Primordial Gravitational Wave- and Curvature Perturbation-Induced Energy Density Perturbations
Abstract
:1. Introduction
2. Second-Order Scalar Perturbations
2.1. Equation of Motion
2.2. Kernel Functions
2.3. Initial Second-Order Perturbation
2.4. Power Spectra
3. Monochromatic Primordial Power Spectra
3.1. Monochromatic Primordial Power Spectra with the Same
3.2. Monochromatic Primordial Power Spectra with Different
4. Log-Normal Primordial Power Spectra
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Source Terms
Appendix B. Polarization Tensor
Appendix C. Four-Point Function
References
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Malik, K.A.; Wands, D. Cosmological perturbations. Phys. Rep. 2009, 475, 1–51. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 1992, 215, 203–333. [Google Scholar] [CrossRef]
- Kodama, H.; Sasaki, M. Cosmological Perturbation Theory. Prog. Theor. Phys. Suppl. 1984, 78, 1–166. [Google Scholar] [CrossRef]
- Mollerach, S.; Harari, D.; Matarrese, S. CMB polarization from secondary vector and tensor modes. Phys. Rev. D 2004, 69, 063002. [Google Scholar] [CrossRef]
- Baumann, D.; Steinhardt, P.J.; Takahashi, K.; Ichiki, K. Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations. Phys. Rev. D 2007, 76, 084019. [Google Scholar] [CrossRef]
- Kohri, K.; Terada, T. Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations. Phys. Rev. D 2018, 97, 123532. [Google Scholar] [CrossRef]
- Domènech, G. Scalar Induced Gravitational Waves Review. Universe 2021, 7, 398. [Google Scholar] [CrossRef]
- Chang, Z.; Kuang, Y.T.; Zhang, X.; Zhou, J.Z. Primordial black holes and third order scalar induced gravitational waves. Chin. Phys. C 2023, 47, 055104. [Google Scholar] [CrossRef]
- Romero-Rodriguez, A.; Martinez, M.; Pujolàs, O.; Sakellariadou, M.; Vaskonen, V. Search for a Scalar Induced Stochastic Gravitational Wave Background in the Third LIGO-Virgo Observing Run. Phys. Rev. Lett. 2022, 128, 051301. [Google Scholar] [CrossRef]
- Saito, R.; Yokoyama, J. Gravitational wave background as a probe of the primordial black hole abundance. Phys. Rev. Lett. 2009, 102, 161101, Erratum in Phys. Rev. Lett. 2011, 107, 069901. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Terada, T.; Kohri, K. Prospective constraints on the primordial black hole abundance from the stochastic gravitational-wave backgrounds produced by coalescing events and curvature perturbations. Phys. Rev. D 2019, 99, 103531, Erratum in Phys. Rev. D 2020, 101, 069901. [Google Scholar] [CrossRef]
- Inomata, K.; Nakama, T. Gravitational waves induced by scalar perturbations as probes of the small-scale primordial spectrum. Phys. Rev. D 2019, 99, 043511. [Google Scholar] [CrossRef]
- Barausse, E.; Berti, E.; Hertog, T.; Hughes, S.A.; Jetzer, P.; Pani, P.; Sotiriou, T.P.; Tamanini, N.; Witek, H.; Yagi, K.; et al. Prospects for Fundamental Physics with LISA. Gen. Relativ. Gravit. 2020, 52, 81. [Google Scholar] [CrossRef]
- Bartolo, N.; De Luca, V.; Franciolini, G.; Lewis, A.; Peloso, M.; Riotto, A. Primordial Black Hole Dark Matter: LISA Serendipity. Phys. Rev. Lett. 2019, 122, 211301. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.g.; Pi, S.; Sasaki, M. Gravitational Waves Induced by non-Gaussian Scalar Perturbations. Phys. Rev. Lett. 2019, 122, 201101. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, X.; Zhou, J.Z. Gravitational waves from primordial scalar and tensor perturbations. Phys. Rev. D 2023, 107, 063510. [Google Scholar] [CrossRef]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Tada, Y.; Yanagida, T.T. Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments. Phys. Rev. D 2017, 95, 123510. [Google Scholar] [CrossRef]
