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Abstract: In this study, we developed a new method for finding the quantum probability density
of arrival at the detector. The evolution of the quantum state restricted to the region outside of the
detector is described by a restricted Hamiltonian that contains a non-Hermitian boundary term.
The non-Hermitian term is shown to be proportional to the flux of the probability current operator
through the boundary, which implies that the arrival probability density is equal to the flux of the
probability current.
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1. Introduction

Consider a quantum particle described by a spatially extended wave packet impinging
on the detector region D. Since different parts of the packet approach D at different times,
there is an inherent quantum uncertainty about the time at which the particle arrival to
D will be detected. The arrival time problem refers to making a theoretical prediction for
the probability distribution Parr(t) that the arrival will be detected at time t. Remarkably,
there are many different theoretical approaches to this problem, which make different
measurable predictions (for reviews see [1–4]), and it is not clear, neither theoretically nor
experimentally, which approach is correct.

In general, quantum mechanics makes unambiguous probabilistic predictions for
various phenomena; so why is the arrival time problem a problem at all? The central point
is that quantum mechanics makes unambiguous probabilistic predictions for measurements
of observables represented by self-adjoint operators, while time, in the usual formulation
of quantum mechanics, is not an observable in this sense. Time is a classical parameter,
not a quantum operator; so, by starting from general axioms of quantum theory, it is not
immediately clear how to make quantum probabilistic predictions associated with the
measurement of time. In particular, one does not know at which time a quantum event,
such as a particle detection, will happen, so one must use quantum mechanics to compute
a probability that the event will happen at a given time. The problem then is how to
compute this probability when the time is not an operator. The arrival time problem is
the simplest version of this problem, where the quantum event is taken to be the particle
arrival to the detector, or more operationally, a click in the detector, which happens when
the particle arrives.

One class of possibilities (see, e.g., [1,4] and the references therein) is to reformulate
quantum mechanics such that time is treated as an operator. However, the problem with
such approaches is that they may require a radical reformulation of the general principles
of quantum mechanics, which makes them rather controversial. There are also axiomatic
approaches, such as those by Kijowski and others (see, e.g., [1,4] and the references therein)
that postulate axioms for the arrival time distribution. However, the problem is that these
axioms seem somewhat ad hoc because they cannot be derived from the standard axioms of
quantum mechanics. Another class of possibilities (see, e.g., [4] and the references therein)
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is that of semi-classical approaches. However, the problem here is that they also seem too
ad hoc and lack a deeper understanding of the problem.

Yet another class [5–12] of approaches to the arrival time problem predicts that Parr(t)
is given by the flux of the probability current. Within this class, some approaches are
based on standard quantum mechanics (QM) [5–8], while others are based on the Bohmian
formulation of QM in terms of particle trajectories [9–12]. In this paper, we present one
new approach to the arrival time problem, based on standard QM, which confirms that the
arrival time distribution is given by the flux of the probability current. Given that it is not
generally accepted in the community that the arrival time distribution should be given by
the flux of the probability current, we believe that it is valuable to present one more piece
of independent theoretical evidence that it is indeed so.

The approach in this paper was partially inspired by the approach in [8], but was
motivated with the goal of avoiding certain mathematical subtleties that appeared in that
work. The approach in [8], which arose from the development of earlier ideas in [13,14],
is based on time evolution governed by a projected Hamiltonian H = π̄Hπ̄, where π̄ is
the projector to the region D̄ defined as the complement of the detector region D. The
mathematical subtleties appear because, in the position representation, π̄ is represented
by a characteristic function with a discontinuity at the boundary of D̄, which leads to
ambiguities when the second-derivative operator appearing in H acts on a function with a
discontinuity. The goal of this paper was to develop a formalism based on an alternative
definition of H that, at the same time, captures the same physics as H in [8,13,14], but uses
a different mathematical definition of H so that the mathematical difficulties appearing
in [8,14] are avoided.

