Higher Derivative Gravity and Conformal Gravity from Bimetric and Partially Massless Bimetric Theory
Abstract
:1. Introduction
1.1. A Review of the Different Theories Considered
1.1.1. Higher Derivative Gravity
1.1.2. Conformal Gravity
1.1.3. Ghost-Free Bimetric Theory
1.1.4. Linear Partially Massless Theory and Beyond
1.1.5. Partially Massless Bimetric Theory
1.2. Summary of Results
2. Higher Curvature Gravity from Bimetric Theory
2.1. Outline of Obtaining Higher Derivative Gravity from Bimetric Theory
2.2. Review of Ghost-Free Bimetric Gravity
2.3. The Algebraic Solutions for S and f
2.3.1. Exact Solution in the Model:
2.3.2. Perturbative Solution for General :
2.4. Higher Derivative Gravity from Bimetric Theory
3. The Ghost Issue and Relevance to New Massive Gravity
4. Conformal Gravity from Partially Massless Bimetric Theory
4.1. The Correspondence in
4.2. A Step Further: Equivalence between CG and PM Bimetric Theory
5. Discussions
- (1)
- The analysis in this paper shows that the HR bimetric theory captures the essential features of higher derivative gravity action Equation (1), while at the same time avoiding the spin-2 ghost problem. The correspondence between the two theories found here is not a complete equivalence of equations of motion, but can still be used to generate higher derivative completions of the four-derivative gravity actions.
- (2)
- The equation of motion in the candidate PM bimetric theory at the four-derivative level was shown to coincide with the Bach equation of conformal gravity. While this result was motivated by the general correspondence between bimetric and HD gravity actions, it turns out to bypass the general correspondence and, in fact, was an equivalence at the level of equations of motion. As a result, it has genuine consequences for the bimetric PM proposal, as discussed in the paper.
Acknowledgments
Author Contributions
Conflicts of Interest
A. Higher Derivative Treatment of Free Massive Spin-0 and Spin-2 Fields
A.1. Higher Derivative Treatment of Massive Scalars
A.2. First Approach: The Equivalent Higher Derivative Equations
A.3. Second Approach: A More General Higher Derivative Action
A.4. Truncation to a Four Derivative Theory
A.5. Higher Derivative Treatment of Linearized Bimetric Theory
B. The General Perturbative Solution of the Equation for
References
- Hassan, S.F.; Rosen, R.A. Bimetric Gravity from Ghost-free Massive Gravity. J. High Energy Phys. 2012, 2012, 126. [Google Scholar] [CrossRef]
- Hassan, S.F.; Rosen, R.A. Confirmation of the Secondary Constraint and Absence of Ghost in Massive Gravity and Bimetric Gravity. J. High Energy Phys. 2012, 2012, 123. [Google Scholar] [CrossRef]
- Hassan, S.F.; Schmidt-May, A.; von Strauss, M. On Partially Massless Bimetric Gravity. Phys. Lett. B 2012, 726, 834–838. [Google Scholar] [CrossRef]
- Hassan, S.F.; Schmidt-May, A.; von Strauss, M. Bimetric Theory and Partial Masslessness with Lanczos-Lovelock Terms in Arbitrary Dimensions. Class. Quant. Grav. 2012, 30, 184010. [Google Scholar] [CrossRef]
- Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D 1977, 16, 953–969. [Google Scholar] [CrossRef]
