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Abstract: The chromomagnetic vacuum of SU(2) gluodynamics is considered in the background of a
finite radius flux tube (center vortex) with a homogeneous field inside and a zero field outside. In
this background, there are tachyonic modes. These modes cause an instability. It is assumed that the
self-interaction of these modes stops the creation of gluons, and it is assumed that a condensate will
be formed. For constant condensates, the minimum of the effective potential is found at the tree level.
In the background of these condensates, all tachyonic modes acquire non-zero real masses, which will
result in a real effective potential of this system. Considering only the tachyonic modes and adding
the energy of the background field, the total energy is found to have a minimum at some value of
the background field, which depends on the coupling of the initial SU(2) model. For small coupling,
this dependence is polynomial in distinction from the Savvidy vacuum where it is exponentially
suppressed. The minimum of this energy will deepen with a shrinking radius of the flux tube. It can
be expected that this process can be stopped by adding quantum effects. Using the high-temperature
expansion of the effective potential, it can be expected that the symmetry, which is broken by the
condensate, will be restored at sufficiently high temperatures.

Keywords: QCD; vacuum; tachyonic mode; color magnetic field; effective potential

1. Introduction

Quantum chromodynamics (QCD) is the quantum field theory that describes the
strong interactions. It is renormalizable and, thanks to its asymptotic freedom, it is success-
ful in the high-energy region, wherein a perturbative treatment is possible. In distinction,
in the low-energy region, one hits infrared problems originating from the masslessness of
the gluon fields. Physically, one observes confinement, which is probably due to a strong
multiparticle interaction of gluons and quarks. In addition, and in distinction from QED,
the basic fields of QCD do not correspond to the asymptotic states of the theory.

The confinement of gluons and quarks is the main problem left open in the Standard
Model. There were many approaches and attempts to solve it. Especially, lattice calcula-
tions give a strong support for the idea of confinement and provide good suggestions for
responsible field configurations, the most convincing one being the dual superconductor
configuration. Another approach rests on the functional renormalization group (FRG) by
solving flow equations towards some fixed point; see [1], for example. A common feature
of these approaches is to look for a condensate of gluons that could solve the infrared
problems caused by their masslessness, thereby keeping the gauge invariance.

A completely different approach rests on the observation that the magnetic moment
of the gluons—due to their spin one, which is twice that of the electron—overcompensates
the lowest Landau level in a chromomagnetic field. In a (homogeneous) field B, the one
particle energy of a gluon,

En =
√

p2
z + gB(2n + 1 + 2s), (1)
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may become imaginary in the lowest state (n = 0 and s = −1). Such a state is called
tachyonic. If considering the effective potential, or equivalently, the first quantum corrections
to the classical ground state, one arrives at the formula

Ve f f =
B2

2
+

11B2

48π2 ln
gB
µ

+ i
(gB)2

8π
, (2)

where µ is a normalization constant. As first observed in [2], there is a minimum at some
finite B where Ve f f < 0, causing the spontaneous generation of such field and forming a
new ground state (chromomagnetic or Savvidy vacuum). The reason behind this is the
coefficient in front of the logarithm, which is the first coefficient in the beta function, and its
sign is that of asymptotic freedom. However, in [3], the imaginary part in (2) was observed,
which makes this vacuum state unstable.

There were many attempts to overcome the instability of the chromomagnetic vacuum
state. The first one was the so-called Copenhagen vacuum; see [4]. It rests on the observation
that the instability for its formation needs a certain spatial region of a slowly varying
background field for instance to have gB < p2

3 in (1). One expects a certain domain
structure to be formed. Also, in [5], attention was paid to the observation that the instability
occurs from the quadratic part of the action and that the tachyonic modes have a nonlinear,
ϕ4-type self-interaction, which acts repulsive. Another approach starts from a self-dual
background. In such a background that necessarily also involves a chromoelectric field, the
effective potential also has a minimum like (2) but without the imaginary part. In the place,
one has an infinite number of zero modes [6]. Also, the formulation is in a Euclidean space
and is returning to Minkowski space, and the electric field becomes imaginary.

Recently, ref. [7] was able to sum up these zero modes. Furthermore, it was shown
there that the electric field may be switched off while keeping the imaginary part away. As a
result, Equation (2) without the imaginary part was obtained. A similar result was obtained
in [8], where the gluon polarization tensor was accounted for in some approximations.

It must be mentioned that the Savvidy vacuum has two more unwanted features.
The minimum in (2) appears for gB = µ2 exp

(
− 24π2

11g2

)
, i.e., it is exponentially small in a

perturbative region. Furthermore, as shown in [9], the symmetry breaking caused by the
chromomagnetic vacuum state is not restored at high temperature.