The paper is organized as follows. In Section 2, we start by defining the notion of the
restricted wave function, which in D̄ coincides with the full wave function, but vanishes
outside of D̄ where the full wave function, in general, does not vanish. This implies that
the norm of the restricted wave function, in general, is not conserved in time. Then, in
Section 3, we define the restricted Hamiltonian H, which governs the evolution of the
restricted wave function. It turns out that the restricted Hamiltonian is non-trivial at the
boundary of D̄, because it has a non-Hermitian boundary term proportional to the flux of
the probability current operator, which accounts for the non-conservation of the norm of
the restricted wave function. In Section 4, we explain how this non-conservation of the
norm implies that the arrival time distribution is equal to the flux of the probability current.
The conclusions are drawn in Section 5, and, in Appendix A, an alternative derivation of
the non-Hermitian part is presented.

2. Restricted Wave Function

Let us start with an elementary review to establish the notation. Consider a particle
moving in a 3-dimensional space R3. It is described by a wave function

ψ(x, t) = ⟨x|ψ(t)⟩, (1)

where |ψ(t)⟩ is the state in the Hilbert space H denoted in Dirac’s “bra-ket” formalism.
Here, |ψ(t)⟩ and ψ(x, t) satisfy the respective Schrödinger equations

H|ψ(t)⟩ = i∂t|ψ(t)⟩, Ĥψ(x, t) = i∂tψ(x, t), (2)

where H is an abstract operator, while Ĥ is its coordinate representation given by a concrete
derivative operator

H =
p2

2m
+ V(x), Ĥ = −∇2

2m
+ V(x), (3)

and we work in units: h̄ = 1. The relation between H and Ĥ can be expressed as

⟨x|H|ψ(t)⟩ = Ĥψ(x, t). (4)
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Now, after this review, let us divide the full space R3 into a detector region D and its
complement D̄, so that D ∪ D̄ = R3, D ∩ D̄ = ∅. Physically, such a division is motivated
with the goal of studying the arrival of the particle to the detector. We define the restricted
wave function ψD̄(x, t) as

ψD̄(x, t) ≡
{

ψ(x, t) for x ∈ D̄
0 for x /∈ D̄.

(5)

It can be expressed as
ψD̄(x, t) = ⟨x|π̄|ψ(t)⟩, (6)

where
π̄ =

∫
D̄

d3x |x⟩⟨x| (7)

is the projector to D̄. Thus, we see that the restricted wave function can also be expressed as

ψD̄(x, t) = ⟨x|ψD̄(t)⟩, (8)

where
|ψD̄(t)⟩ = π̄|ψ(t)⟩. (9)

Since ψD̄(x, t) coincides with ψ(x, t) in D̄, but vanishes outside of D̄, we have∫
R3

d3x |ψD̄(x, t)|2 ≤
∫
R3

d3x |ψ(x, t)|2. (10)

In fact, since we assume that ψ(x, t) is a traveling wave packet (rather than a stationary
state), one expects that the left-hand side depends on time t, despite the fact that the
right-hand side is time independent. This means that the norm of ψD̄(x, t) is expected
to change with time, i.e., that the norm ∥ψD̄(t)∥ = ⟨ψD̄(t)|ψD̄(t)⟩1/2 is time-dependent.
Consequently, one expects that the evolution of |ψD̄(t)⟩ is not unitary. By contrast, the
evolution of the full state |ψ(t)⟩ is unitary.

The restricted wave function can also be interpreted in terms of wave function collapse.
When a part of the wave function enters the detector region D, there is a non-zero probability
that the detector will detect the particle, i.e., that the wave function will collapse to the
region D. However, there is also a probability that the detector will not detect the particle;
in which case, we know that the particle is still outside of the detector region D, so the wave
function collapses to the region D̄. Thus, the restricted wave function can be interpreted as
the collapsed wave function, corresponding to a negative measurement outcome by the
detector. For more details of this interpretation, see [8].

From a theoretical point of view, the exact specification of the detector region D in
our analysis remains somewhat ambiguous. In principle, one could define it using a more
detailed model. But in practice, we believe that an experimental approach would be more
fruitful. One could take an actual detector and impinge on it particles with wave functions
that are very narrow in the position space, so that the particles are effectively “classical”
in the sense that their arrival time can be predicted as a classical deterministic event. In
this way, one can determine the relevant detector region D experimentally for the specific
detector at hand. After that, once D is known, one can conduct a non-trivial theoretical
analysis with “truly quantum” non-narrow wave functions.