- Stelle, K.S. Classical Gravity with Higher Derivatives. Gen. Rel. Grav. 1978, 9, 353–371. [Google Scholar] [CrossRef]
- Bergshoeff, E.A.; Hohm, O.; Townsend, P.K. Massive Gravity in Three Dimensions. Phys. Rev. Lett. 2009, 102, 201301. [Google Scholar] [CrossRef]
- Ohta, N. A Complete Classification of Higher Derivative Gravity in 3D and Criticality in 4D. Class. Quant. Grav. 2012, 29, 015002. [Google Scholar] [CrossRef]
- Kleinschmidt, A.; Nutma, T.; Virmani, A. On unitary subsectors of polycritical gravities. Gen. Rel. Grav. 2013, 45, 727–749. [Google Scholar] [CrossRef]
- Eliezer, D.A.; Woodard, R.P. The Problem of Nonlocality in String Theory. Nucl. Phys. B 1989, 325, 389–469. [Google Scholar] [CrossRef]
- Simon, J.Z. Higher Derivative Lagrangians, Nonlocality, Problems And Solutions. Phys. Rev. D 1990, 41, 3720–3733. [Google Scholar] [CrossRef]
- Biswas, T.; Mazumdar, A.; Siegel, W. Bouncing universes in string-inspired gravity. J. Cosmol. Astropart. Phys. 2006. [Google Scholar] [CrossRef]
- Biswas, T.; Gerwick, E.; Koivisto, T.; Mazumdar, A. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 2012, 108, 031101. [Google Scholar] [CrossRef]
- Biswas, T.; Koshelev, A.S.; Mazumdar, A.; Vernov, S.Y. Stable bounce and inflation in non-local higher derivative cosmology. J. Cosmol. Astropart. Phys. 2012. [Google Scholar] [CrossRef]
- Nojiri, S.I.; Odintsov, S.D. Ghost-free F(R) bigravity and accelerating cosmology. Phys. Lett. B 2012. [Google Scholar] [CrossRef]
- Bach, R. Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungsbegriffs. Math. Zeitschr. 1921, 9, 110–135. (In German) [Google Scholar] [CrossRef]
- Kaku, M.; Townsend, P.K.; van Nieuwenhuizen, P. Gauge Theory of the Conformal and Superconformal Group. Phys. Lett. B 1977, 69, 304–308. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Tseytlin, A.A. Renormalizable asymptotically free quantum theory of gravity. Nucl. Phys. B 1982, 201, 469–491. [Google Scholar] [CrossRef]
- Lee, S.C.; van Nieuwenhuizen, P. Counting of States In Higher Derivative Field Theories. Phys. Rev. D 1982, 26, 934–937. [Google Scholar] [CrossRef]
- Riegert, R.J. The Particle Content Of Linearized Conformal Gravity. Phys. Lett. A 1984, 105, 110–112. [Google Scholar] [CrossRef]
- Maldacena, J. Einstein Gravity from Conformal Gravity. 2011; arXiv:1105.5632, [hep-th]. [Google Scholar]
- Lu, H.; Pang, Y.; Pope, C.N. Conformal Gravity and Extensions of Critical Gravity. Phys. Rev. D 2011, 84, 064001. [Google Scholar] [CrossRef]
- Lu, H.; Pang, Y.; Pope, C.N. Black Holes in Six-dimensional Conformal Gravity. Phys. Rev. D 2013, 87, 104013. [Google Scholar] [CrossRef]
- Metsaev, R.R. Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields. J. High Energy Phys. 2012, 2012, 062. [Google Scholar] [CrossRef]
- Mannheim, P.D. Making the Case for Conformal Gravity. Found. Phys. 2012, 42, 388–420. [Google Scholar] [CrossRef]
- Schmidt, H.J. Fourth order gravity: Equations, history, and applications to cosmology. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 209–248. [Google Scholar] [CrossRef]
- Alexandrov, S.; Krasnov, K.; Speziale, S. Chiral description of ghost-free massive gravity. J. High Energy Phys. 2013, 2013, 068. [Google Scholar] [CrossRef]
