Overall, we recommend bilinear PLS
with group x time response Y for variable selection applications in metabolomics intervention time
series studies.

Keywords: time series; PLS; NPLS; variable selection; bootstrapped-VIP

1. Introduction

Metabolomics is a widely applied technology for capturing the perturbations of metabolites in
biological systems and for discovery of dietary and health biomarkers. Liquid chromatography–
mass spectrometry (LC-MS), nuclear magnetic resonance spectroscopy (NMR), and gas
chromatography–mass spectrometry (GC-MS) are most commonly employed in metabolomics studies
providing information-rich, high throughput data [1]. Such data contains information on hundreds
or even thousands of metabolites, resulting in challenges for both data pre-processing and statistical
analysis [2].

Biomarker discovery in metabolomic studies consists of several stages: collection of biological
samples under different conditions; application of analytical techniques for characterising the

Metabolites 2019, 9, 92; doi:10.3390/metabo9050092 www.mdpi.com/journal/metabolites

http://www.mdpi.com/journal/metabolites
http://www.mdpi.com
https://orcid.org/0000-0002-2928-7653
https://orcid.org/0000-0003-0609-6317
https://orcid.org/0000-0002-3372-8423
http://www.mdpi.com/2218-1989/9/5/92?type=check_update&version=1
http://dx.doi.org/10.3390/metabo9050092
http://www.mdpi.com/journal/metabolites


Metabolites 2019, 9, 92 2 of 18

“unknown” metabolome; extraction of information from raw analytical data; statistical analysis
to select putative biomarkers with the capacity to discriminate the samples from different conditions;
and further studies to validate the performance of selected biomarkers [3]. Selection of variables
(putative biomarkers) plays an important role in the process as it determines the scale and outcome of
later validation studies [4]. It is crucial to keep the number of selected variables at a reasonable level
without compromising the number of true positives.

Time-series design has been adopted in many metabolomic studies for both biomarker discovery
and validation stages. It is advantageous because it allows discovery of biomarkers responding to
an intervention and provides time response information of biomarkers, which is of importance to
select the best time window for sampling [5]. Figure 1 shows eight different types of temporal profiles
typically seen in response to intervention in acute metabolomic studies (<24 h). Metabolites responding
differently between the groups in such studies may vary in their temporal response profiles as seen in
(a)–(f). Other metabolites (g)–(h) show no difference in response between control and intervention,
or vary randomly over time, which is often the case for the majority of metabolites.Metabolites 2019, 8, x FOR PEER REVIEW  3 of 18 

 

 
Figure 1. Typical temporal profiles of metabolites observed in metabolomics data from our onion 
study with a time-series design. (a)–(h) are temporal profiles of eight metabolites in control (grey) 
and intervention (purple) group. More details are explained in Text S1. 
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respectively.  

2.2. PLS-DA and Dummy Y 

In standard PLSDA, class labels indicating the group membership of each sample are used as 
dependant Y (dummy Y), e.g., y for the intervention group sample is 1 and for the control group 
sample is 0 or −1. However, samples obtained from different time points can be very different within 
the same class causing large variation within classes and consequently lead to poor predictions. 
Dividing the data and building separate models for each time point can reduce this problem but in 
this case, there are fewer observations for each comparison, and most importantly, the time response 
information is not modelled. To include such variation into the dependent Y and provide more 
guidance on the separation of samples, we created a new ‘time response’ dummy Y to reflect how 
the metabolites respond to the intervention with time. Specifically, for the target metabolites (Figure 
1, (a)-(f)), their excretion experiences an increase and a decrease within a certain time frame i.e., their 
intensities are higher or lower in the middle of the time-series than that at the beginning or at the end 
of the time-series. Therefore, we assign the samples acquired from the middle of the time-series 
capturing the high intensities of the target metabolites to a ‘response class’ and samples acquired 
from the first and last time point to a ‘no-response class’. Samples from these two classes are labelled 

Figure 1. Typical temporal profiles of metabolites observed in metabolomics data from our onion
study with a time-series design. (a)–(h) are temporal profiles of eight metabolites in control (grey) and
intervention (purple) group. More details are explained in Text S1.

A time-series design yields more information but also leads to more complex data. Not only are
the variables correlated but also temporal autocorrelation exists between time points. The classical
supervised multivariate approach adopted in many metabolomic studies is PLSDA followed by variable
(biomarker) selection [6]. PLSDA is a classification method based on classical PLS regression where the
response variable, y, is categorical and represents which treatment group each sample belongs to [7].
Normally the model is built on the data acquired from a single time point, from combined time points
or on pooled samples. However, in this case, only treatment group information is used while all the
time response information is ignored.