The masslessness of the gluon, which is a necessary feature for the gauge symmetry,
hampers all attempts for perturbative calculations in the low-energy region. There have
been many attempts to introduce a mass. As an example, we mention [10], where a special
source term was introduced using the formalism of local composite operators introduced by
the authors earlier together with a chromomagnetic background field. However, removing
the source, which acts like a gluon mass, brings the instability back.

A decade ago, in [1], which used the functional renormalization group approach
with a self-dual background field, an effective potential like (2) without the imaginary
part was found, but with physically more realistic parameters. In [11], using a complex
flow equation, a minimum of the effective potential was found, first without a magnetic
background field. When switching on the magnetic field, the imaginary part re-appeared.

Quite recently, the idea of a domain structure was put forward in [12] (and citations
therein). The domains are assumed to be filled by a self-dual background. The emerging
quasi-normal modes are treated beyond one loop, and the competition between the energy
of the domains and the disorder was considered. By minimizing the overall free energy, a
finite size for the domains was demonstrated. However, it must be mentioned that all such
attempts were unsatisfactory so far.

An attempt to extend the chromomagnetic vacuum from a homogeneous background
to a string-like configuration was undertaken in [13]. There, for a cylindrical chromomag-
netic background field with several profile functions decreasing at infinity, thus having
a finite flux and a finite energy (per unit length in direction of the cylinder), the effective
potential was calculated. Such configurations show a vacuum energy similar to (2), i.e.,
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some non-trivial minimum. However, in [13], no tachyonic mode was seen; however, it
should be there, as shown in [14].

In [15], as a new idea for the instability problem, it was suggested to consider a Higgs
mechanism for the unstable mode. This mode, as defined by n = 0 and s = −1 in (1), is a
complex field in two dimensions (xα, α = 0, 3), where x3 is the direction of the magnetic
background field with a negative mass square,

m2 = −gB < 0. (3)

In such a state, due to the instability, gluon pairs will be created. These are bosons
and will form a condensate of tachyons until the process is stopped by their repulsive self-
interaction. Technically, the potential in the corresponding Lagrangian has a ’Mexican hat’
shape, and it is necessary to use the Higgs mechanism by making a shift of the tachyon field
and quantizing around the shifted field. This was performed in [15] for a homogeneous
background in a radial gauge. Restricting to the lowest orbital mode (l = 0), one comes to a
model with a single complex field in two dimensions. Application of the second Legendre
transform in Hartree approximation (or the CJT formalism) resulted in an effective potential
with a minimum as a function of the background field that was below zero at perturbative
values of the parameters (in distinction from (2), where the minimum for small coupling
is exponentially small). Raising the temperature lifted this minimum until it disappeared
after a certain critical temperature. In this way, the symmetry, which was broken by the
condensate, is restored.

The paper [15] has several shortcomings. First of all, a homogeneous background field
is not really physical but an approximation at best. Second, the restriction to the lowest
orbital momentum mode needs a better justification. Finally, within the given approach, a
phase transition in a two-dimensional system was seen, which seems to be in contradiction
with the Mermin–Wagner theorem.

In the present paper, I will solve some of the mentioned problems. I consider as a
background a finite-radius chromomagnetic magnetic flux tube and consider all appearing
orbital momentum modes of the tachyonic field. Such a background is a special case of a
center vortex background, which is frequently discussed in connection with the confinement
problem.

The paper is organized as follows. In Section 2, the basic formulas for SU(2) are
introduced. In Section 3, I define the background and tachyonic mode and derive the
corresponding two-dimensional Lagrangian. Section 4 is devoted to the tachyon condensate
and to finding the minimum of the energy. Afterwards is the conclusion. A technical part
is delegated to the Appendix A.

In this paper, I use units with c = h̄ = 1.

2. Basic Formulas

We consider SU(2) gluodynamics in Euclidean space with the Lagrangian

L = LYM + Lgf + Lgh (4)

where

LYM = −1
4

(
Fa

µν[A]
)2

, (5)

Lgf = − 1
2ξ

(
Dab

µ Qb
µ

)
(Dac

ν Qc
ν),

Lgh = ca
(
−Dac

µ Dcb
µ − gDac

µ ϵcdbQd
µ

)
cb,

are the Yang–Mills Lagrangian, the gauge fixing term (in background gauge), and the ghost
contribution. The field strengths are
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Fa
µν[A] = ∂µ Aa

ν − ∂ν Aa
µ + gϵabc Ab

µ Ac
ν. (6)

A background field Ba
µ is introduced by

Aa
µ = Ba

µ + Qa
µ, (7)

where Qa
µ is the quantum field. The field strength (6) turns into

Fa
µν[B + Q] = Fa

µν[B] + Dab
µ Qb

ν − Dab
ν Qb

µ + gϵabcQb
µQc

ν (8)

with the covariant derivative

Dab
µ = ∂µδab + gϵacbBc

µ. (9)

We mention its commutator,[
Dµ, Dν

]ab
= gϵacbFc

µν[B]. (10)

With the background field Ba
µ, introduced in (7), the gauge fixing Lagrangian Lgf in (6)

defines an Rξ gauge. In the following, we put ξ = 1, i.e., we work in the Feynman gauge.
We mention that when not going beyond the one-loop approximation in the effective action,
the gauge invariance should be guaranteed.

