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Abstract: Combining gravity with quantum theory is still a work in progress. On the one hand,
classical gravity is the geometry of space-time determined by the energy–momentum tensor of matter
and the resulting nonlinear equations; on the other hand, the mathematical description of a quantum
system is Hilbert space with linear equations describing evolution. In this paper, various measures in
Hilbert space will be presented. In general, distance measures in Hilbert space can be divided into
measures determined by energy and measures determined by entropy. Entropy measures determine
quasi-distance because they do not satisfy all the axioms defining distance. Finding a general rule to
determine such a measure unambiguously seems to be fundamental.
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1. Introduction

What defines a metric, that is, a way to measure distances on a given manifold? In the
case of classical physics, i.e., non-quantum physics, the answer is provided by the general of
relativity (GR). Metrics are determined by the distribution of masses and currents of matter.
The modern approach to this problem began with Clifford’s work [1] in 1876. Thirty-nine
years later, Einstein gave the solution in the form of the general theory of relativity.

The concept of a metric is a basic one and it enters almost every equation of physics.
For example, in order to define one of the basic physics operators, the Laplace operator, it
is necessary to first determine a metric.

In the case of quantum physics whose states are defined in Hilbert space, there is no
such single measure of distance. On the contrary, there are many measures of distance
between states, some used in quantum information theory (also applied in research related
to quantum gravity, see, e.g., [2]) but none of them follow from some fundamental principle.
Since Hilbert space is a vector complex space, one can introduce a metric that is induced
from CN and call this metric canonical. This gives, as a result, the Fubini-Study (FS) metric;
this can be used as a basis to determine the distance. In the case when Hilbert space is
represented by square-integrable functions L2(M) on some manifold M, then the scalar
product on this Hilbert space is given by the volume form dµ on M. Again, this scalar
product leads to the FS metric. For both finite N and for L2(M), the largest distance between
the points of these Hilbert spaces is normalized to π. However, such a canonical metric
does not represent the complexity of the quantum system. Nevertheless, as is well known,
the probabilistic interpretation of the quantum system is based on this metric.

Another issue is the geometrization of thermodynamics. There are such metrics as
the Weinhold metric or Ruppeiner metric, where the relationship between them is found.
However, also in this case, none of the metrics are derived from some fundamental equation.
Since the thermodynamics of black holes are widely studied and constitue a well-known
topic, the combination of the geometrization of thermodynamics and black holes seems
promising. Many papers have been written on this topic, e.g., [3–5].

The fundamental classical concept describing a physical system is the action integral.
The energy–momentum tensor of a system results as a variation of the action integral
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with respect to a metric. The general relativity links the energy–momentum tensor to the
geometric properties of space-time, i.e., the Riemann tensor. In contrast, the quantum
concept describing the system is the density matrix. And there is no theory or relationship
that links the density matrix to the quantum properties of space-time, because such concepts
do not exist. One may ask: are there any hints in existing theories that would provide
such ideas?

A first such hint may be the concept of entropy determined by the density matrix. One
should look for an extension of the concept of entropy in way analogous to how energy
density and momentum density combine in the energy–momentum tensor.

A second such hint is geometrodynamics [6]. One way to find a quantum theory of
gravity is to try to quantize the general theory of relativity using canonical quantization.
In this approach, the Wheeler–DeWitt (WDW) equation plays a fundamental role. Many
interesting results have been obtained following this way of reasoning, e.g., [7–9]. So,
the concepts that allow us to describe quantum space-time should be obtained in the
framework of geometrodynamics from the WDW equation. Although this is not a work
on quantum gravity (QG), and is only an attempt to find an analogy of the equivalence
principle in quantum mechanics, we will mention the two most common and fruitful
approaches to the issue of QM as a metric theory, the canonical and covariant approaches.
In the 1960s, De Witt presented attempts to quantize the gravitational field in canonical
and covariant approaches [10–12]. Since then, much has been understood and achieved
but many problems remain.The actual question is whether these approaches are equivalent
or not, namely whether or not they possibly represent a single formal theory. Otherwise,
the issue should be that of finding out which of them, if any—simply on the basis of general
physical principles—may appear as the correct one. Regarding the possible alternative
routes to QG theory, covariant quantization should provide hints to the considered problem.
The literature on the covariant quantization of gravity is vast, so the authors will cite only
two: one [13] and another that is a new approach to the Hamiltonian formulation of
gravity [14,15].