- Soloviev, V.O.; Tchichikina, M.V. Bigravity in Kuchar's Hamiltonian formalism: The special case. Phys. Rev. D 2013, 88, 084026. [Google Scholar] [CrossRef]
- Hassan, S.F.; Schmidt-May, A.; von Strauss, M. On Consistent Theories of Massive Spin-2 Fields Coupled to Gravity. J. High Energy Phys. 2013, 2013, 86. [Google Scholar] [CrossRef]
- Volkov, M.S. Cosmological solutions with massive gravitons in the bigravity theory. J. High Energy Phys. 2012, 2012, 035. [Google Scholar] [CrossRef]
- Von Strauss, M.; Schmidt-May, A.; Enander, J.; Mortsell, E.; Hassan, S.F. Cosmological Solutions in Bimetric Gravity and their Observational Tests. J. Cosmol. Astropart. Phys. 2012. [Google Scholar] [CrossRef]
- Comelli, D.; Crisostomi, M.; Nesti, F.; Pilo, L. FRW Cosmology in ghost-free Massive Gravity. J. High Energy Phys. 2012. [Google Scholar] [CrossRef]
- Berg, M.; Buchberger, I.; Enander, J.; Mortsell, E.; Sjors, S. Growth Histories in Bimetric Massive Gravity. J. Cosmol. Astropart. Phys. 2012. [Google Scholar] [CrossRef]
- Park, M.; Sorbo, L. Vacua and instantons of ghost-free massive gravity. Phys. Rev. D 2013, 87, 024041. [Google Scholar] [CrossRef]
- Sakakihara, Y.; Soda, J.; Takahashi, T. On Cosmic No-hair in Bimetric Gravity and the Higuchi Bound. Prog. Theor. Exp. Phys. 2013, 2013, 033E02. [Google Scholar] [CrossRef]
- Akrami, Y.; Koivisto, T.S.; Sandstad, M. Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality. J. High Energy Phys. 2013, 2013, 99. [Google Scholar] [CrossRef]
- Capozziello, S.; Martin-Moruno, P. Bounces, turnarounds and singularities in bimetric gravity. Phys. Lett. B 2013, 719, 14–17. [Google Scholar] [CrossRef]
- Mohseni, M. Gravitational Waves in Ghost Free Bimetric Gravity. J. Cosmol. Astropart. Phys. 2012. [Google Scholar] [CrossRef]
- Baccetti, V.; Martin-Moruno, P.; Visser, M. Gordon and Kerr-Schild ansatze in massive and bimetric gravity. J. High Energy Phys. 2012. [Google Scholar] [CrossRef]
- Baccetti, V.; Martin-Moruno, P.; Visser, M. Null Energy Condition violations in bimetric gravity. J. High Energy Phys. 2012. [Google Scholar] [CrossRef]
- Baccetti, V.; Martin-Moruno, P.; Visser, M. Massive gravity from bimetric gravity. Class. Quant. Grav. 2013, 30, 015004. [Google Scholar] [CrossRef]
- Volkov, M.S. Hairy black holes in the ghost-free bigravity theory. Phys. Rev. D 2012, 85, 124043. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Shahalam, M. Statefinder hierarchy of bimetric and galileon models for concordance cosmology. J. Cosmol. Astropart. Phys. 2013, 10, 047. [Google Scholar] [CrossRef]
- Maeda, K.-I.; Volkov, M.S. Anisotropic universes in the ghost-free bigravity. Phys. Rev. D 2013, 87, 104009. [Google Scholar] [CrossRef]
- De Rham, C.; Gabadadze, G. Generalization of the Fierz-Pauli Action. Phys. Rev. D 2010, 82, 044020. [Google Scholar] [CrossRef]
- De Rham, C.; Gabadadze, G.; Tolley, A.J. Resummation of Massive Gravity. Phys. Rev. Lett. 2011, 106, 231101. [Google Scholar] [CrossRef]
- De Rham, C. Massive Gravity. Living Rev. Rel. 2014. [Google Scholar] [CrossRef]
- Hassan, S.F.; Rosen, R.A. Resolving the Ghost Problem in nonlinear Massive Gravity. Phys. Rev. Lett. 2012, 108, 041101. [Google Scholar] [CrossRef]