We insert (8) into (5),

LYM = L0 + L1 + L2 + L3 + L4, (11)

where

L0 = −1
4

(
Fa

µν[B]
)2

(12)

is the (classical) background contribution,

L1 = Qa
νDab

µ Bb
µν (13)

with Bb
µν = ∂µBb

ν − ∂νBb
µ being the linear term (source term), and the remaining contribu-

tions

L2 = −1
2

Qa
µ

(
− (Da

λ)
2δµν − 2gϵacbBc

µν

)
Qb

ν,

L3 = −gϵabc(Dad
µ Qd

ν)Q
b
µQc

ν, (14)

L4 = − g2

4
(Qa

µQa
µQb

νQb
ν − Qa

µQa
νQb

µQb
ν).

are quadratic, cubic, and quartic in the quantum field.
In the following, we consider an Abelian background field

Ba
µ = δa3Bµ, Bµν = ∂µBν − ∂νBµ. (15)

With this, it is convenient to turn into the so-called charged basis, which diagonalizes
the Lagrangian in color space. By performing the corresponding substitutions,
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Q1
µ =

1√
2
(Wµ + W∗

µ), Q3
µ = Qµ, (16)

Q2
µ =

1√
2i
(Wµ − W∗

µ), Wµ =
1√
2

(
Q1

µ + iQ2
µ

)
.

in (14), we arrive at

L2 = −1
2

Qµ

(
− ∂2δµν

)
Qν (17)

− W∗
µ

(
− (Dλ)

2δµν − 2igBµν

)
Wν,

L3 = −ig(QµW∗
µνWν − QµWµνW∗

ν − QµνW∗
µWν)

L4 = −g2(QµQµW∗
ν Wν − QµQνW∗

µWν

+ W∗
µWµW∗

ν Wν − W∗
µWνW∗

µWν).

The third component, Qµ, is interpreted as a color-neutral vector field, whereas Wµ

represents a color-charged vector field. In (17), we introduced the notations

Qµν = ∂µQν − ∂νQµ, Wµν = DµWν − DνWµ, (18)

and the covariant derivative for the charged field is

Dµ = ∂µ − iBµ, [Dµ, Dν] = −iBµν. (19)

In the following section, we specialize these general formulas to the case of a cylindrical
symmetric background field.

3. Cylindrically Symmetric Background Field and a Field Theory for the Tachyonic
Mode

We consider a cylindrical symmetric chromomagnetic magnetic background field, for
instance, a straight vortex line parallel to the third spatial axis. In cylindrical coordinates
(r, φ, x3), we take the upper two components of the potential Bµ, µ = 1, 2, in the form (in
two-dimensional vector notations)

B⃗ = e⃗φ
µ(r)

r
, (20)

together with B3 = B4 = 0. The radial profile ρ(r) is, for the moment, arbitrary. The field
strengths in (15) turn into

Bµν = ϵµν
µ′(r)

r
, ϵµν =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


µν

(21)

and for the commutator, we obtain

[D1, D2] = −i
µ′(r)

r
. (22)

We mention that in our notations, Bµ in (14) is the potential and Bµν is the field strength
of the background field. In (21),

µ′(r)
r

≡ B(r), (23)
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has the meaning of the modulus of the three-dimensional field strength belonging to the
vector potential (20).

Next, we consider the linear term (13). With (9) and (13), we obtain

L1 = Q3
ν∂µϵµν

µ′(r)
r

(24)

and using (21), we arrive at

L1 = (− sin φQ3
1 + cos φQ3

2)

(
µ′(r)

r

)′
. (25)

In a homogeneous background field where B(r) = const in (23), L1 vanishes. In a non-
homogeneous background, which we will consider below, it does not vanish. However, it
couples to the third color component, i.e., to the color-neutral one, which does not influence
the tachyonic mode.