Some attempts have been made to take time-series information into account during PLS modelling.
One approach is to use time of sampling or maturity of the process as the response variable, y, [8]
which has been applied in a small number of metabolomic studies [9,10]. The problem with this
method is that it works well only when there is a linear relation between variables and time, which
is often not the case (see Figure 1). Another approach is piecewise Orthogonal Projections to Latent
Structures (OPLS), which uses a set of sub-models to describe the changes between successive time
points [11]. This does not assume any linear trend between data and time, which makes it suitable
for the analysis of non-linear response over time. However, the time-series information is distributed
in a range of sub-models which hinders interpretation. A variety of non-PLS methods could also be
adopted for modelling metabolomics time-series data but there are some limitations. Autoregressive
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moving average with exogenous inputs models (ARMAX) or space-state models can be used to
describe the temporal profiles, but typically requires more time points (>10) [12]. Smoothness or its
combination with dimension reduction method have also been developed and applied for time-series
data [13]. However, all the methods above mainly focus on predicting response to a treatment
over time instead of selecting important variables which discriminate between different treatments.
More investigation of time-series models using PLS for metabolomics analyses is therefore needed,
especially with respect to variable selection, in order to provide better guidance on optimal data
analysis of such datasets. Conventionally, metabolomic time series data are constructed into a two-way
structure (Sample ×Metabolite) in PLS modelling where the time response information is overlooked.
To incorporate such information into the data structure, time can be considered as the third mode.
In this study, five different bi- and tri-linear PLS models were used to identify important variables
contributing to the difference between groups in intervention response metabolomics studies with
a time-series design. The variable selection performance of the five models were evaluated on both
simulated and real datasets to provide insight into the most appropriate modelling approach for
intervention response time series experiments.

2. Materials and Methods

2.1. PLS and NPLS

PLS is a latent variable based multivariate linear regression between predictor variables (X)
and dependent variables (Y), which aims at maximizing the covariance between the X and response
Y [14]. N-PLS is an extension of PLS to multiway data [15] where X is an array with more than
two dimensions (also referred to as ways or modes). Compared to PLS, N-PLS provides simpler
models with relatively few parameters and avoids the interference between information from different
modes [16]. Metabolomic data with a time-series design can be structured as a two-way table of
dimensions I × J, where I = S× T (S = number of subjects; T = number of time points), J = number of
metabolites. During the analysis, such data is divided into subsets according to time points for further
analysis separately or analysed as a whole. In either case, the time-series information is not used by the
model and correlation between samples collected at different time points from the same subject is lost.
To make use of this autocorrelation between samples, we transformed the metabolomics time-series
data into a three-way array with a size of S× J × T and analysed it using N-PLS. In the current paper,
both two-way PLS and N-PLS models are used to analyse metabolomic time-series data and they are
referred to as bi-PLS (bilinear-PLS) and tri-PLS (trilinear-PLS) models, respectively.

2.2. PLS-DA and Dummy Y

In standard PLSDA, class labels indicating the group membership of each sample are used as
dependant Y (dummy Y), e.g., y for the intervention group sample is 1 and for the control group sample
is 0 or −1. However, samples obtained from different time points can be very different within the same
class causing large variation within classes and consequently lead to poor predictions. Dividing the
data and building separate models for each time point can reduce this problem but in this case, there
are fewer observations for each comparison, and most importantly, the time response information is not
modelled. To include such variation into the dependent Y and provide more guidance on the separation
of samples, we created a new ‘time response’ dummy Y to reflect how the metabolites respond to the
intervention with time. Specifically, for the target metabolites (Figure 1a–f), their excretion experiences
an increase and a decrease within a certain time frame i.e., their intensities are higher or lower in
the middle of the time-series than that at the beginning or at the end of the time-series. Therefore,
we assign the samples acquired from the middle of the time-series capturing the high intensities of
the target metabolites to a ‘response class’ and samples acquired from the first and last time point to
a ‘no-response class’. Samples from these two classes are labelled with 10 and 1 respectively, which
would be subsequently used as dummy Y in further PLSDA modelling. In our experiments, the model
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performance improved with increasing magnitude of the ‘time response class’ until it reached around
10. Therefore, 10 was used as the label for ‘response class’ in this paper. The value of the time response
should be a user-defined value and it can be adjusted by testing with a range of values to find out the
optimal one achieving the best predictive performance (Q2 or area under the ROC curve) of the model.

2.3. Comparison of Variable Selection by Five PLS Models

In order to take advantage of the time-series data structure and to make use of both group and time
response information, we combined different PLS models (bi-PLS or tri-PLS) with different dummy Ys
(group or time response labels) as shown in Figure 2. Models 1–3 are bi-PLS models built on a two-way
matrix X of size ST × J. Model 4–5 are tri-PLS models built on a three-way array X of size S × J × T.
For models 1–4, group labels, time response labels or their products are used as a one-way dummy Y.
Model 5 uses a two-way dummy Y with group label as the first mode and time response label as the
second mode. We note that model 1 only addresses group differences, while model 2 only addresses
time response changes. Since we are interested in both group and time responses, we included these
two basic models against which to compare the more complex models 3–5. The five PLS models were
applied on the same datasets and their performances were compared.
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Figure 2. Structure of five PLS models for comparison. a The dummy Y in this figure is an example for
data obtained from eight samples collected from two subjects at four time points (0, 2, 4, 24 h after
intervention). Dummy Y in purple and grey colour corresponds to samples collected from Subject 1
(from intervention group) and Subject 2 (from the control group), respectively.