- Hassan, S.F.; Rosen, R.A.; Schmidt-May, A. Ghost-free Massive Gravity with a General Reference Metric. J. High Energy Phys. 2012. [Google Scholar] [CrossRef]
- Hassan, S.F.; Schmidt-May, A.; von Strauss, M. Particular Solutions in Bimetric Theory and Their Implications. Int. J. Mod. Phys. D 2014, 23, 1443002. [Google Scholar] [CrossRef]
- Akrami, Y.; Hassan, S.F.; Könnig, F.; Schmidt-May, A.; Solomon, A.R. Bimetric gravity is cosmologically viable. Phys. Lett. B 2015, 748, 37–44. [Google Scholar] [CrossRef]
- Deser, S.; Waldron, A. Acausality of Massive Gravity. Phys. Rev. Lett. 2013, 110, 111101. [Google Scholar] [CrossRef]
- Deser, S.; Sandora, M.; Waldron, A.; Zahariade, G. Covariant constraints for generic massive gravity and analysis of its characteristics. Phys. Rev. D 2014, 90, 104043. [Google Scholar] [CrossRef]
- Deser, S.; Sandora, M.; Waldron, A. Nonlinear Partially Massless from Massive Gravity? Phys. Rev. D 2013, 87, 101501. [Google Scholar] [CrossRef]
- De Rham, C.; Hinterbichler, K.; Rosen, R.A.; Tolley, A.J. Evidence for and Obstructions to Non-Linear Partially Massless Gravity. Phys. Rev. D 2013, 88, 024003. [Google Scholar] [CrossRef]
- Higuchi, A. Forbidden Mass Range For Spin-2 Field Theory In De Sitter Space-time. Nucl. Phys. B 1987, 282, 397–436. [Google Scholar] [CrossRef]
- Deser, S.; Waldron, A. Partial masslessness of higher spins in (A)dS. Nucl. Phys. B 2001, 607, 577–604. [Google Scholar] [CrossRef]
- Francia, D.; Mourad, J.; Sagnotti, A. (A)dS exchanges and partially-massless higher spins. Nucl. Phys. B 2008, 804, 383–420. [Google Scholar] [CrossRef]
- Joung, E.; Lopez, L.; Taronna, M. On the cubic interactions of massive and partially-massless higher spins in (A)dS. J. High Energy Phys. 2012. [Google Scholar] [CrossRef]
- Joung, E.; Lopez, L.; Taronna, M. Generating functions of (partially-)massless higher-spin cubic interactions. J. High Energy Phys. 2013. [Google Scholar] [CrossRef]
- Zinoviev, Y.M. All spin-2 cubic vertices with two derivatives. Nucl. Phys. B 2013, 872, 21–37. [Google Scholar] [CrossRef]
- Zinoviev, Y.M. On massive spin 2 interactions. Nucl. Phys. B 2007, 770, 83–106. [Google Scholar] [CrossRef]
- Deser, S.; Joung, E.; Waldron, A. Gravitational and self-coupling of partially massless spin 2. Phys. Rev. D 2012, 86, 104004. [Google Scholar] [CrossRef]
- Boulware, D.G.; Deser, S. Can gravitation have a finite range? Phys. Rev. D 1972, 6, 3368–3382. [Google Scholar] [CrossRef]
- De Felice, A.; Gumrukcuoglu, A.E.; Lin, C.; Mukohyama, S. Nonlinear stability of cosmological solutions in massive gravity. J. Cosmol. Astropart. Phys. 2013. [Google Scholar] [CrossRef]
- Hassan, S.F.; Rosen, R.A. On nonlinear Actions for Massive Gravity. J. High Energy Phys. 2011. [Google Scholar] [CrossRef]
- Hassan, S.F.; Schmidt-May, A.; von Strauss, M. Proof of Consistency of Nonlinear Massive Gravity in the Stúckelberg Formulation. Phys. Lett. B 2012, 715, 335–339. [Google Scholar] [CrossRef]
- De Rham, C.; Renaux-Petel, S. Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity. J. Cosmol. Astropart. Phys. 2013. [Google Scholar] [CrossRef]