Next, we define the tachyonic mode. We consider the spectrum of the operator
representing the kernel of the quadratic part in Wµ, L2 in (17). The corresponding wave
equation reads (

(Dλ)
2δµν − 2igBµν

)
Wν = 0. (26)

In a homogeneous background, we have a profile function

µ(r) =
Br2

2
,

µ′(r)
r

= B, (27)

with a constant B and, after Fourier transform in the time and z-directions, the spectrum is
well known,

k2
0 = k2

3 + gB(2n + 1 + 2s), (28)

where n = 0, 1, . . . enumerates the Landau levels and s = ±1 is the spin projection. The
tachyonic mode is defined by n = 0, s = −1, and its spectrum,

k2
0 = k2

3 − gB, (29)

has a negative eigenvalue, which can be interpreted as a negative mass square, m2 = −gB.
As mentioned in the Introduction, this is the reason we call it tachyonic. Also, it is frequently
called the unstable mode. In fact, this is not a single mode. In the eigenvalue problem (26),
there is a further quantum number, the orbital momentum, with respect to which the
spectrum is degenerated. This corresponds to the translational invariance of the problem
in the plane perpendicular to the magnetic field. In this sense, there are infinitely many
tachyonic modes.

In the present paper, we consider a magnetic field that is homogeneous inside a
cylinder of radius R and zero outside. In this case, the profile function is

µ(r) =
Br2

2
Θ(R − r) +

BR2

2
Θ(r − R),

µ′(r)
r

≡ B(r) = B Θ(R − r), (30)

This field has a finite flux, Φ, and a finite energy, Ebg,

Φ =
∫

d2x⊥B(r) = πR2B, Ebg =
1
2

∫
d2x⊥B(r)2 =

π

2
B2R2, (31)

the energy being a density per unit lengths of the third direction. In this background, the
spectrum of the color-charged field Wµ, (16), is more complicated then (29). Nevertheless,
it has tachyonic modes,
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k2
0 = k3

3 − κ2
l , (32)

with κ2
l > 0; see Figure 1.

1 2 3 4
δ

0.5

1.0

1.5

2.0

2.5

κl

l=0

l=1

l=2

l=3

l=4

1 2 3 4 5 6
δ

1

2

3

4

5

6

7

lmax

Figure 1. Left panel: The tachyonic levels (32) in the flux tube (33). Right panel: The maximal
number lmax of orbital momenta for a given flux δ (solid line). This is the number of curves crossed
by a vertical section in the left panel. For comparison, the dashed line shows δ.

In this background, for the tachyonic modes Wta
µ (x), we consider the mode decompo-

sition

Wta
µ (x) =

1√
2


1
i
0
0


µ

lmax

∑
l=0

eilφ

√
2π

ϕl(r)ψl(xα), (α = 0, 3) x⊥ = (r, φ), (33)

(x⊥ taken in cylindrical coordinates), and lmax is discussed below. In (33), the κl are the
eigenvalues (34) and ϕl(r) are the eigenfunctions of the spatial part of the operator in (26),(

∂2
r +

1
r

∂r −
(l − µ(r))2

r2 + 2
µ′(r)

r

)
ϕl(r) = κ2

l ϕl(r). (34)

where, with (21),

ϵµν


1
i
0
0


ν

= i


1
i
0
0


µ

(35)

was used. In the mode decomposition (33), the coefficients ψl(xα) are the free coefficients
which, in the procedure of canonical quantization, become the operators. These ψl(xα) are
complex fields depending on two variables, x3 and x0 (or x4 in a Euclidean version).

The eigenvalue problem (34), describing the tachyonic modes (33), has scattering
solutions and bound state solutions as well. The scattering solutions have κl = ik and,
of course, a continuous spectrum. In contrast, the bound state solutions have real κl , are
normalizable and have a discrete spectrum. In the following, we consider only these
solutions. The methods for solving the eigenvalue problem (34) are well known. We
demonstrate their application in Appendix A. There are no analytical formulas, but the
numerical evaluation is quite easy using standard methods. We demonstrate the result in
Figure 1 (left panel) as function of

δ =
BR2

2
, (36)

which by means of δ = Φ/2π, is related to the magnetic flux (31). We mention that for
δ < 0.08 there is no solution, which is similar to the restriction gB ≤ p3, now in the
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transversal direction. By increasing the flux, with each new flux quantum, one new solution
comes down from the continuum. In the limit of R → ∞, one will see all the degenerated
solutions known from the homogeneous field. In Figure 1, in this limit all curves will merge
into the dashed line. Spelled out in the reverse order, the finite extend of the magnetic field
splits the tachyonic levels, i.e., it removes the degeneracy, and there is now a finite number
of them. In Figure 1, the dependence of the maximal number lmax of orbital momenta for a
given flux δ is shown. For large flux, lmax → δ holds.