Moreover, in quantum field theory in curved space-time (the zero approximation of quan-
tum gravity), the problem of determining the vacuum state of the field arises. There are many
vacuum states which are not unitary-related. For example, in the Schwarzschild space-time
with a free scalar field, there are three well-known vacuum states: Hartle–Hawking, Boulware
and Unruh. Each of these gives different expectation values of the field operators [16].
Another example is de Sitter spacetime with families of vacua states of a quantum scalar
field [17]. So, the natural question pertains to the relationship between such states. A good
measure to determine these relationships is the distance between them.

In this paper, we propose a metric in a general case of a Hilbert space of a quantum
mechanical system. This metric is an infinitely dimensional version of the Fisher–Rao
metric on an infinitely dimensional sphere S∞. We apply such a metric for the simplest
quantum systems: a free particle and harmonic oscillator. The “distance” given by the
relative entropy is derived and calculated for different quantum systems.

This study is organized as follows. In Section 2, we recall how the distance is deter-
mined in classical physics. In Section 3, the metrics in the space of probability distributions
are presented and the Fisher–Rao (FR) metric is derived as a condition for the stationarity
of the “action integral”. In Section 4, we give the metric in the Hilbert space of a quantum
mechanical system. In Section 5, we find the FR metrics in the case of a free particle and
harmonic oscillator. In Section 6, we present and calculate the “distance” given by the
relative entropy. Section 7 is devoted to the conclusions.

2. Measure of the Distance in Space-Time

To determine the distance in space-time M with fixed symmetry and the matter with a
given energy–momentum tensor Tµν, it is necessary to solve Einstein’s equations:

Gµν(g) = 16πTµν(g) (1)
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that is, to determine the metric field g where Gµν is the Einstein tensor. This is a nontrivial
task and there are few exact solutions. From the metric “g” obtained in this way, it is
necessary to find the line (one-dimensional submanifold) γ along which the distance will
be measured. The line γ is parameterized by the affine parameter “s”:

γ = {x ∈ M : x = x(s)} (2)

and “x”s are coordinates on M. The equation of such a line is found from the stationarity
of the functional:

δL = 0,

where

L[γ] =
1
2

s2∫
s1

gµν(x)
dxν

ds
dxν

ds
ds (3)

with the fixed boundary points: x1 = x(s1) and x2 = x(s2). This leads to the geodesic
equation:

d2xµ

ds2 + Γµ
νρ

dxν

ds
dxρ

ds
= 0, (4)

with the boundary conditions x1 = x(s1) and x2 = x(s2). In order to solve this equation in
an unambiguous way, it is necessary to give initial conditions:

x(s1) = x1 and
dx
ds

∣∣∣∣
s=s1

=
·
x1. (5)

Thus, one has to express these initial conditions by the boundary conditions. The
expression of boundary conditions by initial conditions is unambiguous when the points x1
and x2 are “close”. The expression “close” means that x1 and x2 are not conjugate. Finally,
the distance d between points x1 and x2 is given by the integral:

0 < d(x1, x2) =

s2∫
s1

√∣∣∣∣gµν
dxν

ds
dxν

ds

∣∣∣∣ds. (6)

Since the metric g at each point has a signature (−,+,+,+), there are spatial-like
d2(x1, x2) > 0, time-like d2(x1, x2) < 0 and light-like d2(x1, x2) = 0 distances. So, the
geodesic is a line of maximum length. A line with a minimum length of zero between two
points (causally related) always exists, and it is the sum of zero geodesics.