- Paulos, M.F.; Tolley, A.J. Massive Gravity Theories and limits of Ghost-free Bigravity models. J. High Energy Phys. 2012. [Google Scholar] [CrossRef]
- Volkov, M.S. Exact self-accelerating cosmologies in the ghost-free massive gravity—The detailed derivation. Phys. Rev. D 2012, 86, 104022. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; University of Chicago press: Chicago, IL, USA, 1984; p. 491. [Google Scholar]
- Nurowski, P.; Plebanski, J.F. Nonvacuum twisting type N metrics. Class. Quant. Grav. 2001, 18, 341–351. [Google Scholar] [CrossRef]
- Liu, H.-S.; Lu, H.; Pope, C.N.; Vazquez-Poritz, J. Not Conformally-Einstein Metrics in Conformal Gravity. Class. Quant. Grav. 2013, 30, 165015. [Google Scholar] [CrossRef]
- Deffayet, C.; Mourad, J.; Zahariade, G. A note on “symmetric” vielbeins in bimetric, massive, perturbative and non perturbative gravities. J. High Energy Phys. 2013. [Google Scholar] [CrossRef]
- Hassan, S.F.; Kocic, M.; Schmidt-May, A. Absence of ghost in a new bimetric-matter coupling. 2014; arXiv:1409.1909, [hep-th]. [Google Scholar]
- Hinterbichler, K.; Rosen, R.A. Interacting Spin-2 Fields. J. High Energy Phys. 2012. [Google Scholar] [CrossRef]
- Hassan, S.F.; Schmidt-May, A.; von Strauss, M. Metric Formulation of Ghost-Free Multivielbein Theory. 2012; arXiv:1204.5202, [hep-th]. [Google Scholar]
- Bonora, L.; Pasti, P.; Bregola, M. Weyl Cocycles. Class. Quant. Grav. 1986. [Google Scholar] [CrossRef]
- Metsaev, R.R. 6d conformal gravity. J. Phys. A 2011, 44, 175402. [Google Scholar] [CrossRef]
- Boulanger, N.; Erdmenger, J. A Classification of local Weyl invariants in D=8. Class. Quant. Grav. 2004, 21, 4305–4316. [Google Scholar] [CrossRef]
- Deser, S.; Sandora, M.; Waldron, A. No consistent bimetric gravity? Phys. Rev. D 2013, 88, 081501. [Google Scholar] [CrossRef]
- Joung, E.; Li, W.; Taronna, M. No-Go Theorems for Unitary and Interacting Partially Massless Spin-Two Fields. Phys. Rev. Lett. 2014, 113, 091101. [Google Scholar] [CrossRef]
- Garcia-Saenz, S.; Rosen, R.A. A non-linear extension of the spin-2 partially massless symmetry. J. High Energy Phys. 2015. [Google Scholar] [CrossRef]
- Hassan, S.F.; Schmidt-May, A.; von Strauss, M. Extended Weyl Invariance in a Bimetric Model. 2015. In preparation. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.F.; Schmidt-May, A.; Von Strauss, M. Higher Derivative Gravity and Conformal Gravity from Bimetric and Partially Massless Bimetric Theory. Universe 2015, 1, 92-122. https://doi.org/10.3390/universe1020092
Hassan SF, Schmidt-May A, Von Strauss M. Higher Derivative Gravity and Conformal Gravity from Bimetric and Partially Massless Bimetric Theory. Universe. 2015; 1(2):92-122. https://doi.org/10.3390/universe1020092
Chicago/Turabian StyleHassan, Sayed Fawad, Angnis Schmidt-May, and Mikael Von Strauss. 2015. "Higher Derivative Gravity and Conformal Gravity from Bimetric and Partially Massless Bimetric Theory" Universe 1, no. 2: 92-122. https://doi.org/10.3390/universe1020092
APA StyleHassan, S. F., Schmidt-May, A., & Von Strauss, M. (2015). Higher Derivative Gravity and Conformal Gravity from Bimetric and Partially Massless Bimetric Theory. Universe, 1(2), 92-122. https://doi.org/10.3390/universe1020092