The next step is to set up a field theory for the tachyonic mode. With Equation (33) and (A1),
we have a mode expansion for the tachyonic modes. Similar expansions could be set up for
all other non-tachyonic modes as well. However, as said above, we restrict ourselves to the
tachyonic modes. The reason is that the other modes are stable. A theory with only the
tachyonic modes appears when inserting (33) into (17) and integrating over the transversal
coordinates. We obtain

L̃ =
∫

dx⊥ L ≡ L̃2 + L̃4 (37)

with

L̃2 = −
lmax

∑
l=0

ψ∗
l (xα)

(
−∂2

α + m2
l

)
ψl(xα), (38)

L̃4 = −λδ ∑
l1,...,l4≤lmax

δl1−l2,l3−l4 N4(li) ψ∗
l1(xα)ψl2(xα)ψ

∗
l3(xα)ψl4(xα)

and the coefficients are

m2
l = −κ2

l , λ =
g2

π
, (39)

N4(li) =
∫ ∞

0
dr r ϕl1(r)ϕl2(r)ϕl3(r)ϕl4(r).

All these quantities depend on the flux δ as a parameter. In these formulas, we have
put R = 1. The dependence on R can be restored simply by dividing (37) by R2.

The masses ml are the (imaginary) masses of the tachyonic modes. The coefficients
N4(li) in the quartic contribution depend on the flux δ and can be calculated by insert-
ing (A1) into the lower line in (39). We mention that these are symmetric in the arguments
li. Some examples are shown in Figure 2. The case of a homogeneous background can be
obtained from R → ∞ in (A1) and (39). In that case, the wave functions and the integration
are explicit and result in

Nhom
4 (li) =

Γ(l1 + l3 + 1)
2l1+l3

√
Γ(l1 + 1)Γ(l2 + 1)Γ(l3 + 1)Γ(l4 + 1)

. (40)

These are the dashed lines in Figure 2. In the limit R → ∞, as can be seen in Appendix
A, the exterior solution (A2) is exponentially small, and the limit is reached exponentially
fast. This is also the speed in which the dashed lines are reached in the figure. However,
because for a given l some solutions start at ∼ δ, there are δ contributions that are far from
the homogeneous limit (40).

The Lagrangian (37) describes a theory with a finite number of complex fields in
two dimensions with negative mass square, (39) and a dimensional coupling (λ, (39), is
dimensionless and was introduced for convenience). The eigenvalues κ2

l in (39) and the
factor N4(li) have dimension R−2 (when restoring R), and their magnitude depends on the
magnetic background field B(r), resp., using the specific background (30) on B. We remind
that there is also the classical background (12) with the energy (31).
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2 4 6 8 10
δ

0.1

0.2

0.3

0.4

0.5

0.6

0.7
N4

{0, 0, 0, 0}

{0, 0, 1, 1}

{0, 2, 2, 0}

{0, 0, 3, 3}

{0, 3, 5, 2}

Figure 2. The coefficients N4(li) for sets {l1, l2, l3, l4} from top to bottom: {0, 0, 0, 0}, {0, 0, 1, 1},
{0, 2, 2, 0}, . . . The dashed lines show the corresponding quantity in the case of a homogeneous
background.

4. A Stable Tachyon Condensate

As discussed in [15], I assume that the tachyonic modes will form a condensate similar
to the scalar field in the well-known Higgs model. With (37), we have a system with a kind
of Mexican hat potential for the fields ψl(xα). The negative mass square in L̃2 leads to the
system for ψl(xα) = 0 to result in ’sitting on the top of the hill’ and causes the effective
potential to have an imaginary part, which is just that which was observed in [3] for a
homogeneous background. In the preceding section, we have seen that these instabilities
appear in the inhomogeneous background (30) as well. The imaginary part makes the
system unstable and pushes it forwards to a state with lower energy until the imaginary
part disappears. There are probably many ways for QCD to go to a lower state. Here, we
consider those that are within the model defined by the Lagrangian (37). Thus, the system
will create modes of the field ψl1(xα), i.e., tachyons, until it is stopped by the repulsive
self-interaction given by L̃4 in (38). These modes will form a Bose condensate. The situation
is similar to a quartic oscillator in quantum mechanics with an imaginary frequency and a
x4-term entering with a plus sign. So, we have to look for the minimum of the potential
−L̃. We mention that the existence of a minimum is guaranteed by the structure of L̃ as all
coefficients in L̃4, (38), are positive.

In [15], only one orbital momentum mode, l = 0, was allowed, and the above idea was
realized by a shift, ψ(xα) → ψ(xα)+ v, of this mode, where v is a constant condensate. In the
present case, we allow for all orbital momentum modes in (33) and have a correspondingly
more complicated situation. As said above, we have to consider the minimum of −L̃, (37).
In view of a later quantization, this means that we consider a minimum of the effective
potential (which would include quantum corrections) on the tree level.