The focus of this paper is on the ability of the models to highlight variables important to the
time-treatment response. In PLS regression, variable selection is used to improve model performance
to provide better predictions [17]. It identifies variables with large influence on the model, which could
be used to interpret the model and to be investigated as potential biomarkers in further studies. In the
current paper, VIP scores were calculated to identify the relevant variables and a bootstrap procedure
was adopted to estimate VIP uncertainty.



Metabolites 2019, 9, 92 5 of 18

2.4. Datasets

2.4.1. Simulated Datasets

In order to assess the variable selection performance of the five PLS models, a data simulation
procedure is proposed to simulate the time-series metabolomic dataset. For a simulated dataset,
we generated J variables and for each variable j, the observations for a subject s in group g are generated
according to the following equation:

xsg = µg ◦ (bs + ws + εs)

where ◦ denotes the entry-wise product and µg = c + atαe−βt. µg is the vector containing the values
of the mean curve for the group g, of dimension 1× T and t is the time. c, a, α, β are generated from
uniform distributions, the intervals of which are adjusted to create different temporal profiles, as shown
in Figure 1a–h for both intervention and control groups (see Figure S1). The 1 × T vector bs controls
inter-individual variability, which follows a normal distribution with zero mean and covariance matrix
σ2

b1T, where 1 denotes a matrix with all entries equal to 1, with σ2
b being the inter-individual variance.

The intra-individual variability denoted by the 1xT vector ws is taken to be multivariate normally
distributed with zero mean and covariance Dw. Dw is a first-order autoregression covariance matrix
of dimension T × T with entries being Dw(i, j) = σ2

wρ
|i− j|, where σ2

w is the intra-individual variance
and ρ is the autocorrelation coefficient between two consecutive time points. The noise εs is normally
distributed with zero mean and covariance matrix σ2

ε1T, of dimension T × T.
Sixteen datasets with different numbers of subjects, numbers of variables, inter-individual

variability, intra-individual variability and number of time points were generated with the above
simulation method. In each of the sixteen datasets, eighty discriminating variables were simulated.
Table S1 provides an overview of the characteristics of all the datasets.

In the simulated dataset, the variables with the temporal profiles, (a)–(f) in Figure 1, were
considered as discriminating variables, which are the target of variable selection while avoiding
selection of variables with profiles (g)–(h) in Figure 1.

2.4.2. Onion Intervention Data

This data is taken from a randomized controlled trial with a crossover design, where participants
were assigned to either an onion consuming group or a control group. Untargeted UPLC-qTOF-MS was
applied to measure the metabolites in urine samples at four time points (0, 2, 4, 24 h after intervention)
for six subjects per group [18]. The resulting raw data consists of 48 samples.

2.4.3. Coffee Intervention Data

This data is generated from a randomized controlled trial with a crossover design, where urine
samples were collected at 0, 0.5, 1, and 2 h after intervention with coffee or control drink (water) from
11 subjects per group. A total of 88 samples were analysed with untargeted UPLC-qTOF-MS [18].

Both onion and coffee raw data were converted to NetCDF files using DataBridge (Waters,
Manchester, UK) and analysed with MZmine 2.19 for data peak detection, alignment and
quantification [19]. The preprocessed data were imported into MATLAB and feature reduction
was applied to remove unreliable variables due to compounds with extreme retention times, variables
not detected in more than 70% of the samples in each subgroup and variables with a coefficient of
variation (CV) in pooled quality control samples higher than 0.7 [20]. The resulting onion and coffee
data sets had dimensions (samples x variables) of 48 × 3209 and 88 × 2321, respectively.

For onion and coffee intervention data, true discriminating variables are not known a priori.
However, to enable evaluation of the variable selection performance on this real data, ‘truly’
discriminating variables were determined by two methods. First, visual inspection was applied
to identify variables exhibiting profiles similar to (a)–(f) in Figure 1. Second, a t-test was applied at each



Metabolites 2019, 9, 92 6 of 18

timepoint and the variable flagged if at least one time point was significant with a nominal p < 0.05.
Variables were considered discriminating if both methods indicated a difference, and were the object of
variable selection procedures.

2.5. Workflow

The assessment of the variable selection of the five PLS models was performed on the simulated
datasets as well as real datasets. The workflow is outlined in Figure 3 and explained in the
following sections.
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datasets (top) and real datasets (bottom). For the simulated datasets, a single cross validation was
applied on one of them to determine the optimal number of latent variables, which was then applied to
all the similar simulated datasets for building the PLS models and variable selection. For real datasets,
the optimal number of latent variables was obtained based on a single cross validation on the whole
dataset and the PLS models were built on the whole dataset for variable selection.