3. Restricted Hamiltonian

The full state evolves with time as |ψ(t)⟩ = e−iHt|ψ(0)⟩. This evolution is unitary
because the Hamiltonian H is Hermitian. On the other hand, since one expects that the
evolution of the restricted state |ψD̄(t)⟩ is not unitary, its evolution can be described as

|ψD̄(t)⟩ = e−iHt|ψD̄(0)⟩, (11)
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where H is expected to be some non-Hermitian operator. Our goal was to find an explicit
expression for H.

Heuristically, since ψD̄(x, t) and ψ(x, t) coincide for x ∈ D̄, the coordinate represen-
tation Ĥ must coincide with the derivative operator Ĥ in (3) for x ∈ D̄. Similarly, since
ψD̄(x, t) = 0 for x /∈ D̄, the operator Ĥ can be taken as the trivial zero operator for x /∈ D̄.
However, particular care should be taken concerning the definition of Ĥ at the boundary of
D̄, which is the only place where subtleties in the definition of Ĥ can be expected. For this
purpose, we found it more convenient to work with the abstract H operator, rather than its
coordinate representation Ĥ. Thus, since the arbitrary matrix element of H is

⟨ψb|H|ψa⟩ =
∫
R3

d3x ψ∗
b (x)

[
−∇2

2m
+ V(x)

]
ψa(x), (12)

we postulate that the arbitrary matrix element of H is

⟨ψb|H|ψa⟩ ≡
∫

D̄
d3x ψ∗

b (x)

[
−∇2

2m
+ V(x)

]
ψa(x), (13)

which has the same form as (12), except that the integration region is restricted from R3 to
D̄. Hence, we refer to H as the restricted Hamiltonian. The goal now is to find the explicit
operator representation of H, which is analogous to H in (3).

We first write (13) as

⟨ψb|H|ψa⟩ = − 1
2m

∫
D̄

d3x ψ∗
b∇

2ψa + Vba, (14)

where
Vba =

∫
D̄

d3x ψ∗
b Vψa =

∫
D̄

d3x Vψ∗
b ψa =

∫
D̄

d3x ψ∗
b ψaV. (15)

Hence, partial integration and the Gauss theorem give

⟨ψb|H|ψa⟩ =
1

2m

∫
D̄

d3x (∇ψb)
∗(∇ψa)

− 1
2m

∫
D̄

d3x ∇(ψ∗
b∇ψa) + Vba

=
1

2m

∫
D̄

d3x (∇ψb)
∗(∇ψa)

− 1
2m

∫
∂D̄

dS · (ψ∗
b∇ψa) + Vba, (16)

where ∂D̄ is the boundary of D̄ and dS is the area element directed outwards from D̄. Next,
we use the identities

ψa(x) = ⟨x|ψa⟩, ψ∗
b (x) = ⟨ψb|x⟩,

−i∇ψa(x) = ⟨x|p|ψa⟩, i∇ψ∗
b (x) = ⟨ψb|p|x⟩, (17)

implying that (16) can be written as

⟨ψb|H|ψa⟩ =
1

2m
⟨ψb|pπ̄p|ψa⟩

− i
2m

∫
∂D̄

dS · ⟨ψb|x⟩⟨x|p|ψa⟩

+⟨ψb|π̄V|ψa⟩. (18)
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Since π̄ commutes with V, the last term in (18) can also be written in alternative forms:

⟨ψb|π̄V|ψa⟩ = ⟨ψb|Vπ̄|ψa⟩ = ⟨ψb|π̄Vπ̄|ψa⟩, (19)

thus, we see that H can be written in the operator form

H =
pπ̄p
2m

− i
2m

∫
∂D̄

dS · |x⟩⟨x|p + π̄Vπ̄. (20)

The Hermitian conjugation gives

H†
=

pπ̄p
2m

+
i

2m

∫
∂D̄

dS · p|x⟩⟨x|+ π̄Vπ̄, (21)

thus, we see that the first and the last term are Hermitian operators, but that the middle
term is not. This shows that the restricted Hamiltonian H is not a Hermitian operator,
owing to the boundary term.