We parameterize the complex fields,

ψl(xα) =
1√
2

φl(xα) eiΘl(xα) (41)

by two real fields, φl(xα) and Θl(xα), having a meaning of module and phase. We mention
that L̃4 in (38) is real, which is ensured by the Kronecker symbol in (38), i.e., by the orbital
momentum conservation.

In the following, we look for a minimum on constant fields. An inhomogeneity only
tends to increase the energy. Of course, a minimum on non-constant fields cannot be
excluded in such simple way. However, this is a separate problem and is left for later.
Because there is no way to obtain analytical results, we are left with numerical methods.
The calculations were preformed using Mathematica with the tools provided by that system.

To look for a minimum, we make shifts of the fields,

φl(xα) → vl + φl(xα), Θl(xα) → ϑl + Θl(xα) (42)

with constant vl and ϑl .
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We insert (41) and (42) into the Lagrangian (37) and expand for small φl(xα) and
Θl(xα). We arrive at

L̂ = L̂0 + L̂1 + L̂2 + . . . (43)

with

L̂0 =
1
2

lmax

∑
l=0

κ2
l v2

l −
g2

2π
δ ∑

l1,...,l4≤lmax

δl1−l2,l3−l4 N4(li) vl1 vl2 vl3 vl4 eiϑl1−iϑl2+iϑl3−iϑl4 , (44)

L̂1 =
lmax

∑
l=0

[
κ2

l vl − 4
g2

2π
δ ∑

l1,...,l4≤lmax

δl1−l2,l3−l4 N4(li) δl,l1 vl2 vl3 vl4

]
φl(xα),

L̂2 = −
lmax

∑
l=0

[1
2

φl(xα)
(
−∂2

αδll′ + m2
ll′

)
φl(xα) + v2

l Θl(xα)(−∂2
α)Θl(xα)

]
.

The mass is now a matrix with entries

m2
ll′ = −κ2

l δll′ + 3
g2

2π
δ ∑

l1,...,l4≤lmax

δl1−l2,l3−l4 N4(li)δl,l1 δl,l2 vl3 vl4 . (45)

We are looking for a minimum of L̂0, which at once is a zero of L̂1. We mention that
the ϑl(xα) do not cancel in L̂0. The first appearance of a ϑl is for δ = 3.03, where we have
orbital momenta until l = 3,

L̂0 = −2.89926v2
0 − 2.46514v2

1 − 1.67909v2
2 − 0.640937v2

3 (46)

+ λ
[
0.218062v2

1v2v0 cos(ϑ0 − 2ϑ1 + ϑ2) + 0.256459v1v2v3v0 cos(ϑ0 − ϑ1 − ϑ2 + ϑ3)

+ 0.158381v1v2
2v3 cos(ϑ1 − 2ϑ2 + ϑ3) + 0.137526v4

0 + 0.296608v2
1v2

0 + 0.161249v2
2v2

0 + 0.0745899v2
3v2

0

+ 0.0737236v4
1 + 0.0502424v4

2 + 0.0234354v4
3 + 0.220456v2

1v2
2 + 0.124823v2

1v2
3 + 0.130519v2

2v2
3
]
,

to show an example.
It is worth mentioning that the minimum may be not unique. In the example (46), a

change in the angles ϑi, keeping the arguments of the cosines, is possible as that would
imply three conditions for four variables. In the following, we consider only one minimum.
As it turned out, one of them is realized for all ϑl = 0. For this reason, we dropped the ϑl
in L̂1. In (44), the last line is the quadratic part of the Lagrangian. It is not non-diagonal
in the fields φl(xα). The fields Θl(xα) remain massless, and in the sense of a spontaneous
symmetry, breaking these are the Goldstone bosons. In this spirit, we call the vl , which
realize the minimum of L̂1, the tree-level condensates vtree

l and the value of L̂0,

Vtree
e f f ≡ −L̂0

∣∣vtree
l

, (47)

the effective potential on tree level.
Some of the first (in the sense of increasing flux δ) condensates and Vtree

e f f are shown in
Figure 3 (right panel) for δ ≤ 4. The depth of the minimum of Vtree

e f f grows with the flux.
Until δ = 3.03, we have only one non-zero condensate, vtree

1 ; beyond this, all components
may be non-zero.

The behavior of the condensates deserves special attention. Until δ = 3.03, we have up
to four orbital momentum modes present (see Figure 1) and only one non-zero condensate.
At δ = 3.03, without exciting a new orbital mode, the behavior changes drastically; now, all
condensates vl (l = 0, ..., 3) are non-zero (see Figure 3, right panel). At δ = 3.25, the mode
l = 4 sets in, and here we have each second condensate as non-zero. We did not investigate
this behavior in more detail, but we assume that classical chaos can be observed here.
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Figure 3. Left panel: The value of Vtree
e f f = −L, (37), in the minimum. Right panel: The tree level

condensates vtree
l as a function of the flux δ. The mesh for these plots is ∆δ = 0.039.