3. Metrics for Space of Probability Distributions

A random variable X ∈ Ω (where the set Ω can be continuous or discrete) is given a
probability distribution p:

p = p(X; θ1, . . . , θN), (7)

where the numbers (θ1, . . . , θN) ≡ Θ are the parameters of the distribution p belonging to
the general case of some manifold M. So, p is the function defined on the Cartesian product
Ω×M with values between 0 and 1 for each Θ:

p : Ω×M→ [0, 1]. (8)

Moreover, there is the normalization condition:∫
Ω

p(X; Θ)dµ = 1, (9)
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where dµ is a measure on Ω. This condition defines the manifold M. So, the given
probability distribution p determines M; on the other hand, this distribution itself depends
on the points of M. Thus, the space of probability distributions is obtained:

P = {p(X; Θ)} (10)

as the space of functions over M. Questions arise: how can the distance between two
distributions on P be determined? Is there any distinguished set of metrics on M?

In the geometric approach, the metric is given by the relation (e.g., [18]):

gab(Θ; F) =
∫

Ω
p

∂F
∂θa

∂F
∂θb dµ =

∫
Ω

p
[
F′(p)

]2 ∂p
∂θa

∂p
∂θb dµ, (11)

where F is a function of p and prime means differentiation with respect to p. From this
equation, one can obtain an “action integral” S for the function F depending on the one
degree of freedom p:

S[F] =
∫

L[F; p]dp,

where the Lagrangian L[F; p] for this action is equal to

L[F; p] = p
[
F′(p)

]2. (12)

Hence, the stationarity condition for this “action integral” leads to the Euler–Lagrange
equation:

d
dp
(

pF′
)
= 0, (13)

with the solution:
F(p) = k ln p + F0, (14)

where k and F0 are integration constants. In this way, the metric for this solution is of the
following form:

gab(Θ) = k2
∫

Ω
p(X; Θ)

∂ ln p
∂θa

∂ ln p
∂θb dµ = k2

∫
Ω

∂a p∂b p
p

dµ. (15)

This is the Fisher–Rao (FS) metric. The other form of this metric is as follows:

gab(Θ) = −k2
∫

Ω
p∂2

ab ln pdµ. (16)

Hence, the infinitesimal square of length on M has the following form:

dl2 = gabdθadθb (17)

As an example, we will consider the Gauss distribution:

p
(

X; θ1, θ2
)
=

1√
2πθ1

exp

[
−
(
X− θ2)2

2(θ1)
2

]
. (18)

Thus, the FR metric is well-known and equal to (for k = 1):

dl2 =
1

(θ1)
2

(
d
(

θ2
)2

+ 2d
(

θ1
)2
)

. (19)
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This is the metric on the Poincare upper-half plane H defined by the condition θ1 > 0.
Thus, the geodesic distance between two Gauss distributions:

p1 = p(X; Θ1) and p2 = p(X; Θ2) (20)

in this metric is equal to:

d(p1, p2) = 2 sinh−1

 |Θ2 −Θ1|

2
√

θ1
2θ1

1

, (21)

where Θa =
(
θ1

a , θ2
a
)
, a = 1, 2, |Θ| =

√
(θ1)

2
+ (θ2)

2 and sinh−1 X = ln
(

X +
√

1 + X2
)

.
If we omit the stationarity condition, the metric for the Gauss distribution takes the follow-
ing form:

g11 =

√
2

θ1

∫
R1

p3(z)
[
F′(p)

]2[1− 4z2 + 4z4
]
dz, (22)

g22 =
1√
2θ1

∫
R1

p3(z)
[
F′(p)

]2z2dz, (23)

g12 = 0, (24)

where
p(z) =

1√
2πθ1

exp
(
−z2

)
. (25)

If we require that the following condition is satisfied:

p3[F′(p)
]2

= p, (26)

then F(p) = ln p and, again, the FR metric is obtained. So, one can say that, for the Gaussian
distribution, the stationarity condition and above condition (which can be referred to as a
simplicity condition) give the same result, namely the FR metric.