- Papanikolaou, T.; Vennin, V.; Langlois, D. Gravitational waves from a universe filled with primordial black holes. J. Cosmol. Astropart. Phys. 2021, 3, 053. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, J.; Cai, Y.F.; Sasaki, M.; Pi, S. Primordial black holes and gravitational waves from resonant amplification during inflation. Phys. Rev. D 2020, 102, 103527. [Google Scholar] [CrossRef]
- Domènech, G.; Pi, S.; Sasaki, M. Induced gravitational waves as a probe of thermal history of the universe. J. Cosmol. Astropart. Phys. 2020, 8, 017. [Google Scholar] [CrossRef]
- Cai, R.G.; Guo, Z.K.; Liu, J.; Liu, L.; Yang, X.Y. Primordial black holes and gravitational waves from parametric amplification of curvature perturbations. J. Cosmol. Astropart. Phys. 2020, 6, 013. [Google Scholar] [CrossRef]
- Cai, R.G.; Pi, S.; Wang, S.J.; Yang, X.Y. Pulsar Timing Array Constraints on the Induced Gravitational Waves. J. Cosmol. Astropart. Phys. 2019, 10, 059. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, Z.C.; Huang, Q.G. Probing primordial–black-hole dark matter with scalar induced gravitational waves. Phys. Rev. D 2019, 100, 081301. [Google Scholar] [CrossRef]
- Bartolo, N.; Domcke, V.; Figueroa, D.G.; García-Bellido, J.; Peloso, M.; Pieroni, M.; Ricciardone, A.; Sakellariadou, M.; Sorbo, L.; Tasinato, G. Probing non-Gaussian Stochastic Gravitational Wave Backgrounds with LISA. J. Cosmol. Astropart. Phys. 2018, 11, 034. [Google Scholar] [CrossRef]
- Alabidi, L.; Kohri, K.; Sasaki, M.; Sendouda, Y. Observable induced gravitational waves from an early matter phase. J. Cosmol. Astropart. Phys. 2013, 5, 033. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.Z.; Chang, Z. Impact of the free-streaming neutrinos to the second order induced gravitational waves. Eur. Phys. J. C 2022, 82, 781. [Google Scholar] [CrossRef]
- Gong, J.O. Analytic Integral Solutions for Induced Gravitational Waves. Astrophys. J. 2022, 925, 102. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Zhang, X.; Zhu, Q.H.; Chang, Z. The third order scalar induced gravitational waves. J. Cosmol. Astropart. Phys. 2022, 5, 013. [Google Scholar] [CrossRef]
- Arun, K.G.; Belgacem, E.; Benkel, R.; Bernard, L.; Berti, E.; Bertone, G.; Besancon, M.; Blas, D.; Böhmer, C.G.; Brito, R.; et al. New horizons for fundamental physics with LISA. Living Rev. Relativ. 2022, 25, 4. [Google Scholar] [CrossRef]
- Zhao, Z.C.; Wang, S. Bayesian implications for the primordial black holes from NANOGrav’s pulsar-timing data by using the scalar induced gravitational waves. Universe 2023, 9, 157. [Google Scholar] [CrossRef]
- Inomata, K. Analytic solutions of scalar perturbations induced by scalar perturbations. J. Cosmol. Astropart. Phys. 2021, 3, 013. [Google Scholar] [CrossRef]
- Carrilho, P.; Malik, K.A. Vector and tensor contributions to the curvature perturbation at second order. J. Cosmol. Astropart. Phys. 2016, 2, 021. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, F.; Wang, B. Second-order cosmological perturbations. II. Produced by scalar-tensor and tensor-tensor couplings. Phys. Rev. D 2017, 96, 103523. [Google Scholar] [CrossRef]