To better isolate the source of non-Hermiticity, it is useful to write H as

H =
H + H†

2
+

H − H†

2
, (22)

which is convenient because the first term is manifestly Hermitian and the second term
manifestly anti-Hermitian. From (20) and (21), we see that the two terms in (22) can be
written as

H + H†

2
=

pπ̄p
2m

+
1
2

∫
∂D̄

dS · K + π̄Vπ̄,

H − H†

2
= − i

2

∫
∂D̄

dS · J, (23)

where

K(x) =
i[p, |x⟩⟨x|]

2m
, J(x) =

{p, |x⟩⟨x|}
2m

(24)

are Hermitian operators, [A, B] = AB − BA denotes a commutator, and {A, B} = AB + BA
denotes an anti-commutator. Thus, (22) can be written in the final form

H =

[
pπ̄p
2m

+ π̄Vπ̄

]
+

1
2

∫
∂D̄

dS · K − i
2

∫
∂D̄

dS · J. (25)

The first term (namely, the term in square brackets) is Hermitian and does not depend
on the boundary. It is non-negative, provided that V is non-negative. The second term
(namely, the term involving K) is a Hermitian, but not non-negative, boundary term. The
last term (namely, the term involving J) is an anti-Hermitian boundary term.

Equation (25) represents the main novelty of this paper, so let us discuss its significance
qualitatively. While the full Hamiltonian (3) describes the evolution of the full wave function
everywhere in full 3-dimensional space, (25) is the restricted Hamiltonian, which describes
the evolution of the restricted wave function, namely, the part of the wave function defined
only on the 3-dimensional region D̄. The π̄ is the projector to the region D̄, so the term in
square brackets in (25) is just the projected version of (3). The projector π̄ commutes with
V = V(x), but does not commute with p. Hence, the potential energy term π̄Vπ̄ can also be
written as π̄V or Vπ̄, but the kinetic energy term proportional to pπ̄p must we written in
that form, and not, e.g., as π̄pπ̄pπ̄ or pπ̄pπ̄. The commutator [π̄, p], in the x-representation,
is proportional to a Dirac δ-function on the boundary of D̄, so replacing pπ̄p with π̄pπ̄pπ̄ or
pπ̄pπ̄ would produce spurious boundary terms. In (25), all boundary terms are represented
explicitly and unambiguously, without δ-functions, as surface integrals over the boundary
∂D̄ of D̄. The most important feature of the boundary term is the fact that it contains an
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anti-Hermitian part involving J, the physical significance of which we discuss in more
detail in the subsequent sections.

Note that the mean value of J is (see also [15])

j(x) ≡ ⟨ψ|J(x)|ψ⟩

=
−i
2m

[ψ∗(x)∇ψ(x)− (∇ψ∗(x))ψ(x)], (26)

which is the standard probability current in quantum mechanics. For that reason, we refer
to J as the probability current operator.

As we said, the fact that H in (11) is not Hermitian implies that the norm

⟨ψD̄(t)|ψD̄(t)⟩ = ⟨ψD̄(0)|eiH†te−iHt|ψD̄(0)⟩ (27)

is not conserved in time. Since 1

∂t

(
eiH†te−iHt

)
=

(
∂teiH†t

)
e−iHt + eiH†t

(
∂te−iHt

)
= eiH†tiH†e−iHt − eiH†tiHe−iHt

= eiH†ti
(

H† − H
)

e−iHt

= eiH†t
(
−
∫

∂D̄
dS · J

)
e−iHt, (28)

where, in the last equality, we used (23), we see that (27) implies

d
dt
⟨ψD̄(t)|ψD̄(t)⟩ = −⟨ψD̄(t)|

∫
∂D̄

dS · J(x)|ψD̄(t)⟩

= −
∫

∂D̄
dS · ⟨ψD̄(t)|J(x)|ψD̄(t)⟩

= −
∫

∂D̄
dS · jD̄(x, t). (29)