4. FR Metric in Quantum Mechanics

Quantum mechanics provides probability distributions P expressed by wave functions
ψ. In general, the wave function Ψ depends on time t, the parameters of the system ω and
the initial state ψ,

Ψ = Ψ(x, t, ω, ψ) (27)

where x denotes the spatial coordinates. If Ĥ is the time-independent Hamiltonian
of the system, then, in the eigenbasis ψn of Ĥ with eigenvalues En, the initial state
ψ = ∑

n=0
cnψn(x; ω) evolves as follows:

Ψ(x, t, ω, c) = exp
(
−itĤ

)
ψ = ∑

n
cn exp(−itEn(ω))ψn(x; ω). (28)

The complex coefficients c = (cn) are normalized: ∑
n=0
|cn|2 = 1. The wave function Ψ

can also be expressed via the following:

Ψ(x; t, ω) =
∫

RN
dNyK(x, t; y, 0)ψ(y; ω), (29)

propagator K(y, 0; x, t) with the initial condition:

K(x, 0; y, 0) = δ(N)(x− y) (30)
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and N is the number degrees of freedom. In basis ψn, the propagator takes the follow-
ing form:

K(x, t; y, 0) = ∑
n

exp(−itEn(ω))ψ∗n(x; ω)ψn(y; ω) (31)

Thus, the probability distribution P is equal to

P(x; t, ω, c) = ∑
m,n

c∗mcn Imn(x, t, ω), (32)

where

Imn(x, t, ω) =
∫

R2N
dNydNzK∗(x, t; y, 0)K(x, t; z, 0)ψ∗m(y; ω)ψn(z; ω) = I∗nm(x, t, ω) (33)

The probability normalization condition is satisfied:∫
RN

dN xP(x; t, ω, c) = 1. (34)

Thus, for a fixed time t and parameters ω, the FR metric is a function of the complex
numbers cm and the metric has the following components:

gmn(c) = −
∫

RN
dN xP

∂2 ln P
∂cm∂cn

, (35)

gmn(c) = −
∫

RN
dN xP

∂2 ln P
∂c∗m∂cn

, (36)

gmn(c) = −
∫

RN
dN xP

∂2 ln P
∂c∗m∂c∗n

= g∗mn(c). (37)

Thus, we obtain
gmn(c; t, ω) = ∑

k,p
c∗k c∗p Akp

mn(c; t, ω), (38)

gmn(c; t, ω) = −
∫

RN
dN xImn(x, t, ω) + ∑

k,p
ckc∗p Amp

kn (c; t, ω), (39)

where

Akp
mn(c; t, ω) =

∫
RN

dN x
Ikm(x, t, ω)Ipn(x, t, ω)

P(x; t, ω, c)
(40)

Since the eigenfunctions ψn form a complete and orthogonal system, the first integral
on the right-hand side is equal to∫

RN
dN xImn(x, t, ω) = δmn. (41)

Thus,
gmn(c; t, ω) = −δmn + ∑

k,p
ckc∗p Amp

kn (c; t, ω). (42)

The complex numbers “c” form the infinitely dimensional unit sphere S∞. Thus, the
obtained metric is a metric on S∞ and has the following form:

ds2 = gmndcmdcn + g∗mndc∗mdc∗n + gmndc∗mdcn. (43)

This is real since ds2 =
(
ds2)∗. The distance between two states given by two se-

quences, c = (cn) and c′ = (c′n), (which are points on S∞) is given by the length of the
geodesic γ originating at c and ending at c′. This geodesic is determined by the above
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metric. The obtained metric, (38) and (39), is the metric on the infinitely dimensional
sphere S∞.

In the next section, we will use the above formulas for two quantum systems.