2.5.1. Pre-Processing of Data

Centring and scaling are commonly applied prior to the regression modelling and have a critical
influence on the performance of the model. Centring is performed to shift the mean of the data to
zero and scaling is used to adjust the relative influence of variables with different variability. Centring
across the first mode (samples or subjects) is a widely accepted step for both two-way and three-way
data while scaling is more complicated. Scaling within one mode may disturb other modes [21,22].
In the current study, centring across the first mode was applied for both two-way and three-way
data. For the two-way data, the values for each variable (column) were scaled to unit variance. On
the three-way data, single-slab scaling within the metabolite mode was applied, as recommended
by Gurden et al. [23]. (A slab is a single layer of the three-way array, here corresponding to a single
variable). In single-slab scaling, each variable in the jth slab is scaled to unit root-mean-square of the
slab (RMSj):

RMSj =

√∑S
s=1
∑T

t=1 x2
sjt

ST

x∗sjt =
xsjt

RMSj
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where xsjt is the intensity of metabolite j in the sample acquired from subject s at time point t, x∗sjt is the
single-slab scaled data.

2.5.2. Model Optimization and Evaluation

For both simulated and real data, a single cross validation scheme was implemented, and the
optimal number of latent variables was decided as the smallest number at which the decrease in root
mean squared error in cross validation (RMSECV) between consecutive models was less than 2%. Due
to the similarity of the repeated simulations using the same parameters, for the same type of PLS model,
the number of latent variables was determined on one dataset and adopted for all the other repeats.

A two-stage procedure was used to evaluate the performance of different models on simulated
datasets. Each simulated dataset was divided into training and test sets. First, variable selection
performance was evaluated on the training set. Next, the model’s predictive ability was evaluated on
the test set.

(1). Evaluation of Variable Selection Performance with Training Sets

Balanced bootstrapping was performed to resample B bootstrap datasets [24,25]. Various values
of B were tested and B = 200 was chosen as the smallest value providing consistent results (data not
shown). PLS models with an optimal number of latent variables were built on each bootstrap subset and
the Variable Importance in Projection (VIP) was calculated for each variable [26,27]. For each variable,
the mean (VIP*) and standard deviation (σVIP) of the B VIP values were obtained. The variable was
selected if the lower-bound of the one standard deviation error bar was above 1 (i.e., VIP∗ − σVIP > 1).

To evaluate the variable selection performance of the five models, “Variable Selection ROC curves”
were created. Since the discriminating variables are known, the model selecting the higher number
of discriminating variables and lower number of non-discriminating variables is considered to have
better variable selection performance. After the selected variables were obtained for each model,
the number of variables considered as true positives, false positives, true negatives and false negatives
were calculated according to Table 1. The comparison between convention ROC curve and Variable
Selection ROC curve are shown in Figure S2.

Table 1. Variable selection confusion matrix.

True Condition
Total Variables Discriminating Variables Non-Discriminating Variables

Predicted
Condition

Selected variables True positive (TP) False positive (FP)
Unselected variables False negative (FN) True negative (TN)

The area under the variable selection ROC curve (AUVSC) was calculated to provide an evaluation
of the overall variable selection performance of each model. The following scores were calculated:

Recall = TP/(TP + FN)
Precision = TP/(TP + FP)
F1-score = (β2+1)× Precision × Recall/β2

× (Precision + Recall)

Recall reflects the model’s capacity to select all the discriminating variables. Precision expresses
the ability of the model to avoid the selection of non-discriminating variables. The F1-score is an
overall assessment of the model’s performance on recall and precision, assessing the effectiveness of
the model to identify all the discriminating variables without selecting too many non-discriminating
variables. β is set to 1 to emphasize the importance of both recall and precision for a reasonable
selection of variables.
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(2). Evaluation of predictive ability with test sets

The models with the optimal number of latent variables determined on the training sets were
applied (using all variables) to the corresponding test sets. Predictive variance explained Q2, and area
under the conventional ROC curve (AUC, using all variables) were calculated to evaluate the predictive
ability of the model.

For real datasets, stage (1) evaluation of variable selection performance was performed on the
whole dataset. Stage (2) evaluation was not applied because the numbers of subjects are too small
in the real datasets to obtain an independent test set. Instead, a permutation test was performed to
evaluate the validity of the model.

2.6. Evaluation of the Influence of Characteristics of the Dataset on the Model Performance

Characteristics of metabolome vary, e.g., between different human studies, from humans to
animals, and from studies on diets or drugs thereby leading to different characteristics of the datasets
potentially influencing the performance of the statistical methods. To evaluate such influences and
to provide guidelines for the use of different models, all five PLS models were applied on all sixteen
simulated datasets as shown in Table S1. The results from different datasets were compared to assess
the influence of characteristics on the model performance. The datasets used to compare the evaluation
of different characteristics are shown in Table S2.