In the minimum of Vtree
e f f , the first-order variation in φl(xα), i.e., L̂1, vanishes. This

circumstance was used in the numerical calculations as a check for the procedure to find
the minimum. For instance, the expression

lm

∑
l=0

∣∣− κ2
l (v

tree
l )2 + λδ ∑

li

δl,l1 N4(li)δl1−l2,l3−l4 vtree
l1 vtree

l2 vtree
l3 vtree

l4

∣∣, (48)

which accumulates the mismatches from the first variations, was seen to be below 10−9 for
all calculated values of δ. In order to reach this, in the integration in (39), in the routines for
finding the minima of −L and for solving Equation (A8) for κl , a working precision of 100
digits was used.

In the second-order variation, L̂2, we have a mass matrix, (45). It can be diagonalized,
and the eigenvalues are shown in Figure 4 (and in Figure 5 for larger δ). These are all
non-negative and grow with the flux.

1 2 3 4
δ0

2

4

6

8

10

12

l=0

l=1

l=2

l=3

l=4

Figure 4. The mass eigenvalues on the tree level, i.e., after diagonalization of (46).
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δ
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800

E

λ=0.12

λ=0.10

λ=0.08

5 10 15 20
δ

50

100

150

mdiag
The masses after diagonalization

Figure 5. Left panel: The energy E, (47), of the system. Right panel: The mass eigenvalues on the
tree level, i.e., after diagonalization of (46), for λ = 0.1. The mesh for these plots is ∆δ = 0.28.

As can be also observed from these figures, after δ = 3.03, the behavior becomes a bit
irregular (similar to that of the condensates in Figure 3); however, it keeps its basic features.
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The same holds for the energy in Figure 5 (left panel). The unevenness of the curve is not
due to numerical errors but is an intrinsic property.

The minimum of the complete energy, i.e., with the energy (12), or (31), with the
background field added, is

E = Ebg + Vtree
e f f (49)

with L being from (37) and vtree
l being inserted. Restoring the R dependence, a factor R−2

must be added. As a function of δ, the energy E is shown in Figure 5 (left panel) for several
values of the coupling λ. As can be seen, for large λ, there is no minimum. It appears
at λ∼0.12 and deepens with decreasing λ. In the right panel of Figure 5, mdiag, i.e., the
eigenvalues of the mass matrix (45), are shown. This is a continuation of Figure 4 to larger
δ. All of these masses are positive, and some become large.

It is interesting to mention that the effective potential (47), which is shown in Figure 3
for small δ, continues to also grow in the negative direction for larger δ, as shown in Figure
6 in comparison with the energy E, (49).

5 10 15 20
δ

-2500

-2000

-1500

-1000

-500

500

E

Veff
tree

5 10 15 20
δ

-3000

-2000

-1000

E

Veff
tree

Figure 6. Left panel: The effective potential (47) and energy (49) for λ = 0.1. Right panel: The
effective potential (47) and energy (49) for λ = 0.1 calculated with Nhom

4 , (40), in place of N4, (39).

Now, let us discuss the relation to a homogeneous magnetic background. Formally, it
corresponds to an infinite radius in our model, R → ∞. Of course, the energy diverges as
being proportional to the area in the directions perpendicular to the magnetic field. Equiva-
lently, in the radial gauge, the number of orbital momenta involved diverges. Therefore a
regularization is needed. As such, just the finite radius, which is considered in this paper,
may be taken. For instance, it provides a restriction for the orbital momenta, lmax; see
Figure 1. Considering R, or lmax, as regularization, we have the same formulas as before
with the only change being that we may take Nhom

4 , (40), in place of N4, (39). The result is
shown in Figure 6 in the right panel. Both the effective potential and the energy are below
the corresponding values in the left panel and, in addition, the energy has a non-minimum.
This behavior demonstrates for instance that taking a restriction of the angular momenta as
regularization for a calculation in the homogeneous background gives wrong results.

5. Discussion and Conclusions

In the preceding section, we have seen that in a string-like chromomagnetic back-
ground, the tachyonic modes of the gluon field will form a condensate. We took for the
background a homogeneous field inside a cylinder of radius R and a zero field outside. It
has a finite flux Φ and a finite energy Ebg (per unit length of the cylinder), (31). Due to the
cylindrical symmetry, we have orbital modes of the tachyon field, ψl(aα), (33). Their num-
ber is restricted by the flux, 0 ≤ l ≲ δ (see Figure 1, right panel). Each orbital momentum
mode may have a condensate, whereby we considered only constant condensates of the
module φl(aα), (41).