- Nakama, T.; Suyama, T. Primordial black holes as a novel probe of primordial gravitational waves. II: Detailed analysis. Phys. Rev. D 2016, 94, 043507. [Google Scholar] [CrossRef]
- Nakama, T.; Suyama, T. Primordial black holes as a novel probe of primordial gravitational waves. Phys. Rev. D 2015, 92, 121304. [Google Scholar] [CrossRef]
- Bari, P.; Ricciardone, A.; Bartolo, N.; Bertacca, D.; Matarrese, S. Signatures of Primordial Gravitational Waves on the Large-Scale Structure of the Universe. Phys. Rev. Lett. 2022, 129, 091301. [Google Scholar] [CrossRef]
- Cho, I.; Gong, J.O.; Oh, S.H. Second-order effective energy-momentum tensor of gravitational scalar perturbations with perfect fluid. Phys. Rev. D 2020, 102, 043531. [Google Scholar] [CrossRef]
- Saga, S. The Vector Mode in the Second-order Cosmological Perturbation Theory. Ph.D. Thesis, Nagoya University, Nagoya, Japan, 2017. [Google Scholar] [CrossRef]
- Lu, T.H.C.; Ananda, K.; Clarkson, C. Vector modes generated by primordial density fluctuations. Phys. Rev. D 2008, 77, 043523. [Google Scholar] [CrossRef]
- Lu, T.H.C.; Ananda, K.; Clarkson, C.; Maartens, R. The cosmological background of vector modes. J. Cosmol. Astropart. Phys. 2009, 2, 023. [Google Scholar] [CrossRef]
- Smith, R.E.; Sheth, R.K.; Scoccimarro, R. An analytic model for the bispectrum of galaxies in redshift space. Phys. Rev. D 2008, 78, 023523. [Google Scholar] [CrossRef]
- Acquaviva, V.; Bartolo, N.; Matarrese, S.; Riotto, A. Second order cosmological perturbations from inflation. Nucl. Phys. B 2003, 667, 119–148. [Google Scholar] [CrossRef]
- Kamionkowski, M.; Kosowsky, A.; Stebbins, A. A Probe of primordial gravity waves and vorticity. Phys. Rev. Lett. 1997, 78, 2058–2061. [Google Scholar] [CrossRef]
- Durrer, R. Light deflection in perturbed Friedmann universes. Phys. Rev. Lett. 1994, 72, 3301–3304. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, D.; Namikawa, T.; Taruya, A. Weak lensing generated by vector perturbations and detectability of cosmic strings. J. Cosmol. Astropart. Phys. 2012, 10, 030. [Google Scholar] [CrossRef]
- Saga, S.; Yamauchi, D.; Ichiki, K. Weak lensing induced by second-order vector mode. Phys. Rev. D 2015, 92, 063533. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, X.; Zhou, J.Z. The cosmological vector modes from a monochromatic primordial power spectrum. J. Cosmol. Astropart. Phys. 2022, 10, 084. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef]
- Bringmann, T.; Scott, P.; Akrami, Y. Improved constraints on the primordial power spectrum at small scales from ultracompact minihalos. Phys. Rev. D 2012, 85, 125027. [Google Scholar] [CrossRef]
- Ananda, K.N.; Clarkson, C.; Wands, D. The Cosmological gravitational wave background from primordial density perturbations. Phys. Rev. D 2007, 75, 123518. [Google Scholar] [CrossRef]
- Alabidi, L.; Kohri, K.; Sasaki, M.; Sendouda, Y. Observable Spectra of Induced Gravitational Waves from Inflation. J. Cosmol. Astropart. Phys. 2012, 9, 017. [Google Scholar] [CrossRef]
- Bugaev, E.; Klimai, P. Induced gravitational wave background and primordial black holes. Phys. Rev. D 2010, 81, 023517. [Google Scholar] [CrossRef]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Yanagida, T.T. Double inflation as a single origin of primordial black holes for all dark matter and LIGO observations. Phys. Rev. D 2018, 97, 043514. [Google Scholar] [CrossRef]