All the calculations were performed in MATLAB Version R2015b (8.6.0.267246) (The Mathworks,
Inc, Natick, MA, USA) using scripts modified from N-way toolbox [28] and multiway VIP package [27].
The code for building the five PLS models and performing variable selection is available at
https://github.com/qian-gao/PLSvar_sel. Simulated dataset 3 and anonymised onion intervention data
are provided as examples for testing.

3. Results

3.1. Assessment of Variable Selection Performance on Simulated Data

3.1.1. Overall Evaluation

The overall evaluation of the variable selection, prediction and classification performance of the
five PLS models was performed on Dataset 3 (10 subjects, 3000 variables, 4 time points) and the results
are shown in Table 2 and Figure 4. Dataset 3 was chosen for the overall evaluation because it has the
characteristics that are most similar to those of the real dataset. As expected, bi-PLS models resulted in
a higher number of latent variables than tri-PLS models indicating higher model complexity. Model 3
showed the best variable selection performance in that it provides the highest number of true positives
with a relatively small number of selected variables, consequently leading to the highest precision.
Model 1, 4 and 5 selected similar numbers of true positives while model 1 selected a higher number
of false positives showing low precision. Model 2 showed the best prediction with highest Q2 but,
as expected, provided a poor classification of the samples according to group. Unsurprisingly, only a
few true positive variables were selected together with a large number of false positives resulting in
the poorest precision. The number of latent variables did not have a strong influence on performance.
Restricting all models to two latent variables (see Table S3), showed that the performance was not
markedly different from that of those presented in Table 2.

https://github.com/qian-gao/PLSvar_sel
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Table 2. Performance of five PLS models evaluated on simulated datasets with the optimal number of
latent variables.

Model Data (X or X) Dummy Y # LVa Predictive Ability Variable Selection
Performance

Q2 AUC # Varselb # TPc

1
Mode 1: Sample
Mode 2: Metabolite

Group 3 0.57 (0.02) 0.93 (0.06) 249.3 (11.2) 53.6 (4)

2 Time response 5 1 (0) 0.58 (0.08) 591.1 (16) 12.8 (3.9)

3 Group × Time
response 5 0.83 (0.01) 0.75 (0) 194.5 (9.1) 77.3 (1.6)

4 Mode 1: Subject
Mode 2: Metabolite
Mode 3: Time

Group 1 0.6 (0.01) 1 (0) 165.9 (11.4) 53 (4.1)

5 Mode 1: Group
Mode 3: Time 1 0.6 (0.02) 0.75 (0) 166.7 (13.5) 53.9 (4.3)

a # LV, number of latent variables; b # Varsel, number of selected variables; c # TP, number of true positives. Values
reported are mean and standard deviation across 100 repeats.
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The variable selection performance consists of four criteria—area under the ROC curve (AUVSC), recall,
precision, F1- score, which were calculated based on the variable selection confusion matrix.

Although the variable selection performances of the five models vary, the majority of discriminating
variables were selected by at least two models, and variables selected by model 3 included approximate
all the variables selected by other models (Figure 5). Beyond that, model 3 selected about eight unique
true positives which were selected by none of the other models. The discriminating variables also had
higher ranks in model 3 than the other models indicating its efficiency in variable selection (Figure 6).
Model 4 and 5 resulted in low overall level of VIP scores and relatively larger variation, which caused
a higher number of false negatives.
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Figure 5. Comparison among discriminating variables selected by five PLS models in simulated
Dataset 3. The coloured and white strips represent true positives (selected discriminating variables)
and false negatives (unselected discriminating variables), respectively. The discriminating variables
were arranged in order so that the variables selected by all five models were on the left side and the
variables selected only by one model were on the right side.

Metabolites 2019, 8, x FOR PEER REVIEW  10 of 18 

 

 
 

Figure 5. Comparison among discriminating variables selected by five PLS models in simulated 
Dataset 3. The coloured and white strips represent true positives (selected discriminating variables) 
and false negatives (unselected discriminating variables), respectively. The discriminating variables 
were arranged in order so that the variables selected by all five models were on the left side and the 
variables selected only by one model were on the right side. 

  
Figure 6. Rank of VIP scores for the discriminating variables in five PLS models on simulated Dataset 
3. Bootstrapped VIP scores for all the variables were ranked according to their mean VIP scores in 
descending order. Bars show the mean +/- one standard deviation. Red and black represent the 
variables which are discriminating or non-discriminating, respectively. The horizontal blue dash line 
corresponds to VIP = 1. 

3.1.2. Influence of Characteristics of the Dataset on the Performance of the Five PLS Models 

The influence of number of subjects, number of variables, inter-individual variability, 
intra-individual variability and number of time points was assessed with the simulated datasets and 
the results are shown in Figure 7, Table 3, Table 4, Figure S3 and Figure S4. 