5. Metric for Free Particle and Harmonic Oscillator

As the first example, we consider a free quantum particle. The propagator for the free
particle (in 1D) of mass m has the following form:

K(x, t; y, 0) =
√

m
2πih̄t

exp

[
im(x− y)2

2h̄t

]
(44)

and the wave functions are indexed by the wave vector k:

ψk(x) =
1√
2π

exp(ikx). (45)

The integrals (33) are labeled by the wave vectors k and l. The system has only one
parameter m. Thus, inserting above formulas into (33), one obtains

Ikl(x; t, m) =
m

(2π)2h̄t

∫
R2

dydz exp

[
−im(x− y)2

2h̄t
+

im(x− z)2

2h̄t

]
exp(ikz− ily). (46)

This integral is easy to compute and is equal to

Ikl(x; t, m) =
1

2π
exp

[
ix(k− l)− ih̄t

2m

(
k2 − l2

)]
. (47)

In this way, the probability distribution (32) is

P(x; t, m, c) =
1

2π ∑
k,l

c∗k cl exp
[

ix(k− l)− ih̄t
2m

(
k2 − l2

)]
, (48)

where the parameters space M given by condition (9) is an infinitely dimensional sphere
parametrized by the infinite sequence (cn). Thus, the metric (38) and (39) is determined by
the integrals (40). In the considered case, they are given as follows:

Akp
ln (c; t, m) =

1
2π

exp
[
− ih̄t

2m

(
k2 − l2 + p2 − n2

)]
×

×
∫

R1
dx

exp[ix(k− l + p− n)]

∑
r,s

c∗r cs exp
[
ix(r− s)− ih̄t

2m (r2 − s2)
] . (49)

For the next example, we consider a one-dimensional quantum harmonic oscillator
with the energy operator:

Ĥ(m, ω) =
1

2m
p̂2 +

1
2

mω2 x̂2, (50)

where m and ω are the mass and frequency, respectively. The eigenstates ψn and eigenvalues
En are equal to

ψn(x; m, ω) =
1√
2nn!

(
λ2

π

)1/4

exp
(
−λ2x2

2

)
Hn(λx), (51)

En = h̄ω(n + 1/2) (52)



Universe 2024, 10, 34 8 of 14

where λ2 = mω/h̄ and Hn are Hermite polynomials with n = 0, 1, 2, . . . In this case, the
wave function Ψ(x; t, m, ω) is obtained from some initial state Ψ(x; 0, m, ω) = ψ(x; m, ω):

Ψ(x; t, m, ω) =
∫

R1
dyK(y, 0; x, t)ψ(y; m, ω), (53)

where the propagator K is equal to

K(x, t; y, 0) =
λ√

2πi sin(ωt)
exp

[
iλ2

2

(
x2 + y2

)
cot(ωt)− iλ2xy

sin(ωt)

]
(54)

and
K(x, 0; y, 0) = δ(x− y).

Hence, the probability distribution P takes the following form:

P(x; t, m, ω) =
∫

R2
dydzK∗(x, t; y, 0)K(x, t; z, 0)ψ∗(y; m, ω)ψ(z; m, ω). (55)

Finally, we obtain

P(x; t, m, ω, cn) =
λ2

2π sin(ωt) ∑
n=0
|cn|2|In(x; t, m, ω)|2, (56)

where

In(x; t, m, ω) =
1√
2nn!

(
λ2

π

)1/4

exp
[
− iλ2x2e−iωt

2 sin(ωt)

]
×

×
∫

R1
dyHn(λy) exp

[
iλ2eiωt

2 sin(ωt)

(
y− xe−iωt

)2
]

. (57)

So,

gmn = −2δmn

∫
R1

dx|In(x; t, m, ω)|2 + 4cmcn

∫
R1

dx
|Im(x; t, m, ω)|2|In(x; t, m, ω)|2

P(x; t, m, ω, cn)
. (58)

The first integral on the right side is equal to∫
R1

dx|In(x; t, m, ω)|2 =
2π

λ2 sin(ωt). (59)

Thus, the metric is

gmn = −δmn
4π

λ2 sin(ωt) + 4cmcn

∫
R1

dx
|Im(x; t, m, ω)|2|In(x; t, m, ω)|2

P(x; t, m, ω, cn)
. (60)

As one can see from the above examples, even in the simplest quantum systems, the
determination of the Fisher–Rao metric on the infinitely dimensional sphere is a nontrivial
task. The coefficients of the metric are given by the integrals (40).