To find the minimum of −L0, (44), is a task in several variables. We used the numerical
capabilities provided by Mathematica. The depth of the emerging minimum is shown in
Figure 3 (left panel) and for larger δ in Figure 6 (also left panel, upper curve) as a function
of the flux δ. It takes negative values and grows with the flux.
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An unexpected feature is the structure of the minima for δ > 3.03. As can be seen in
Figure 3 (right panel) and also in Figure 4, the behavior of the solutions changes drastically;
however, they keep the basic features. We interpret this phenomenon as the onset of
classical chaos.

The minimum Vmin of the effective potential Vtree
e f f , (47), deepens with growing flux. To

obtain the total energy, one has to add the energy of the background field Ebg, (31). Using
(36), one comes to (49). Restoring the R dependence, it can be written in the form

E =
πδ + Vmin

R2 . (50)

As can be seen from Figure 5 (left panel), for a coupling λ ≲ 0.12, it has a minimum at
some finite δ. With fixed radius R, the corresponding value of the magnetic field would be
chosen by the system automatically.

In case one also allows the radius to be a dynamical variable, the system would prefer
R → 0 as the direction lowering the energy. We mention that this is a result of our purely
classical consideration. We may hope that this shrinking of the radius will be stopped when
quantum effects are included.

We started from SU(2) chromodynamics. We separated the tachyonic modes and
have seen that these will create a chromomagnetic background field and will form a stable
condensate. It is worth mentioning that this approach is in distinction from the most
common assumption of the condensate for all gluon modes, which is motivated by keeping
the gauge symmetry. An attractive feature of our approach is that a condensate of the
tachyon modes provides masses to all these modes; see Figure 5 (right panel). This is
similar to the Higgs mechanism in the Standard Model.

A task for further investigation in this approach is the calculation of the vacuum energy
of the tachyonic modes. Because all of these have real, non-zero masses (see Figure 5 (right
panel), this should not be a problem. Moreover, when including temperature, a simple
estimation for high T, following Equation (49) in [15], shows that additional contributions
∼ ∑l mlT can be expected, removing any minimum and restoring the initial symmetry.

A further development must be the inclusion of the non-tachyonic modes. Here,
one may encounter the problem where the considered magnetic string is not a solution
of the initial equations of motion as L1, (25), is not zero. As long as the consideration is
restricted to the tachyonic modes, this is not a problem, as L1 couples only to the third
color component.
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Appendix A. Bound State Solutions in the Flux Tube

In this appendix, we demonstrate the solution of the eigenvalue problem (34) and
follow standard methods. The problem can be viewed as a stationary Schrödinger equation.
It has discrete eigenvalues with κ2

l > 0 and scattering states with κ2
l < 0. The bound

state solutions, which correspond to the tachyonic modes, must decrease for r → ∞. The
solutions can be found in terms of the Bessel function in the outside region and in terms of
the Kummer functions in the inside region,

ϕl(r) =
1
Nl

(
ϕint

l (r)Θ(R − r) + ϕext
l (r)Θ(r − R)

)
, (A1)

matching functions and their derivatives by continuity at r = R. In this way, for the outside
function, we make the ansatz
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ϕext
l (r) = βlKν(κr) (A2)

where βl are some constants, ν = l − BR2

2 , Kν(κr) is a modified Bessel function, and κ is
still to be found. To find the inside function ϕint

l (r), we follow a well-known procedure and
make a substitution

ρ =
Br2

2
, (A3)

of the radial variable and the ansatz

ϕint
l (r) = ρl/2e−ρ/2M(ρ). (A4)

Equation (34) turns into(
ρ∂ρ + (l + 1 − ρ)∂ρ −

R2

2δ
− l +

1
2

)
M(ρ) = 0, (A5)

where we use the notation δ = BR2/2, (32).
The solution of Equation (A4), which is regular at the origin, is the Kummer function

M(a, l + 1, ρ) with the notation

a =
κ2R2

2δ
+ l − 1

2
. (A6)

In order to find the eigenvalues, it is sufficient to match the logarithmic derivatives.
For this, we define

Rext(r) = κ∂r ln ϕext
l (r), Rint(r) = κ∂r ln ϕint

l (r) (A7)

and demand

Rext(R) = Rint(R). (A8)

It is convenient to introduce another dimensionless notation, x = κR, and to rewrite

Rext(R) = x∂x ln Kν(x), (A9)

Rint(R) = l − δ +
2δa

l + 1
M(a + 1, l + 2, δ)

M(a, l + 1, δ)

where Equation (9.213) from [16] was used.
The solutions κl of Equation (A8) are the eigenvalues of the operator on the left side

of (34). The coefficients βl and the normalization factors Nl in Equation (A1) can be found
from matching the functions and from∫ ∞

0
dr r ϕl(r)ϕl′(r) = δll′ , (A10)

which is the normalization condition.
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