As expected, variable selection performance (recall and precision) of all models was improved 
with increasing number of subjects (Figure 7). Notably, model 3 was only slightly affected by the 

Discriminating Variables 

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Figure 6. Rank of VIP scores for the discriminating variables in five PLS models on simulated Dataset
3. Bootstrapped VIP scores for all the variables were ranked according to their mean VIP scores in
descending order. Bars show the mean +/- one standard deviation. Red and black represent the
variables which are discriminating or non-discriminating, respectively. The horizontal blue dash line
corresponds to VIP = 1.

3.1.2. Influence of Characteristics of the Dataset on the Performance of the Five PLS Models

The influence of number of subjects, number of variables, inter-individual variability,
intra-individual variability and number of time points was assessed with the simulated datasets
and the results are shown in Figure 7, Table 3, Table 4, Figure S3 and Figure S4.

As expected, variable selection performance (recall and precision) of all models was improved
with increasing number of subjects (Figure 7). Notably, model 3 was only slightly affected by the
number of subjects as it maintained its good recall and precision throughout all datasets, suggesting
good robustness to this parameter.
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Figure 7. Influence of number of subjects (6–12) on the variable selection performance of five PLS
models on simulated datasets. Recall and precision were calculated based on the variable selection
confusion matrix.

Table 3. Influence of the number of variables on variable selection performance of the five models on
simulated data.

Model.
Number of Variables (No. Discriminating Variables Kept at 80 in All Cases).

1000 3000 5000 7000
# Varsela # TPb # Varsel # TP # Varsel # TP # Varsel # TP

1 105 (5.2) 51.7 (3.1) 249.3 (11.2) 53.6 (4) 396.3 (12.2) 53.9 (4) 540.4 (20.3) 53.3 (4.4)
2 189.8 (6.9) 15.1 (3.9) 591.1 (16) 12.8 (3.9) 983.1 (19.8) 15.8 (3.7) 1379.1 (22.1) 13.7 (2.1)
3 95.7 (4.6) 74.3 (1.8) 194.5 (9.1) 77.3 (1.6) 304.7 (14.8) 77.1 (2.2) 409.3 (18.2) 77.5 (1.4)
4 86.2 (7.1) 58 (3.6) 165.9 (11.4) 53 (4.1) 243.8 (18.8) 50.2 (4.1) 325.8 (21.7) 49.6 (2.9)
5 89 (5.2) 58.4 (3.8) 166.7 (13.5) 53.9 (4.3) 247.4 (14.8) 51.7 (2.8) 325.2 (15.6) 51.3 (3.3)

a # Varsel, number of selected variables; b # TP, number of true positives. Values reported are mean and standard
deviation across 100 repeats.

Table 4. Influence of inter-individual variability on variable selection performance of five models on
simulated data.

Model
Inter-Individual Variability

0.1 0.3 0.5 0.7
# Varsela # TPb # Varsel # TP # Varsel # TP # Varsel # TP

1 153.5 (8.2) 75.1 (1.9) 249.3 (11.2) 53.6 (4) 301 (11.5) 39.2 (3.8) 323 (11.1) 34.2 (3.3)
2 681.5 (17.6) 2.7 (1.4) 591.1 (16) 12.8 (3.9) 513.5 (15.3) 19.4 (3) 493 (18.3) 19.2 (3.6)
3 143.5 (4.5) 79.9 (0.3) 194.5 (9.1) 77.3 (1.6) 216.5 (14.4) 72.2 (2.5) 243.1 (13.3) 68.3 (3.5)
4 173.9 (12.1) 78.7 (1.2) 165.9 (11.4) 53 (4.1) 155.2 (11.6) 35.9 (4.3) 165.9 (15.8) 27 (2.5)
5 177.5 (12.5) 79.2 (0.9) 166.7 (13.5) 53.9 (4.3) 158.8 (12.7) 35.4 (3.4) 170.1 (13.4) 28.1 (5)

a # Varsel, number of selected variables; b # TP: number of true positives. Values reported are mean and standard
deviation across 100 repeats.

Not surprisingly, the increased number of noisy variables in the data led to a higher number of
selected variables and most of the extra selected variables are false positives (Table 3). The number of
true positives in model 1–3 was not affected by the noisy variables while Model 4 and 5 selected fewer
true positives but also fewer false positives under the influence of noise.

Variable selection performances of the five models were strongly affected by inter-individual
variability in that all the models except model 2 selected fewer true positives with larger inter-individual
variability (Table 4). When the inter-individual variability increased, bi-PLS models tended to maintain
their recall by sacrificing the precision; tri-PLS models tended to maintain the precision by keeping a
stable number of selected variables. Overall, model 3 was less affected by inter-individual variability
than other models showing a good trade-off between recall and precision.