However, if one fixes (cn) on S∞, in the case of an oscillator (this procedure can also
be applied to the free particle), the parameter space becomes

M(n) = {(m, ω) : m > 0 and ω > 0} ⊂ R2. (61)

The manifold M(n) is two-dimensional with coordinates given by two positive num-
bers, m and ω. This space corresponds to a set of harmonic oscillators with different masses
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m and frequencies ω being in the same state given by the sequence (cn). Hence, the
probability distribution related to the eigenstate ψn is

pn(x; m, ω) =
1

2nn!
λ√
π

exp
(
−λ2x2

2

)
H2

n(λx) (62)

and the Fisher–Rao metric g(n) on M(n) obtained from (16) has the following components
(with k = 1):

g(n)mm =
1

2m2

(
1− n2 − n

)
, (63)

g(n)ωω =
1

2ω2

(
1− n2 − n

)
, (64)

g(n)mω =
1

4mω

(
1− n2 + 3n

)
. (65)

The line element dl2
(n) is equal to

dl2
(n) = a

dm2

m2 + a
dω2

ω2 + b
dmdω

mω
, (66)

where a =
(
1− n2 − n

)
/2, b = (1− n2 + 3n)/2. The coordinates U and V are defined

as follows:

U = ln

[
ω

ω0

(
m
m0

)b/(2a)
]

, (67)

V = ln
m
m0

, (68)

The metric (66) takes a diagonal form:

dl2
(n) = adU2 + η(n)dV2 (69)

with

η(n) =
1
8

(
1− n2 − 5n

)(
3− 3n2 + n

)
1− n2 − n

. (70)

The constants m0 and ω0 have the mass and s−1 dimensions, respectively, and have to
be determined. Since m0ω0/h̄ has a dimension of (length)−2, we make following ansatz:

λ2
0 =

m0ω0

h̄
= l−2

Pl =
c3

h̄G
,

where lPl is the Planck length. So,

ω0m0 =
c3

G
.

For the successive n, the metric takes the following form:

dl2
(0) =

1
2

dU2 +
3
8

dV2,

dl2
(1) = −

1
2

dU2 +
5
8

dV2,

dl2
(2) = −

5
2

dU2 − 13
8

dV2.

It can be seen from this that, for n ≥ 2, the distance becomes purely imaginary.
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6. Entropy as a Measure of Distance in Hilbert Space

The measure of a “distance” between states, ρ̂ and σ̂, is the relative entropy Srel :

Srel(ρ̂||σ̂) = Tr[ρ̂ log ρ̂− ρ̂ log σ̂]. (71)

It can be rewritten as follows:

Srel(ρ̂||σ̂) = S[σ̂]− S[ρ̂] + Tr[(σ̂− ρ̂) log σ̂], (72)

where
S[σ̂] = −Tr(σ̂ log σ̂)

is the von Neumana entropy. The entropy Srel is positive : Srel(ρ̂||σ̂) ≥ 0 and is equal to
zero if ρ̂ = σ̂. Thus, one can consider this entropy as the square of the “distance” between
states ([18], p. 44). We compute this distance for pure states. Let the pure states have the
form: σ̂ = diag(0, . . . , 1, 0, . . . , 0) (1 is in a-th place) and ρ̂ = diag(0, . . . , 1, 0, . . . , 0) (1 is in
b-th place). Since (I − σ̂)n = I − σ̂ and

ln(σ̂) = ln[I − (I − σ̂)] = − ∑
n=1

(I − σ̂)n

n

one obtains that Srel(ρ̂||σ̂) is equal to

Srel(ρ̂||σ̂) = −Tr[(σ̂− ρ̂)(I − σ̂)] ∑
n=1

1
n

. (73)

Using relations σ̂ = σ̂2 and Tr(σ̂ρ̂) = 0, we finally obtain

Srel(ρ̂||σ̂) = Tr[ρ̂] ∑
n=1

1
n
= +∞. (74)

Hence, the square of the “distance” between two pure states is infinite. In the case
when σ̂ is a pure state and ρ̂ is a mixed state, then

Srel(ρ̂||σ̂) = −S[ρ̂]− Tr[ρ̂ log σ̂] =

(1− Trρ̂σ̂) ∑
n=1

1
n
− S[ρ̂]. (75)

However, in this case, this square of the “distance” can be finite, because the difference
of the infinity sum of the harmonic series and entropy of the mixed state (which can also be
infinity) could give finite results.