Note that the wave functions in (16) are full wave functions, not restricted wave
functions. The full wave functions are assumed to be twice differentiable at the boundary
of D̄. This is because the volume integral can only be turned into the surface integral via the
Gauss theorem in this case . On the other hand, the current jD̄ in (29) is expressed in terms
of the restricted wave function ψD̄, which has a discontinuity at D̄, implying that it is not
differentiable. To avoid this apparent inconsistency, we must be more careful in specifying
what we mean by integral over the “boundary”. This really means that the surface of
integration ∂D̄ is located infinitesimally away from the boundary towards the interior of
D̄, where ψD̄ coincides with ψ. The consequence is that jD̄ in (29) coincides with j defined
by (26), implying that (29) can finally be written as

d
dt
⟨ψD̄(t)|ψD̄(t)⟩ = −

∫
∂D̄

dS · j(x, t). (30)

This shows that the rate of change of the norm of the state restricted to the region D̄ is given
by the flux of the probability current through the boundary of D̄.

Physically, the most important consequence of the evolution governed by the restricted
Hamiltonian (25) with an anti-Hermitian boundary term is the change of the norm of the
restricted wave function, as described by (30). The result (30) is rather intuitive, it can be
visualized as a wave function leaking from the region D̄, where the flux of the probability
current quantifies how much of the wave function leaks through the boundary of D̄.
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4. Arrival Time Distribution

Suppose that at the initial time t = 0, the particle is outside of the detector region D.
This means that

|ψ(0)⟩ = |ψD̄(0)⟩, (31)

i.e., the initial full state is equal to the initial state restricted to D̄. Then, (27) is the probability
P̄(t) that, at time t, the particle is in D̄

P̄(t) = ⟨ψD̄(t)|ψD̄(t)⟩. (32)

Hence, the probability that the particle is in the detector region D is

P(t) = 1 − P̄(t). (33)

Now, suppose that, during a time interval [0, T], the probability P(t) increases with time.
Then, there is a positive function P(t) such that

P(t) =
∫ t

0
dt′ P(t′), (34)

for any t ∈ [0, T]. This, together with (33), implies

P(t) =
dP(t)

dt
= −dP̄(t)

dt
. (35)

Using (32) and (30), this finally gives

P(t) =
∫

∂D̄
dS · j(x, t). (36)

Mathematically, the final formula (36) is rather compact and general. The same formula
was also obtained in [8] using different methods, while here we derived it through the use
of the restricted Hamiltonian (25) with the anti-Hermitian boundary term.

Since P(t) is a probability, it follows that P(t) in (34) is a probability density. In other
words, P(t) is a probability distribution. The question is: a probability distribution of what?
We shall present two independent arguments: one heuristic and the other more rigorous,
that P(t) is the probability distribution of arrival times to the detector.

For the heuristic argument, consider first an analogous quantum equation for spatial
distributions. In a formula of the form P =

∫
d3x |ψ(x)|2, the quantity |ψ(x)|2 is the

probability density that the particle will appear at the position x, rather than at any other
position x′. By analogy, P(t) in (34) is the probability density that the particle will appear at
the time t, rather than at any other time t′. More precisely, since P(t) is the probability that
the particle is in the detector region D, it follows that P(t) is the probability density that
the particle will appear at time t in the detector region D. The appearance of a particle in
the detector at time t means that the particle was not there immediately before t, so we can
say that the particle arrives to detector at time t. Hence, we conclude that (36) is the arrival
time distribution.

We repeat that this interpretation is only valid when P(t) increases with time, i.e.,
when P(t) is positive. Formula (36) then says that the arrival time distribution is given
by the flux of the probability current through the boundary of the detector, when the flux
is positive. But what if the flux is negative? In that case, P(t) decreases with time, rather
than increases, so the particle departs from the detector, rather than arrives to it. Hence, for
a negative flux, the arrival probability density is zero. In this case, the −

∫
∂D̄ dS · j(x, t) is

positive and naturally interpreted as the departure probability density [8].
Now, let us confirm the conclusion above, i.e., that P(t) is arrival probability density,

using a more rigorous analysis. We first split the time interval [0, t] into k intervals, each of
the small size δt = t/k, and imagine that the particle can only arrive at one of the times
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from the discrete set t1 = δt, t2 = 2δt, . . . , tk = kδt = t. At the end, we shall let δt → 0. Let
w(tj) be the conditional probability density that the particle is in the detector at time tj, given
that it was not in the detector immediately before, at time tj−1. Then, the probability that it
will arrive at time t = tk is