- Garcia-Bellido, J.; Peloso, M.; Unal, C. Gravitational Wave signatures of inflationary models from Primordial Black Hole Dark Matter. J. Cosmol. Astropart. Phys. 2017, 9, 013. [Google Scholar] [CrossRef]
- Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial black holes—perspectives in gravitational wave astronomy. Class. Quant. Grav. 2018, 35, 063001. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys. 2011, 126, 511–529. [Google Scholar] [CrossRef]
- Gorji, M.A.; Sasaki, M. Primordial-tensor-induced stochastic gravitational waves. Phys. Lett. B 2023, 846, 138236. [Google Scholar] [CrossRef]
- Chen, C.; Ota, A.; Zhu, H.Y.; Zhu, Y. Missing one-loop contributions in secondary gravitational waves. arXiv 2022, arXiv:2210.17176. [Google Scholar] [CrossRef]
- Bari, P.; Bartolo, N.; Domènech, G.; Matarrese, S. Gravitational waves induced by scalar-tensor mixing. arXiv 2023, arXiv:2307.05404. [Google Scholar] [CrossRef]
- Picard, R.; Malik, K.A. Induced gravitational waves: The effect of first order tensor perturbations. arXiv 2023, arXiv:2311.14513. [Google Scholar]
- Cho, I.; Gong, J.O.; Oh, S.H. Second-order energy-momentum tensor of a scalar field. Phys. Rev. D 2022, 106, 084027. [Google Scholar] [CrossRef]
- Pitrou, C.; Roy, X.; Umeh, O. xPand: An algorithm for perturbing homogeneous cosmologies. Class. Quant. Grav. 2013, 30, 165002. [Google Scholar] [CrossRef]
- Bartolo, N.; Komatsu, E.; Matarrese, S.; Riotto, A. Non-Gaussianity from inflation: Theory and observations. Phys. Rep. 2004, 402, 103–266. [Google Scholar] [CrossRef]
- Bartolo, N.; Matarrese, S.; Riotto, A. Gauge-invariant temperature anisotropies and primordial non-Gaussianity. Phys. Rev. Lett. 2004, 93, 231301. [Google Scholar] [CrossRef]
- Young, S.; Byrnes, C.T. Signatures of non-gaussianity in the isocurvature modes of primordial black hole dark matter. J. Cosmol. Astropart. Phys. 2015, 4, 034. [Google Scholar] [CrossRef]
- Yu, Y.H.; Wang, S. Primordial Gravitational Waves Assisted by Cosmological Scalar Perturbations. arXiv 2023, arXiv:2303.03897. [Google Scholar]
- De Luca, V.; Kehagias, A.; Riotto, A. How well do we know the primordial black hole abundance: The crucial role of nonlinearities when approaching the horizon. Phys. Rev. D 2023, 108, 063531. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Z.; Kuang, Y.-T.; Zhang, X.; Zhou, J.-Z. Primordial Gravitational Wave- and Curvature Perturbation-Induced Energy Density Perturbations. Universe 2024, 10, 39. https://doi.org/10.3390/universe10010039
Chang Z, Kuang Y-T, Zhang X, Zhou J-Z. Primordial Gravitational Wave- and Curvature Perturbation-Induced Energy Density Perturbations. Universe. 2024; 10(1):39. https://doi.org/10.3390/universe10010039
Chicago/Turabian StyleChang, Zhe, Yu-Ting Kuang, Xukun Zhang, and Jing-Zhi Zhou. 2024. "Primordial Gravitational Wave- and Curvature Perturbation-Induced Energy Density Perturbations" Universe 10, no. 1: 39. https://doi.org/10.3390/universe10010039
APA StyleChang, Z., Kuang, Y. -T., Zhang, X., & Zhou, J. -Z. (2024). Primordial Gravitational Wave- and Curvature Perturbation-Induced Energy Density Perturbations. Universe, 10(1), 39. https://doi.org/10.3390/universe10010039