Thermal States and Relative Entropy

The thermal state is defined by the maximum entropy S and fixed energy E. Thus, for
an energy operator Ĥ, a density matrix σ̂ is equal to

σ̂t(β) =
1
Z

exp
(
−βĤ

)
, (76)

where Z = Tr
[
exp

(
−βĤ

)]
and β = 1/(kBT) is the Lagrange multiplier, which has

interpretations of the inverse of temperature T. The relative entropy Srel between the states
σ̂t and ρ̂ takes the following form:

Srel(ρ̂||σ̂t) = βTr
(

ρ̂Ĥ
)
− βTr

(
σ̂tĤ

)
− (S[ρ̂]− S[σ̂t; β]), (77)
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where S[σ̂t; β] is the maximum entropy S and the term Tr
(

σ̂t̂H
)

is fixed energy E:

Tr
(

σ̂t Ĥ
)
= E(β). (78)

Hence,
Srel(ρ̂||σ̂t) = βTr

(
ρ̂Ĥ
)
− S[ρ̂] + S[σ̂t; β]− βE(β). (79)

The last two terms are related to free energy: F(β) = E− S/β. Finally, the relative
entropy is equal to

Srel(ρ̂||σ̂t) = βTr
(

ρ̂Ĥ
)
− S[ρ̂]− βF(β). (80)

If ρ̂ is also a thermal state with an energy operator ĥ

ρ̂t(b) =
1
U

exp
(
−bĥ

)
, (81)

where U = Tr exp
(
−bĥ

)
, then their relative entropy is

Srel(ρ̂t||σ̂) = −S[ρ̂t; b]− 1
U

Tr
[
exp

(
−bĥ

)
log σ̂

]
. (82)

The other form of the last equation is

Srel(ρ̂t||σ̂t) = S[σ̂t; β]− S[ρ̂t; b]− βTr
(

σ̂Ĥ
)
+

β

U
Tr
[
exp

(
−bĥ

)
Ĥ
]
. (83)

In this way, the relative entropy for two thermal states with the fixed energy operators
Ĥ and ĥ is parametrized by the two positive numbers β and b, with an interpretation of the
inverse temperatures (modulo Boltzman constant).

When Ĥ = ĥ, the last relation becomes

Srel(ρ̂t||σ̂t) = S[σ̂t; β]− S[ρ̂t; b] + βE(b)− βE(β). (84)

As an example, we will find the relative entropy for a free scalar field in thermody-
namic equilibrium. Such a field is equivalent to an infinite set of non-interacting harmonic
oscillators with a maximum entropy S and fixed energy E. The entropy is equal to

S[σ̂t; β] = 24 π5kB
45

1

(h̄c)3
V
β3 , (85)

and the energy E(β) is equal to

E(β) =
4π · 3!

(h̄c)3β4
V

π4

90
+ E0 (86)

where E0 is the infinite ground-state energy and V is the volume of space. Hence, the
relative entropy takes the following form:

Srel(ρ̂t||σ̂t) =
4π5VkB

45(h̄c)3β3

[
1− 4

(
β

b

)3
+ 3
(

β

b

)4
]

. (87)

If the parameter β is in the vicinity of b

β = b + δ (88)
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for 0 < δ/b << 1, then their relative entropy is equal to

Srel(ρ̂t(δ)||ρ̂t(b + δ)) =
4π5VkB

45(h̄c)3 6
δ2

b5 + O
(

δ3
)

. (89)