Parr(t)δt = w(t)δt P̄(t − δt), (37)

where P̄(t − δt) is the probability that, at time t − δt, the particle was not in the detector
region D (see (33)). But the probability P̄(t − δt) is itself a joint probability that the particle
was not in D at time t − δt given that it was not there at t − 2δt, and that it was not there at
t − 2δt given that it was not there at t − 3δt, etc. Hence,

P̄(t − δt) =
k−1

∏
j=1

[1 − w(tj)δt], (38)

where 1 − w(tj)δt is the conditional probability that the particle is not in D at time tj,
given that it was not there at tj−1. Since we are interested in the limit δt → 0, we can first
write (38) as

P̄(t − δt) =
k−1

∏
j=1

exp
(
−w(tj)δt +O(δt2)

)
= exp

(
−

k−1

∑
j=1

[w(tj)δt +O(δt2)]

)
, (39)

and then take the limit δt → 0, which gives

P̄(t − δt) = P̄(t) = e−
∫ t

0 dt′ w(t′). (40)

Thus, (37) in the limit δt → 0 can be written as

Parr(t) = w(t)P̄(t) = w(t)e−
∫ t

0 dt′ w(t′)

= −dP̄(t)
dt

= P(t), (41)

where, in the last equality, we used (35). This shows that (36) is indeed the arrival probability
density, provided that it is positive.

The measurable predictions of the arrival time distribution based on the flux of the
probability current can, in principle, be distinguished experimentally from predictions
of the arrival time distribution based on other approaches. It is beyond the scope of
the present paper to discuss such measurable differences in detail, but they have been
studied elsewhere [4].

5. Summary and Conclusions

The results of this paper can be summarized as follows. As the wave function of a
particle approaches the detector, a part of the full wave function leaks into the detector
region D, so the other part of wave function, which remains outside of D, diminishes with
time. Since the norm of the full wave function ψ(x, t) does not depend on time, the norm of
its restriction ψD̄(x, t) to the region D̄ outside of the detector depends on time. Therefore,
the “Hamiltonian” H governing the time evolution of the restricted wave function ψD̄(x, t)
must be a non-Hermitian operator. In this paper, we found an explicit representation of
H and found that its non-Hermitian part can be written as a boundary term, which is
proportional to the flux of the probability current operator through the boundary ∂D̄ of
D̄. The explicit representation of H is given by Equation (25). From the time-dependent
norm of ψD̄(x, t), we computed the arrival time probability density, namely, the probability
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that the particle will be detected as arriving at the detector between the times t and t + dt,
and found that this arrival probability density is equal to the flux of the probability current
through the boundary ∂D̄.

Our final result, i.e., that the arrival probability density is equal to the flux of the
probability current, was also obtained by other approaches based on standard QM [5–8],
and on Bohmian particle trajectories [9–12]. The approach of the present paper, which
is also based on standard QM, is complementary to the existing approaches, because we
arrived at the same conclusion using different methods. However, we stress that it is not
generally accepted in the literature that the arrival probability density should be equal
to the flux of the probability current (see [1–4] for reviews of other proposals). Thus, we
believe that the result of this paper is a valuable contribution towards a resolution of an
important problem in physics.
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Appendix A. The Adjoint H† and Non-Hermiticity of H

To extract the non-Hermitian part of H, it is sufficient to find its adjoint H†. Notice
that while obtaining (21), we used the naïve rule for calculating the adjoint of the product
of operators, (AB)† = B† A†, which is valid only in finite dimensional spaces or for some
particular set of wave functions. Here, we will show that the non-Hermitian part of H can
be extracted directly from its adjoint in a straightforward and rigorous way once the proper
definition of the adjoint is used.

We start with the definition of the adjoint [16,17]:
The adjoint A† : D(A†) −→ H (with D denoting the domain of the operator) of a densely

defined linear operator A : D(A) −→ H is defined by

• D(A†) :=
{ψ ∈ H | ∃η ∈ H : ∀α ∈ D(A) : ⟨ψ|Aα⟩ = ⟨η|α⟩};

• A†ψ = η.