Intra-individual variability had little influence on the variable selection performance of five PLS
models (Figure S3). As expected, a higher number of time points led to better recall of all the five
models and model 1 benefited most from the extra temporal information (Figure S4).
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3.2. Assessment of Variable Selection Performance on Real Data

The five PLS models were applied on the onion intervention data to discover variables
discriminating the control and intervention groups and the results are shown in Figures 8 and 9. Similar
to the simulated dataset, Model 3 provided the best recall and precision resulting in around 28 more
true positives than the second best, model 1. Again, most of the discriminating variables had high
ranks in model 3. Model 4 and model 5 were not capable of selecting many true positives in this more
challenging real dataset, perhaps due to their tendency to maintain precision by keeping a low number
of selected variables when dealing with data having large inter-individual variability. The low overall
level of VIP scores and relatively large variation could also be the reason why so few variables were
selected in Model 5. Interestingly, when variables were selected according to loading weights (instead
of VIP), the performance of model 4 and 5 was improved, and was similar to the performance of model
1, but still not better than Model 3 (see Figure S6). A permutation test was performed which showed
that Model 3 was significant at p < 0.001 (Figure S9).
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Figure 8. Evaluation of the variable selection performance of five PLS models on onion study data.
Recall, precision and F1-score were calculated based on the variable selection confusion matrix. # LV,
number of latent variables; # Varsel, number of selected variables; # TP, number of true positives.



Metabolites 2019, 9, 92 13 of 18
Metabolites 2019, 8, x FOR PEER REVIEW  13 of 18 

 

 

Figure 9. Rank of VIP scores for the discriminating variables in five PLS models on onion study 
dataset. Bootstrapped VIP scores for all the variables were ranked according to their mean VIP scores 
in descending order. Red and black represent the variables which are discriminating or 
non-discriminating, respectively. The horizontal blue dash line corresponds to VIP = 1. 

3.2.1. Coffee Intervention Study 

In coffee intervention study, urine samples were collected at 0, 0.5, 1, and 2 h after intervention. 
Due to the short sample collection period, the temporal profiles of metabolites were incomplete as 
shown in Figure S7. In this case, the time response class was labelled as 1 for the samples collected at 
0 h and 10 for the samples collected at 0.5, 1, and 2 h after intervention. The performances of the five 
PLS models on coffee intervention data were similar to that for simulated data and the results were 
shown in Figures 10 and 11. Model 3 gave the highest number of true positives with a reasonable 
number of selected variables. It also provided the most comprehensive list of selected variables; its 
selection of true positives included almost all the true positives found in all the other models (see 
Figure S8). The permutation test (Figure S9) indicated Model 3 was significant at p < 0.001 confirming 
that it was not overfitted and therefore its good variable selection performance was valid. Tri-PLS 
models were very conservative in that they selected fewer variables but gave very high precision. In 
fact, the discriminating variables had better ranks in tri-PLS models than in Model 1, so that if we 
lower the threshold for bootstrapped-VIP scores, model 4 and 5 would outperform model 1. 

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Figure 9. Rank of VIP scores for the discriminating variables in five PLS models on onion study
dataset. Bootstrapped VIP scores for all the variables were ranked according to their mean VIP scores in
descending order. Red and black represent the variables which are discriminating or non-discriminating,
respectively. The horizontal blue dash line corresponds to VIP = 1.

3.2.1. Coffee Intervention Study

In coffee intervention study, urine samples were collected at 0, 0.5, 1, and 2 h after intervention.
Due to the short sample collection period, the temporal profiles of metabolites were incomplete as
shown in Figure S7. In this case, the time response class was labelled as 1 for the samples collected at 0 h
and 10 for the samples collected at 0.5, 1, and 2 h after intervention. The performances of the five PLS
models on coffee intervention data were similar to that for simulated data and the results were shown
in Figures 10 and 11. Model 3 gave the highest number of true positives with a reasonable number
of selected variables. It also provided the most comprehensive list of selected variables; its selection
of true positives included almost all the true positives found in all the other models (see Figure S8).
The permutation test (Figure S9) indicated Model 3 was significant at p < 0.001 confirming that it
was not overfitted and therefore its good variable selection performance was valid. Tri-PLS models
were very conservative in that they selected fewer variables but gave very high precision. In fact,
the discriminating variables had better ranks in tri-PLS models than in Model 1, so that if we lower the
threshold for bootstrapped-VIP scores, model 4 and 5 would outperform model 1.
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Figure 10. Evaluation of the variable selection performance of five PLS models on coffee study data.
Recall, precision and F1-score were calculated based on the variable selection confusion matrix. # LV,
number of latent variables; # Varsel, number of selected variables; # TP, number of true positives.
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4. Discussion

In this paper, five PLS modelling approaches for metabolomic time series data were evaluated
with simulated and real data with the objective of identifying variables showing discriminatory
temporal patterns. The variable selection performance of the models was compared on simulated
datasets based on their capacity to select discriminating variables while avoiding non-discriminating
variables. The influence on model performance of five factors (number of subjects, number of variables,
inter-individual variability, intra-individual variability and number of time points) was assessed to
provide additional information on the application of suitable models for different scenarios of data.