Taking the interpretation of relative entropy as the square of the distance between
states, the above relationship can be written as an expression for a one-dimensional (one
parameter b) metric:

dl2 = A
db2

b5 , (90)

where A = 8π5VkB/
[
15(h̄c)3

]
. In terms of the energy E, the last formula takes the

following form:

dl2 =
kb
8

[
4π5V

15(h̄c)3

]1/4

E−5/4dE2. (91)

So, the distance in this metric between two states of a free scalar field with fixed
energies E2 > E1 is equal to

d(E1, E0) =
1
3

√
8kB

[
4π5V

15(h̄c)3

]1/8(
E3/8

2 − E3/8
1

)
. (92)

7. Conclusions

The method of determining the metric and distance in classical and quantum physics
is shown in the diagram below. The left column refers to classical physics and the right
column refers to quantum physics:

(E, p) (ρ̂, ?)
↓ ↓(

Tµν

) (S, ?)
↓

↓((
Tµν

)
,
(

Rµ
νρσ

))
↓ (EP)

δ
∫
(R + Λ + Lm) = 0

↓
d = d

(
x, y;

(
gµν

))
⇐=

?

H
↓

Ĥψ = i∂tψ
↓

d(ρ̂, σ̂) = . . .

,

where (EP) means the equivalence principle. As follows, EP is the key idea that is needed to
determine the geometry of space-time. Question marks indicate unknown complementary
concepts. It can be said that the ambiguity in determining the distance or metric in quantum
physics (e.g., [19–21]) is due to the lack of a counterpart for the equivalence principle.

Moreover, there is an intriguing relationship between pure states and the Kasner metric
in n + 1 dimensional space-time. This metric describes vacuum cosmological solutions and
has the following form:

ds2 = dt2 −
n

∑
a=1

t2pa dx2
a ,

where the numbers p1, . . . , pn obey two constraints:

n

∑
a=1

pa =
n

∑
a=1

p2
a = 1.

Thus, formally, one can consider these numbers {pa} as the eigenvalues of a certain
density matrix ρ̂ corresponding to a pure state.
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The obtained metric (38) and (39) on an infinitely dimensional sphere S∞ is given by
the integrals (40) and was obtained as the FR metric for the infinitely dimensional Hilbert
space. It is known that, when the Hilbert space is CPN , then the FR metric becomes the
Fubini–Study metric. Thus, the metric (38) and (39) should be reduced to the Fubini–Study
in the case of finite dimensions. But this is not obvious. The sphere S∞ should be modeled
by some kind of limit of N-dimensional spheres SN :

“ lim
N→∞

”SN = S∞.

Moreover, the metrics on SN have to be invariant under the unitary grup U(N).
For finite N, the normalization condition leads to an odd value of N = 2n + 1, so the sphere
S2n+1 is represented as the homogenous manifold:

U(n + 1)
U(n)

' S2n+1.

From the other side, CPn is also represented as the homogenous manifold:

S2n+1

S1 ' CPn.

One of the U(n) invariant metrics is the Fubini–Study (FS) metric. But there are other
metrics which remain hidden. In the FS metric, the volume of CPN is equal to

volFS

(
CPN

)
=

πN

N!
.

Hence, for N → ∞, the volume in the FS metric tends to zero. It can be seen from this
that the FS metric does not lead to the metric (38) and (39).

In the case of a measure related to relative entropy, completely different distances
are obtained (e.g., [22–25]), which should not be surprising. Without some fundamental
principle, each measure is equally appropriate. In this article, we have presented only very
specific measures. Of course, there are more of them.

One of the unsolved problems in quantum cosmology is finding the “norm” of the
universe’s wave function. In this case, the WDW equation is defined on a minisuperspace
and the wave function is known for different boundary conditions [26–33]. So, the use of
the approach outlined in this work is most reasonable. Finding the “distance” for the wave
functions describing the expanding universe and the collapsing universe is a task to be
accomplished. A more difficult issue is the “distance” between states associated with black
holes. These issues will be addressed in our next paper.
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