Then, we analyze the expression in (13) and notice the following chain of equalities:

⟨ψ|H|φ⟩ ≡
∫

D̄
d3x ψ∗(x)

[
−∇2

2m
+ V(x)

]
φ(x)

=
∫
R3

d3x ψ∗(x)χD̄(x)Ĥφ(x)

= ⟨ψ|π̄H|φ⟩,

(A1)

where χD̄(x) is the characteristic function of the region D̄

χD̄(x) =
{

1 for x ∈ D̄
0 for x /∈ D̄,

(A2)

and π̄ is defined in (7). This means that

⟨x|H|φ⟩ = ⟨x|π̄H|φ⟩ = χD̄(x)Ĥφ(x), (A3)



Universe 2024, 10, 35 10 of 11

where φ ∈ D(H) and ψ ∈ H. Now, in order to obtain the adjoint H†, we need to derive η
from the general definition for the adjoint. This will enable us to find both the domain and
the “rule of action” of the operator H†. For that matter, we will use the simple identity

ψ∗∇2 φ = ∇[ψ∗∇φ − (∇ψ∗)φ] + (∇2ψ∗)φ (A4)

in order to rewrite (A1) as

⟨ψ|H|φ⟩ =
∫

D̄
d3x

(
−∇2ψ∗(x)

2m
+ V(x)ψ∗(x)

)
φ(x)

− 1
2m

∫
D̄

d3x ∇[ψ∗∇φ − (∇ψ∗)φ].

(A5)

The first term is equal to

∫
D̄

d3x

(
−∇2ψ∗(x)

2m
+ V(x)ψ∗(x)

)
φ(x)

=
∫
R3

d3x
(
χD̄ Ĥψ

)∗
φ

= ⟨Hψ|φ⟩,

(A6)

while, for the second term, we have

− 1
2m

∫
D̄

d3x ∇[ψ∗∇φ − (∇ψ∗)φ]

= − 1
2m

∫
∂D̄

dS · [ψ∗∇φ − (∇ψ∗)φ]

=
i

2m

∫
∂D̄

dS · (⟨ψ|x⟩⟨x|pφ⟩+ ⟨ψ|p|x⟩⟨x|φ⟩)

= ⟨ψ| i
2m

∫
∂D̄

dS · {|x⟩⟨x|, p}|φ⟩

= ⟨i
∫

∂D̄
dS · Jψ|φ⟩,

(A7)

where we use the Gauss theorem and the definitions (17) and (24), the ∂D̄ is the boundary
of D̄, and dS is the area element directed outwards from D̄. Here, we notice that the identity
(A4) is only valid if ψ is at least a function of the class C2(R3) and, therefore, Equation (A5)
is well defined only if ψ ∈ H is such that ∇2ψ ∈ H, which will define the domain of the
adjoint D(H†

). Equations (A5)–(A7) together lead to

⟨ψ|Hφ⟩ = ⟨
(

H + i
∫

∂D̄
dS · J

)
ψ|φ⟩

= ⟨H†
ψ|φ⟩

(A8)

and we can explicitly read out the “rule of acting” for the adjoint operator H†

H†
= H + i

∫
∂D̄

dS · J, (A9)

which, together with the domain D(H†
), fully defines the operator H†. Equation (A9)

explicitly shows the non-Hermiticity of H and is in complete agreement with Equation (23).
The non-Hermiticity of H can also be described by the operator

N ≡ i(H − H†
) =

∫
∂D̄

dS · J. (A10)
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This operator is related to the arrival time distribution (36) via its expectation value

P(t) = ⟨ψ(t)|N|ψ(t)⟩ =
∫

∂D̄
dS · j(x, t), (A11)

which can also be written as a volume integral

P(t) =
∫

D̄
d3x ∇ · j(x, t)

=
∫
R3

d3x χD̄(x)∇ · j(x, t)

= −
∫
R3

d3x(∇χD̄(x)) · j(x, t).

(A12)

Note
1 Notice that V(t) = e−iHt is a contraction operator that forms a strongly continuous semi-group on the projected Hilbert space

π̄H and satisfies [8]
dV(t)

dt
= −iHV(t).
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