Several issues have been considered regarding the development of these models. Bootstrapped-VIP
scores were calculated to evaluate the importance of variables in the current paper. This approach was
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shown in previous studies [4,29,30] to be sensitive and precise in selecting relevant variables. However,
we are aware that it might not always be the optimal approach for all models or datasets. For example,
in the analysis of the onion intervention study, the loading weight for the first component was a more
powerful selection tool for N-PLS models. This might be due to the fact that loading weight for the
first component directly reflects the covariance between X and Y. Additional components that are
found in the residuals after removal of previous components from X might be influenced by irrelevant
information in X [31]. Therefore, the inclusion of the information from extra components does not
necessarily result in better variable selection performance of the model. This may also explain why no
strong difference in variable selection performance was observed between the models with different
number of latent variables.

Another issue is the applicability of the proposed model to data with incomplete temporal profiles,
where metabolite levels may not return to pre-intervention levels. For example, the coffee intervention
study collected data at 0 h and 0.5, 1, and 2 h after intervention which means the whole excretion profile
of the metabolites might not be recorded since the sampling period was too short (Figure S7). Our
results from the coffee study indicate that incomplete temporal profiles can still provide information
for the identification of discriminating variables as long as the ‘response class’ and ‘non-response class’
(i.e., responding and nonresponding time points) are accurately assigned.

The resulting models were assessed on both simulated and real data and our results were
consistent in showing that 1) The bi-PLS model with combined time response and group information
as Y (model 3) had the best variable selection performance and the most comprehensive list of true
positives for all datasets tested. 2) The tri-PLS models tested both tend to maintain high precision
by sacrificing recall, however they show robust performance on data with a high number of noise
variables. 3) In datasets with high inter-individual variability, bi-PLS models tend to provide higher
recall while tri-PLS models tend to provide higher precision. As expected, the bi-PLS model with time
response as Y (model 2) performed most poorly under all conditions confirming that time response
alone is not enough to discriminate samples from different classes.

Discovery, identification and validation of biomarkers in metabolomic studies is difficult and
time-consuming. The goal is often to provide a list of discriminating variables with as many true
positives and as few false positives as possible. Based on this goal and our comparison between the
five models, Model 3 provided both good recall and precision and therefore represents a good choice
for suitable datasets with time response profiles in two treatment groups. When the time dependant
response is not recorded, model 1 and 4 may be adopted as the best general approach and they can be
selected in different situation depending on the purpose of the study. For instance, Model 1 would be a
good choice for exploring the data and collecting as many relevant variables as possible since it tends
to keep high recall at any costs. For studies aiming at finding biomarkers with potential to classify new
samples, model 4 has the potential to select the most suitable metabolites because of its good precision.

Time-series designs are widely used in life science research and the purpose is to observe the
response of a biological system to a certain challenge over a defined time period. Although this work
is demonstrated with LC-MS metabolomic data, it is applicable also to other types of multivariate
time-series data, such as RNA-seq experiments aiming to detect the gene expression differences
between experimental groups. Several methods have been proposed previously to deal with this type
of time-series data. Bar-Joseph et al. [32] describes gene expression over time as a continuous curve and
identifies genes showing significant temporal expression differences based on the difference between
the curves. To accurately fit the curve representing the temporal profile, this method usually requires
relatively long time series and homogeneous data which is not often available due to limitations of
the study design or high inter-individual variability. Compared to this method, in our study Model 3
successfully dealt with short time series data and maintained high recall and precision even in the
presence of high inter-individual variability. Regression-based methods have also been developed
where gene expression is described as a function of time and regression coefficients of each gene
from different experimental groups are compared using ANOVA [33]. Compared to this method,
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our Model 3 and 5 retain the multivariate structure and thus take correlations between variables into
account. ANOVA-simultaneous component analysis (ASCA) is another popular method that can be
applied to time-series data [34]. The data is separated into the variations that contributed by different
experimental design factors such as time, dose of intervention, and their interactions using ANOVA
equation. Simultaneous component analysis is then applied to different variations to approximate the
scores and loadings in each sub-model. ASCA is efficient in separating design factors and exploring
the data correspondingly. However, it is not able to select variables with specific response profiles
(e.g., (a)–(f)) as our models do but only indicate if there is an overall difference. Moreover, these five
models have low computational cost.

In summary, both simulated and real data demonstrate that bilinear PLS model with group × time
response as dummy Y is a powerful method for variable selection in time-series experiments.
It maintains good performance in the presence of noise and high inter-individual variability. In general,
bi-PLS models tend to provide higher recall while tri-PLS models tend to provide higher precision.
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